Download citation
Download citation
link to html
In strychninium chlorate(VII) monohydrate, C21H23N2O{}_{2}^{\,+}·ClO{}_{4}^{\,- }·H2O, strychninium hydrogensulfate­(VI) dihydrate, C21H23N2O{}_{2}^{\,+}·HSO{}_{4}^{\,- }·2H2O, and strychninium di­hydro­gen­phos­phate(V) dihydrate, C21H23N2O{}_{2}^{\,+}·H2PO{}_{4}^{\,- }·2H2O, the strychninium cations form bilayer sheets separated by water-anion sheets. The strychnine bilayer sheets in the three compounds are similar to one another. In all three structures, the surfaces of the cation and water-anion sheets exhibit donor-acceptor matching.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105001034/gd1357sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105001034/gd1357Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105001034/gd1357IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105001034/gd1357IIIsup4.hkl
Contains datablock III

CCDC references: 268114; 268115; 268116

Comment top

The recently described racemic resolution of alanine derivatives by the strychnine (and brucine) has revealed that enantiomeric recognition of the N-protected alanine (Gould & Walkinshaw, 1984; Bialonska & Ciunik, 2004) is dependent on the type of alkaloid self-assembly, which is determined by the donor/acceptor properties of the resolved substrate. Cocrystallization of strychnine with the chloric(VII), sulfuric(VI) or phosphoric(V) acid gives an opportunity to control, by the number of the donor/acceptor sites, the molecular recognition.

Views of the molecules of C21H23N2O2+·ClO4·H2O, (I), C21H23N2O2+·HSO4·2H2O, (II), and C21H23N2O2+·H2PO4·2H2O, (III), with the atom-numbering schemes, are presented in Fig. 1. The strychnine molecules in (I), (II) and (III) form, in a similar way to many other crystals (NO3, SO42−, Cl, Br and I) (Mostad, 1985; Borkhoven et al., 1951; Ghosh et al., 1989; Robertson & Beevers, 1951; Yuan et al., 1994], herring-bone bilayer sheets separated by anions and water molecules (Fig. 2). The carbonyl O atom and arene ring of the strychnine molecule are directed inwards in the bilayer sheet. This configuration, coupled with protonation of the tertiary amine N atom, causes the surfaces of the strychnine bilayer sheets in all of the crystals under investigation to act as donors.

In the crystal structure of (I), the chlorate(VII) anion adopts two arrangements (in a 2:1 ratio) around the Cl1—O3 bond. Atom O3 atom of the anion is directed towards a flat hole at the surface of the strychnine layer (see Fig. 2a). As presented in Fig. 3(a), protonated amine atom N2 of the strychnine molecule acts as a donor in a biffurcated hydrogen bond, where the water molecule O1W, as well as atom O4 or O4A of the disordered anion, act as acceptors. Both the anion and the water molecule are also directly linked by one branch [O1W—H11W···O4 (or O5A)] of the biffurcated hydrogen bond. Atom O6 (or O6A) of the anion at (−x, y + 1/2, −z + 1) is the other acceptor. The O1W—H12W···O5(x, y + 1, z) (or O6A) interaction complete the hydrogen-bonded network, resulting in anion/water tapes along the [010] direction (Table 1).

Contrary to the crystal structure of (I), in the crystal structure of (II) two water molecules and a hydrogensulfate(VI) anion form, through symmetry operations, a hydrogen-bonded sheet. However, the chlorate(VII) anion/water tapes in (I) and the hydrogensulfate(VI) anion/water layers in (II) exhibit largely similar hydrogen-bonding patterns. This similarity results from (i) similar occupancy of the holes at the surface of the strychnine sheet by the anion (see Fig. 2b) and (ii) the similar environment of the protonated tertiary amine atom, N2, of the strychnine molecule, which in (II) is again the donor in a biffurcated hydrogen bond to the anion and water molecule (Fig. 3b). However, whereas two anions and a water molecule are connected by the biffurcated hydrogen bond in (I), the equivalent interaction in (II) also involves the other water molecule (O2W). The layer results from the fact that besides participating in the N2—H22···O4 hydrogen bond, atom O4 of the hydrogensulfate(VI) anion also acts as a donor in a hydrogen bond to the O1W water molecule from the (−x + 1, y − 1/2, −z + 2) position (Table 2).

The holes at the surface of the strychnine bilayer sheet in (III) are occupied by the O2W water molecules (Fig. 2c), and atom N2 of the strychnine molecule acts as a donor of a hydrogen bond of which atom O4 of the dihydrogenphosphate(V) anion is the only acceptor (Fig. 3c). The anion/water layer that results from the hydrogen-bond network formed by the dihydrogenphosphate(V) anions and water molecules is quite different from the layers in (II). In (III), each O atom of the anion participates in short hydrogen bonds (Table 3). Atoms O3 and O5 atoms of the anion act as hydrogen-bond donors to water molecule O1W and atom O6 in the adjacent anion at (−x, y + 1/2, −z + 2), respectively. Each of the two remaining O atoms (O4 and O6) acts as an acceptor of three hydrogen bonds; besides the above-mentioned interactions with atom O5 or N2 as donor, water molecules O1W and O2W, as bridges, are the donors of the other two bonds.

In summary, the chlorate(VII), hydrogensulfate(VI) and dihydrogenphosphate(V) anions are recognized by similar strychnine self-assembled bilayers in (I), (I) and (III), respectively. However, the molecular recognition of the anions, resulting from the control of their donor/acceptor sites, shows a great diversity of non-covalent interactions inside the water/anion sheet. The various hydrogen-bonding patterns in the anion/water sheet are determined by the different numbers of water molecules and especially by the different occupancy of the holes at the surface of the strychnine bilayer, by the anion in (I) and (II), and by a water molecule in (III). Furthermore, the formation of bifurcated hydrogen bonds or participation of one acceptor in several intermolecular interactions cause the surfaces of both the water/anion and the strychnine sheets to fit well in accordance with their donor/acceptor properties.

Experimental top

Strychnine (POCh, Poland) and a suitable acid were dissolved in water in a molar ratio of 1:1. Crystals of (I), (II) and (III) were grew after slow evaporation of the solvent.

Refinement top

Atoms O4A, O5A and O6A in (I) have an occupancy of 0.327 (7) and were refined isotropically. All H atoms were located from difference maps and then treated as riding, with C—H distances of 0.95–1.00 Å, N—H distances of 0.93 Å and O—H distances of 0.84–0.86 Å. The absolute structures of (I)–(III) were determined from the known absolute configuration of strychnine (Robertson & Beevers, 1951) and confirmed by the values of the Flack (1983) parameter.

Computing details top

For all compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2001); cell refinement: CrysAlis RED (Oxford Diffraction, 2001); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-NT (Bruker, 1999). Software used to prepare material for publication: SHELXL97 for (I), (II); SHELXL97 (Sheldrick, 1997) for (III).

Figures top
[Figure 1] Fig. 1. The independent components in (a) compound (I), (b) compound (II) and (c) compound (III), with the atom-numbering schemes. Displacement ellipsoids are shown at the 50% probability level. The anion in (I) is disordered over two sets of sites with occupancies of 0.673 (7) and 0.327 (7).
[Figure 2] Fig. 2. The molecular packing of (a) (I), (b) (II) and (c) (III), showing the similarity of the strychnine bilayers and the variety of their water/anion environments. For clarity, H atoms have been omited.
[Figure 3] Fig. 3. The hydrogen bonds of the anion/water tape in the structure of (I) (a) and the anion/water layers in the crystals of (II) (b) and (III) (c). Bonds to the two alternative positions of the anion in (I) are distinguished by solid and open dashed lines.
(I) Strychninium chlorate(VII) monohydrate top
Crystal data top
C21H23N2O2+·ClO4·H2OF(000) = 476
Mr = 452.88Dx = 1.525 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2062 reflections
a = 7.8016 (8) Åθ = 3.5–29.0°
b = 7.6538 (9) ŵ = 0.24 mm1
c = 16.5597 (17) ÅT = 100 K
β = 93.966 (9)°Plate, colourless
V = 986.44 (18) Å30.10 × 0.10 × 0.05 mm
Z = 2
Data collection top
Kuma KM-4 CCD
diffractometer
3083 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.084
Graphite monochromatorθmax = 29.0°, θmin = 3.5°
ω scansh = 1010
13754 measured reflectionsk = 108
4042 independent reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0818P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4042 reflectionsΔρmax = 0.91 e Å3
293 parametersΔρmin = 0.87 e Å3
40 restraintsAbsolute structure: from known structure (Robertson & Beevers, 1951), Flack (1983), 1225 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (10)
Crystal data top
C21H23N2O2+·ClO4·H2OV = 986.44 (18) Å3
Mr = 452.88Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.8016 (8) ŵ = 0.24 mm1
b = 7.6538 (9) ÅT = 100 K
c = 16.5597 (17) Å0.10 × 0.10 × 0.05 mm
β = 93.966 (9)°
Data collection top
Kuma KM-4 CCD
diffractometer
3083 reflections with I > 2σ(I)
13754 measured reflectionsRint = 0.084
4042 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.140Δρmax = 0.91 e Å3
S = 1.01Δρmin = 0.87 e Å3
4042 reflectionsAbsolute structure: from known structure (Robertson & Beevers, 1951), Flack (1983), 1225 Friedel pairs
293 parametersAbsolute structure parameter: 0.09 (10)
40 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11.0320 (3)0.9704 (4)0.21457 (14)0.0211 (5)
O20.9146 (3)0.5133 (3)0.03046 (16)0.0256 (6)
N10.7777 (3)0.5609 (4)0.14534 (16)0.0148 (6)
N20.5137 (4)0.8238 (4)0.35552 (17)0.0176 (6)
H220.41880.81760.38640.021*
C10.5933 (5)0.3442 (5)0.0637 (2)0.0203 (7)
H10.67720.31730.02670.024*
C20.4300 (5)0.2668 (5)0.0573 (2)0.0219 (7)
H20.40310.18600.01470.026*
C30.3072 (5)0.3041 (5)0.1108 (2)0.0235 (8)
H3A0.19720.25060.10430.028*
C40.3440 (4)0.4201 (4)0.1744 (2)0.0188 (7)
H40.26110.44390.21240.023*
C50.5050 (4)0.5010 (4)0.18157 (19)0.0163 (6)
C60.6268 (4)0.4621 (4)0.12664 (19)0.0167 (6)
C70.5773 (4)0.6253 (4)0.2461 (2)0.0143 (6)
C80.7456 (4)0.6905 (4)0.2096 (2)0.0138 (6)
H80.84290.68890.25220.017*
C90.8976 (4)0.5985 (4)0.0919 (2)0.0183 (7)
C101.0118 (4)0.7532 (4)0.1146 (2)0.0197 (7)
H10A1.07210.78780.06650.024*
H10B1.10030.71490.15660.024*
C110.9205 (4)0.9167 (4)0.1466 (2)0.0168 (7)
H110.91481.01030.10440.020*
C120.9844 (5)1.1313 (5)0.2512 (2)0.0238 (8)
H12A0.93001.20920.20920.029*
H12B1.08891.19020.27520.029*
C130.8630 (4)1.1014 (5)0.3153 (2)0.0199 (7)
H130.89961.12640.37000.024*
C140.7045 (4)1.0407 (4)0.2984 (2)0.0188 (7)
C150.5841 (4)1.0065 (4)0.3624 (2)0.0198 (7)
H15A0.48821.09140.35730.024*
H15B0.64501.02250.41640.024*
C160.6416 (4)0.6876 (4)0.3873 (2)0.0192 (7)
H16A0.61730.65110.44270.023*
H16B0.76020.73390.38840.023*
C170.6191 (4)0.5352 (4)0.3289 (2)0.0182 (7)
H17A0.52380.45830.34310.022*
H17B0.72580.46540.32840.022*
C180.7374 (4)0.8668 (4)0.16764 (19)0.0140 (6)
H180.67100.84700.11460.017*
C190.6344 (4)1.0032 (4)0.2125 (2)0.0157 (6)
H190.63091.11470.18100.019*
C200.4520 (4)0.9315 (4)0.2140 (2)0.0161 (7)
H20A0.37541.02180.23460.019*
H20B0.40770.89930.15850.019*
C210.4548 (4)0.7722 (4)0.2683 (2)0.0162 (6)
H210.33570.72370.26790.019*
Cl10.14780 (12)0.47191 (15)0.41366 (6)0.0361 (3)
O30.0787 (4)0.5136 (5)0.33459 (17)0.0480 (9)
O40.2722 (6)0.5986 (6)0.4434 (3)0.0331 (11)0.673 (7)
O50.2463 (5)0.3113 (5)0.4020 (3)0.0344 (12)0.673 (7)
O60.0206 (8)0.4325 (12)0.4667 (4)0.0734 (19)0.673 (7)
O4A0.3173 (8)0.5295 (16)0.4352 (7)0.038 (3)*0.327 (7)
O5A0.0523 (17)0.6000 (16)0.4575 (8)0.072 (4)*0.327 (7)
O6A0.0732 (13)0.3358 (12)0.4598 (6)0.038 (3)*0.327 (7)
O1W0.2410 (4)0.9535 (5)0.43438 (19)0.0451 (8)
H11W0.17950.90160.46840.068*
H12W0.22031.06400.43500.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0138 (10)0.0210 (12)0.0282 (12)0.0025 (10)0.0002 (9)0.0054 (11)
O20.0265 (12)0.0265 (14)0.0245 (13)0.0009 (11)0.0068 (11)0.0037 (11)
N10.0164 (13)0.0112 (12)0.0168 (14)0.0013 (10)0.0015 (11)0.0030 (10)
N20.0169 (14)0.0172 (14)0.0192 (14)0.0029 (11)0.0042 (12)0.0007 (11)
C10.0263 (18)0.0171 (16)0.0171 (16)0.0001 (14)0.0000 (14)0.0028 (13)
C20.0309 (19)0.0143 (15)0.0190 (17)0.0043 (14)0.0074 (15)0.0004 (13)
C30.0250 (18)0.0155 (17)0.0293 (19)0.0068 (13)0.0042 (16)0.0037 (14)
C40.0171 (16)0.0151 (16)0.0240 (17)0.0015 (12)0.0006 (14)0.0045 (13)
C50.0197 (15)0.0128 (15)0.0156 (14)0.0008 (12)0.0042 (12)0.0053 (12)
C60.0195 (14)0.0107 (14)0.0194 (14)0.0024 (13)0.0023 (12)0.0039 (13)
C70.0146 (14)0.0103 (13)0.0177 (15)0.0007 (11)0.0005 (13)0.0038 (12)
C80.0137 (14)0.0107 (14)0.0169 (15)0.0000 (11)0.0000 (12)0.0004 (12)
C90.0185 (16)0.0161 (15)0.0202 (16)0.0049 (13)0.0002 (14)0.0022 (13)
C100.0161 (15)0.0157 (16)0.0274 (18)0.0020 (13)0.0019 (14)0.0010 (14)
C110.0126 (15)0.0153 (15)0.0222 (16)0.0019 (11)0.0000 (13)0.0010 (13)
C120.0168 (16)0.0206 (17)0.034 (2)0.0048 (14)0.0040 (15)0.0074 (15)
C130.0194 (16)0.0168 (16)0.0236 (17)0.0019 (13)0.0015 (14)0.0040 (14)
C140.0188 (16)0.0137 (15)0.0238 (17)0.0013 (13)0.0010 (14)0.0018 (13)
C150.0202 (16)0.0156 (17)0.0236 (17)0.0043 (12)0.0011 (14)0.0054 (13)
C160.0211 (17)0.0190 (17)0.0173 (16)0.0019 (13)0.0009 (14)0.0006 (13)
C170.0234 (16)0.0128 (14)0.0183 (16)0.0000 (12)0.0013 (14)0.0038 (12)
C180.0130 (14)0.0128 (15)0.0160 (15)0.0007 (12)0.0007 (12)0.0018 (12)
C190.0140 (13)0.0110 (15)0.0215 (15)0.0006 (11)0.0026 (12)0.0017 (13)
C200.0125 (15)0.0137 (16)0.0222 (15)0.0010 (11)0.0009 (13)0.0026 (12)
C210.0140 (15)0.0140 (14)0.0204 (16)0.0021 (12)0.0000 (13)0.0028 (13)
Cl10.0313 (5)0.0430 (6)0.0326 (5)0.0156 (4)0.0074 (4)0.0043 (5)
O30.0461 (17)0.054 (2)0.0403 (17)0.0195 (16)0.0203 (15)0.0117 (16)
O40.022 (2)0.039 (3)0.037 (2)0.000 (2)0.0042 (19)0.008 (2)
O50.030 (2)0.021 (2)0.050 (3)0.0011 (17)0.010 (2)0.0042 (19)
O60.058 (3)0.095 (5)0.072 (4)0.029 (3)0.041 (3)0.035 (3)
O1W0.0307 (15)0.053 (2)0.0543 (19)0.0033 (16)0.0183 (14)0.0129 (18)
Geometric parameters (Å, º) top
O1—C121.433 (4)C12—C131.489 (5)
O1—C111.435 (4)C12—H12A0.9900
O2—C91.223 (4)C12—H12B0.9900
N1—C91.363 (4)C13—C141.332 (5)
N1—C61.415 (4)C13—H130.9500
N1—C81.488 (4)C14—C151.488 (5)
N2—C151.504 (4)C14—C191.516 (5)
N2—C161.512 (4)C15—H15A0.9900
N2—C211.536 (4)C15—H15B0.9900
N2—H220.9300C16—C171.518 (5)
C1—C61.389 (5)C16—H16A0.9900
C1—C21.403 (5)C16—H16B0.9900
C1—H10.9500C17—H17A0.9900
C2—C31.379 (6)C17—H17B0.9900
C2—H20.9500C18—C191.540 (4)
C3—C41.392 (5)C18—H181.0000
C3—H3A0.9500C19—C201.527 (4)
C4—C51.398 (5)C19—H191.0000
C4—H40.9500C20—C211.515 (5)
C5—C61.392 (5)C20—H20A0.9900
C5—C71.511 (4)C20—H20B0.9900
C7—C211.537 (4)C21—H211.0000
C7—C171.548 (5)Cl1—O61.402 (3)
C7—C81.565 (4)Cl1—O4A1.416 (4)
C8—C181.517 (4)Cl1—O31.417 (3)
C8—H81.0000Cl1—O41.435 (3)
C9—C101.513 (5)Cl1—O6A1.438 (4)
C10—C111.552 (5)Cl1—O5A1.455 (5)
C10—H10A0.9900Cl1—O51.470 (3)
C10—H10B0.9900O1W—H11W0.86
C11—C181.542 (4)O1W—H12W0.86
C11—H111.0000
C12—O1—C11114.7 (3)C14—C13—C12122.0 (3)
C9—N1—C6124.7 (3)C14—C13—H13119.0
C9—N1—C8118.7 (3)C12—C13—H13119.0
C6—N1—C8109.5 (2)C13—C14—C15122.2 (3)
C15—N2—C16112.7 (3)C13—C14—C19122.2 (3)
C15—N2—C21113.2 (3)C15—C14—C19115.5 (3)
C16—N2—C21107.3 (2)C14—C15—N2110.7 (3)
C15—N2—H22107.8C14—C15—H15A109.5
C16—N2—H22107.8N2—C15—H15A109.5
C21—N2—H22107.8C14—C15—H15B109.5
C6—C1—C2117.0 (3)N2—C15—H15B109.5
C6—C1—H1121.5H15A—C15—H15B108.1
C2—C1—H1121.5N2—C16—C17105.3 (3)
C3—C2—C1122.1 (3)N2—C16—H16A110.7
C3—C2—H2119.0C17—C16—H16A110.7
C1—C2—H2119.0N2—C16—H16B110.7
C2—C3—C4120.1 (3)C17—C16—H16B110.7
C2—C3—H3A119.9H16A—C16—H16B108.8
C4—C3—H3A119.9C16—C17—C7103.3 (3)
C3—C4—C5118.9 (3)C16—C17—H17A111.1
C3—C4—H4120.5C7—C17—H17A111.1
C5—C4—H4120.5C16—C17—H17B111.1
C6—C5—C4120.0 (3)C7—C17—H17B111.1
C6—C5—C7111.0 (3)H17A—C17—H17B109.1
C4—C5—C7128.9 (3)C8—C18—C19112.9 (3)
C1—C6—C5121.8 (3)C8—C18—C11108.3 (3)
C1—C6—N1128.5 (3)C19—C18—C11117.6 (3)
C5—C6—N1109.7 (3)C8—C18—H18105.7
C5—C7—C21115.0 (3)C19—C18—H18105.7
C5—C7—C17113.0 (3)C11—C18—H18105.7
C21—C7—C17102.2 (3)C14—C19—C20109.2 (3)
C5—C7—C8102.1 (3)C14—C19—C18114.5 (3)
C21—C7—C8114.3 (3)C20—C19—C18106.4 (3)
C17—C7—C8110.7 (3)C14—C19—H19108.9
N1—C8—C18105.6 (2)C20—C19—H19108.9
N1—C8—C7104.6 (2)C18—C19—H19108.9
C18—C8—C7116.8 (3)C21—C20—C19108.9 (3)
N1—C8—H8109.9C21—C20—H20A109.9
C18—C8—H8109.9C19—C20—H20A109.9
C7—C8—H8109.9C21—C20—H20B109.9
O2—C9—N1123.1 (3)C19—C20—H20B109.9
O2—C9—C10121.9 (3)H20A—C20—H20B108.3
N1—C9—C10115.0 (3)C20—C21—N2110.1 (3)
C9—C10—C11116.1 (3)C20—C21—C7115.5 (3)
C9—C10—H10A108.3N2—C21—C7105.2 (3)
C11—C10—H10A108.3C20—C21—H21108.6
C9—C10—H10B108.3N2—C21—H21108.6
C11—C10—H10B108.3C7—C21—H21108.6
H10A—C10—H10B107.4O6—Cl1—O3112.7 (4)
O1—C11—C18114.5 (3)O4A—Cl1—O3116.8 (5)
O1—C11—C10103.3 (3)O6—Cl1—O4114.9 (3)
C18—C11—C10109.4 (3)O3—Cl1—O4111.7 (3)
O1—C11—H11109.8O4A—Cl1—O6A119.8 (6)
C18—C11—H11109.8O3—Cl1—O6A120.8 (5)
C10—C11—H11109.8O4A—Cl1—O5A99.5 (8)
O1—C12—C13111.5 (3)O3—Cl1—O5A97.7 (6)
O1—C12—H12A109.3O6A—Cl1—O5A89.0 (7)
C13—C12—H12A109.3O6—Cl1—O5107.5 (4)
O1—C12—H12B109.3O3—Cl1—O5103.7 (2)
C13—C12—H12B109.3O4—Cl1—O5105.3 (3)
H12A—C12—H12B108.0H11W—O1W—H12W109.4
C6—C1—C2—C30.3 (5)C12—C13—C14—C15178.5 (3)
C1—C2—C3—C40.9 (5)C12—C13—C14—C192.0 (5)
C2—C3—C4—C51.8 (5)C13—C14—C15—N2127.3 (3)
C3—C4—C5—C61.4 (5)C19—C14—C15—N253.1 (4)
C3—C4—C5—C7177.6 (3)C16—N2—C15—C1476.5 (4)
C2—C1—C6—C50.6 (5)C21—N2—C15—C1445.6 (4)
C2—C1—C6—N1178.2 (3)C15—N2—C16—C17140.5 (3)
C4—C5—C6—C10.2 (5)C21—N2—C16—C1715.2 (3)
C7—C5—C6—C1177.0 (3)N2—C16—C17—C734.9 (3)
C4—C5—C6—N1179.2 (3)C5—C7—C17—C16165.2 (3)
C7—C5—C6—N14.0 (4)C21—C7—C17—C1641.1 (3)
C9—N1—C6—C121.0 (5)C8—C7—C17—C1681.0 (3)
C8—N1—C6—C1170.9 (3)N1—C8—C18—C19156.1 (2)
C9—N1—C6—C5158.0 (3)C7—C8—C18—C1940.5 (4)
C8—N1—C6—C58.0 (4)N1—C8—C18—C1171.8 (3)
C6—C5—C7—C21137.6 (3)C7—C8—C18—C11172.5 (3)
C4—C5—C7—C2145.9 (4)O1—C11—C18—C873.9 (3)
C6—C5—C7—C17105.6 (3)C10—C11—C18—C841.5 (4)
C4—C5—C7—C1770.9 (4)O1—C11—C18—C1955.5 (4)
C6—C5—C7—C813.3 (3)C10—C11—C18—C19170.9 (3)
C4—C5—C7—C8170.3 (3)C13—C14—C19—C20178.7 (3)
C9—N1—C8—C1844.2 (4)C15—C14—C19—C201.8 (4)
C6—N1—C8—C18107.8 (3)C13—C14—C19—C1859.5 (4)
C9—N1—C8—C7167.9 (3)C15—C14—C19—C18121.0 (3)
C6—N1—C8—C716.0 (3)C8—C18—C19—C1459.6 (3)
C5—C7—C8—N117.0 (3)C11—C18—C19—C1467.6 (4)
C21—C7—C8—N1141.8 (3)C8—C18—C19—C2061.1 (3)
C17—C7—C8—N1103.5 (3)C11—C18—C19—C20171.6 (3)
C5—C7—C8—C1899.2 (3)C14—C19—C20—C2155.9 (3)
C21—C7—C8—C1825.5 (4)C18—C19—C20—C2168.2 (3)
C17—C7—C8—C18140.2 (3)C19—C20—C21—N262.7 (3)
C6—N1—C9—O221.4 (5)C19—C20—C21—C756.1 (4)
C8—N1—C9—O2168.8 (3)C15—N2—C21—C2010.6 (3)
C6—N1—C9—C10159.6 (3)C16—N2—C21—C20135.7 (3)
C8—N1—C9—C1012.2 (4)C15—N2—C21—C7114.4 (3)
O2—C9—C10—C11137.3 (3)C16—N2—C21—C710.7 (3)
N1—C9—C10—C1143.7 (4)C5—C7—C21—C2084.0 (3)
C12—O1—C11—C1866.7 (4)C17—C7—C21—C20153.1 (3)
C12—O1—C11—C10174.5 (3)C8—C7—C21—C2033.5 (4)
C9—C10—C11—O1136.4 (3)C5—C7—C21—N2154.4 (3)
C9—C10—C11—C1814.0 (4)C17—C7—C21—N231.6 (3)
C11—O1—C12—C1388.7 (4)C8—C7—C21—N288.0 (3)
O1—C12—C13—C1466.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H22···O1W0.931.952.758 (4)145
N2—H22···O40.932.273.004 (5)135
N2—H22···O4A0.932.503.073 (10)120
O1W—H11W···O6i0.861.972.709 (5)143
O1W—H11W···O6Ai0.862.433.238 (12)158
O1W—H12W···O5ii0.861.982.791 (5)156
O1W—H12W···O6Aii0.862.423.244 (12)159
Symmetry codes: (i) x, y+1/2, z+1; (ii) x, y+1, z.
(II) Strychninium hydrogen sulfate (VI) dihydrate top
Crystal data top
C21H23N2O2+·HO4S·2H2OF(000) = 496
Mr = 468.51Dx = 1.507 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1886 reflections
a = 7.7884 (8) Åθ = 3.5–27.5°
b = 7.6686 (8) ŵ = 0.21 mm1
c = 17.5780 (18) ÅT = 100 K
β = 100.388 (7)°Needle, colourles
V = 1032.66 (18) Å30.35 × 0.25 × 0.15 mm
Z = 2
Data collection top
Kuma KM-4 CCD
diffractometer
3552 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.076
Graphite monochromatorθmax = 27.5°, θmin = 3.5°
ω scansh = 109
6972 measured reflectionsk = 99
4009 independent reflectionsl = 1822
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0753P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4009 reflectionsΔρmax = 0.33 e Å3
289 parametersΔρmin = 0.55 e Å3
1 restraintAbsolute structure: from known structure (Robertson & Beevers, 1951), Flack (1983), 1465 Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.14 (9)
Crystal data top
C21H23N2O2+·HO4S·2H2OV = 1032.66 (18) Å3
Mr = 468.51Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.7884 (8) ŵ = 0.21 mm1
b = 7.6686 (8) ÅT = 100 K
c = 17.5780 (18) Å0.35 × 0.25 × 0.15 mm
β = 100.388 (7)°
Data collection top
Kuma KM-4 CCD
diffractometer
3552 reflections with I > 2σ(I)
6972 measured reflectionsRint = 0.076
4009 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.126Δρmax = 0.33 e Å3
S = 1.05Δρmin = 0.55 e Å3
4009 reflectionsAbsolute structure: from known structure (Robertson & Beevers, 1951), Flack (1983), 1465 Friedel pairs?
289 parametersAbsolute structure parameter: 0.14 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0840 (3)0.4310 (3)0.70225 (11)0.0171 (4)
O20.9198 (3)0.0316 (3)0.52768 (12)0.0221 (5)
N10.8127 (3)0.0140 (3)0.63901 (13)0.0146 (5)
N20.6123 (3)0.2719 (3)0.84398 (13)0.0142 (5)
H220.52880.26240.87550.017*
C10.6044 (4)0.2025 (4)0.56144 (16)0.0177 (6)
H10.67800.22990.52550.021*
C20.4418 (4)0.2786 (4)0.55629 (17)0.0192 (6)
H20.40340.35810.51530.023*
C30.3318 (4)0.2436 (4)0.60875 (17)0.0195 (6)
H30.22060.29800.60330.023*
C40.3875 (4)0.1268 (4)0.66980 (16)0.0166 (6)
H40.31510.10240.70660.020*
C50.5502 (4)0.0471 (3)0.67583 (15)0.0130 (6)
C60.6565 (4)0.0836 (4)0.62158 (14)0.0155 (5)
C70.6405 (4)0.0756 (4)0.73712 (15)0.0124 (5)
C80.7982 (4)0.1442 (4)0.70073 (15)0.0114 (5)
H80.90730.14260.74070.014*
C90.9200 (4)0.0542 (4)0.58699 (16)0.0156 (6)
C101.0394 (4)0.2084 (4)0.60997 (17)0.0183 (6)
H10A1.09110.24290.56470.022*
H10B1.13620.17010.65110.022*
C110.9540 (4)0.3712 (4)0.63923 (15)0.0135 (6)
H110.93530.46170.59760.016*
C121.0443 (4)0.5923 (4)0.73722 (17)0.0191 (6)
H12A0.97400.66760.69760.023*
H12B1.15400.65450.75820.023*
C130.9443 (4)0.5575 (4)0.80131 (17)0.0183 (6)
H130.99780.58240.85310.022*
C140.7839 (4)0.4932 (4)0.78758 (16)0.0153 (6)
C150.6824 (4)0.4573 (4)0.85108 (16)0.0169 (6)
H15A0.58420.54070.84750.020*
H15B0.75900.47300.90200.020*
C160.7524 (4)0.1370 (4)0.87069 (16)0.0154 (6)
H16A0.75010.10060.92450.018*
H16B0.86940.18440.86810.018*
C170.7089 (4)0.0164 (4)0.81521 (15)0.0140 (5)
H17A0.61830.09210.83070.017*
H17B0.81400.08710.81260.017*
C180.7774 (4)0.3227 (4)0.66118 (15)0.0129 (6)
H180.69600.30360.61100.016*
C190.6855 (4)0.4564 (4)0.70598 (15)0.0130 (5)
H190.67160.56830.67630.016*
C200.5038 (4)0.3836 (4)0.70964 (16)0.0140 (6)
H20A0.43380.47260.73110.017*
H20B0.44250.35280.65700.017*
C210.5242 (4)0.2221 (4)0.76095 (15)0.0132 (6)
H210.40580.17320.76250.016*
S10.24975 (9)0.08189 (9)0.89124 (4)0.01541 (17)
O30.1683 (3)0.0051 (3)0.81895 (12)0.0218 (5)
O40.4044 (3)0.0449 (3)0.92333 (12)0.0180 (5)
H4A0.46340.00280.96390.027*
O50.3280 (3)0.2524 (3)0.88275 (12)0.0237 (5)
O60.1375 (3)0.0836 (3)0.95010 (12)0.0252 (5)
O1W0.4017 (3)0.4373 (3)0.95295 (11)0.0187 (4)
H11W0.31370.38220.96460.028*
H12W0.37140.54260.93980.028*
O2W0.1496 (3)0.2649 (3)1.00627 (13)0.0277 (5)
H21W0.05510.30441.01890.042*
H22W0.12820.16620.98310.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0173 (9)0.0132 (9)0.0206 (9)0.0015 (9)0.0027 (8)0.0036 (9)
O20.0303 (11)0.0207 (11)0.0178 (10)0.0004 (10)0.0108 (9)0.0050 (8)
N10.0197 (12)0.0103 (11)0.0146 (11)0.0012 (10)0.0048 (10)0.0023 (9)
N20.0197 (12)0.0105 (12)0.0129 (11)0.0006 (10)0.0044 (10)0.0013 (9)
C10.0288 (16)0.0111 (14)0.0128 (13)0.0016 (13)0.0026 (11)0.0006 (11)
C20.0267 (16)0.0137 (14)0.0150 (13)0.0022 (13)0.0023 (12)0.0007 (11)
C30.0227 (15)0.0140 (14)0.0199 (14)0.0022 (13)0.0012 (12)0.0017 (12)
C40.0217 (15)0.0104 (13)0.0167 (13)0.0007 (12)0.0006 (11)0.0019 (10)
C50.0185 (13)0.0082 (14)0.0111 (11)0.0023 (11)0.0002 (10)0.0018 (10)
C60.0239 (14)0.0091 (12)0.0130 (11)0.0006 (13)0.0018 (10)0.0043 (12)
C70.0139 (13)0.0102 (13)0.0140 (12)0.0017 (11)0.0048 (10)0.0015 (11)
C80.0151 (13)0.0079 (12)0.0113 (12)0.0027 (11)0.0030 (10)0.0002 (10)
C90.0200 (14)0.0135 (14)0.0138 (13)0.0015 (12)0.0047 (11)0.0001 (11)
C100.0212 (14)0.0141 (14)0.0212 (14)0.0008 (13)0.0079 (12)0.0000 (12)
C110.0182 (14)0.0099 (13)0.0130 (12)0.0028 (11)0.0041 (10)0.0014 (10)
C120.0229 (16)0.0120 (14)0.0225 (15)0.0035 (13)0.0041 (12)0.0030 (12)
C130.0252 (16)0.0127 (14)0.0164 (13)0.0030 (12)0.0021 (12)0.0018 (11)
C140.0221 (14)0.0094 (12)0.0157 (13)0.0024 (12)0.0064 (11)0.0003 (11)
C150.0229 (14)0.0147 (14)0.0145 (12)0.0043 (12)0.0067 (11)0.0028 (11)
C160.0180 (14)0.0131 (14)0.0146 (13)0.0013 (12)0.0014 (11)0.0007 (11)
C170.0201 (14)0.0083 (12)0.0133 (12)0.0010 (11)0.0021 (10)0.0006 (10)
C180.0182 (14)0.0094 (13)0.0106 (12)0.0007 (11)0.0008 (10)0.0005 (10)
C190.0165 (12)0.0086 (13)0.0145 (12)0.0006 (11)0.0045 (10)0.0009 (10)
C200.0151 (13)0.0100 (14)0.0177 (13)0.0003 (11)0.0050 (10)0.0037 (10)
C210.0170 (13)0.0096 (13)0.0121 (12)0.0001 (11)0.0000 (11)0.0007 (10)
S10.0190 (3)0.0114 (3)0.0160 (3)0.0011 (3)0.0037 (2)0.0000 (3)
O30.0245 (11)0.0222 (11)0.0174 (10)0.0046 (10)0.0007 (8)0.0040 (9)
O40.0220 (11)0.0150 (11)0.0169 (10)0.0033 (9)0.0032 (8)0.0015 (8)
O50.0317 (12)0.0136 (11)0.0242 (11)0.0012 (10)0.0007 (10)0.0019 (9)
O60.0277 (11)0.0265 (12)0.0245 (10)0.0122 (11)0.0131 (9)0.0045 (10)
O1W0.0214 (10)0.0132 (10)0.0224 (10)0.0009 (9)0.0067 (8)0.0040 (9)
O2W0.0295 (12)0.0193 (12)0.0383 (13)0.0025 (11)0.0171 (11)0.0062 (10)
Geometric parameters (Å, º) top
O1—C111.435 (3)C12—C131.504 (4)
O1—C121.439 (4)C12—H12A0.9900
O2—C91.233 (3)C12—H12B0.9900
N1—C91.380 (3)C13—C141.324 (4)
N1—C61.414 (4)C13—H130.9500
N1—C81.493 (3)C14—C151.505 (4)
N2—C161.515 (4)C14—C191.526 (4)
N2—C151.520 (4)C15—H15A0.9900
N2—C211.545 (3)C15—H15B0.9900
N2—H220.9300C16—C171.527 (4)
C1—C21.383 (4)C16—H16A0.9900
C1—C61.399 (4)C16—H16B0.9900
C1—H10.9500C17—H17A0.9900
C2—C31.393 (4)C17—H17B0.9900
C2—H20.9500C18—C191.545 (4)
C3—C41.405 (4)C18—H181.0000
C3—H30.9500C19—C201.534 (4)
C4—C51.393 (4)C19—H191.0000
C4—H40.9500C20—C211.523 (4)
C5—C61.399 (4)C20—H20A0.9900
C5—C71.506 (4)C20—H20B0.9900
C7—C211.548 (4)C21—H211.0000
C7—C171.550 (4)S1—O31.440 (2)
C7—C81.574 (4)S1—O51.462 (2)
C8—C181.531 (4)S1—O61.470 (2)
C8—H81.0000S1—O41.572 (2)
C9—C101.513 (4)O4—H4A0.8400
C10—C111.546 (4)O1W—H11W0.86
C10—H10A0.9900O1W—H12W0.86
C10—H10B0.9900O2W—H21W0.86
C11—C181.539 (4)O2W—H22W0.86
C11—H111.0000
C11—O1—C12115.4 (2)C13—C12—H12B109.6
C9—N1—C6125.1 (2)H12A—C12—H12B108.1
C9—N1—C8117.8 (2)C14—C13—C12121.9 (3)
C6—N1—C8109.7 (2)C14—C13—H13119.1
C16—N2—C15112.7 (2)C12—C13—H13119.1
C16—N2—C21107.3 (2)C13—C14—C15122.5 (3)
C15—N2—C21113.6 (2)C13—C14—C19122.5 (2)
C16—N2—H22107.7C15—C14—C19114.9 (2)
C15—N2—H22107.7C14—C15—N2109.8 (2)
C21—N2—H22107.7C14—C15—H15A109.7
C2—C1—C6117.5 (3)N2—C15—H15A109.7
C2—C1—H1121.2C14—C15—H15B109.7
C6—C1—H1121.2N2—C15—H15B109.7
C1—C2—C3122.7 (3)H15A—C15—H15B108.2
C1—C2—H2118.6N2—C16—C17105.3 (2)
C3—C2—H2118.6N2—C16—H16A110.7
C2—C3—C4119.1 (3)C17—C16—H16A110.7
C2—C3—H3120.5N2—C16—H16B110.7
C4—C3—H3120.5C17—C16—H16B110.7
C5—C4—C3119.3 (3)H16A—C16—H16B108.8
C5—C4—H4120.4C16—C17—C7102.5 (2)
C3—C4—H4120.4C16—C17—H17A111.3
C4—C5—C6120.1 (3)C7—C17—H17A111.3
C4—C5—C7129.0 (2)C16—C17—H17B111.3
C6—C5—C7110.8 (2)C7—C17—H17B111.3
C1—C6—C5121.2 (3)H17A—C17—H17B109.2
C1—C6—N1129.0 (2)C8—C18—C11107.7 (2)
C5—C6—N1109.8 (2)C8—C18—C19112.5 (2)
C5—C7—C21115.2 (2)C11—C18—C19119.0 (2)
C5—C7—C17113.0 (2)C8—C18—H18105.5
C21—C7—C17102.4 (2)C11—C18—H18105.5
C5—C7—C8102.5 (2)C19—C18—H18105.5
C21—C7—C8113.9 (2)C14—C19—C20109.8 (2)
C17—C7—C8110.1 (2)C14—C19—C18113.7 (2)
N1—C8—C18106.5 (2)C20—C19—C18107.2 (2)
N1—C8—C7103.8 (2)C14—C19—H19108.7
C18—C8—C7117.2 (2)C20—C19—H19108.7
N1—C8—H8109.7C18—C19—H19108.7
C18—C8—H8109.7C21—C20—C19108.8 (2)
C7—C8—H8109.7C21—C20—H20A109.9
O2—C9—N1122.2 (3)C19—C20—H20A109.9
O2—C9—C10123.4 (3)C21—C20—H20B109.9
N1—C9—C10114.5 (2)C19—C20—H20B109.9
C9—C10—C11116.1 (2)H20A—C20—H20B108.3
C9—C10—H10A108.3C20—C21—N2109.9 (2)
C11—C10—H10A108.3C20—C21—C7115.7 (2)
C9—C10—H10B108.3N2—C21—C7104.6 (2)
C11—C10—H10B108.3C20—C21—H21108.8
H10A—C10—H10B107.4N2—C21—H21108.8
O1—C11—C18115.0 (2)C7—C21—H21108.8
O1—C11—C10103.2 (2)O3—S1—O5113.66 (13)
C18—C11—C10110.2 (2)O3—S1—O6113.67 (14)
O1—C11—H11109.4O5—S1—O6112.05 (14)
C18—C11—H11109.4O3—S1—O4104.52 (13)
C10—C11—H11109.4O5—S1—O4106.49 (13)
O1—C12—C13110.4 (2)O6—S1—O4105.53 (12)
O1—C12—H12A109.6S1—O4—H4A109.5
C13—C12—H12A109.6H11W—O1W—H12W109.4
O1—C12—H12B109.6H21W—O2W—H22W109.2
C6—C1—C2—C31.1 (4)C12—C13—C14—C15179.8 (3)
C1—C2—C3—C40.2 (5)C12—C13—C14—C192.5 (5)
C2—C3—C4—C50.8 (4)C13—C14—C15—N2128.5 (3)
C3—C4—C5—C60.1 (4)C19—C14—C15—N253.7 (3)
C3—C4—C5—C7177.3 (3)C16—N2—C15—C1475.3 (3)
C2—C1—C6—C51.9 (4)C21—N2—C15—C1447.0 (3)
C2—C1—C6—N1178.7 (3)C15—N2—C16—C17142.5 (2)
C4—C5—C6—C11.3 (4)C21—N2—C16—C1716.8 (3)
C7—C5—C6—C1176.4 (3)N2—C16—C17—C736.6 (3)
C4—C5—C6—N1179.2 (2)C5—C7—C17—C16166.8 (2)
C7—C5—C6—N13.2 (3)C21—C7—C17—C1642.2 (3)
C9—N1—C6—C122.2 (5)C8—C7—C17—C1679.2 (3)
C8—N1—C6—C1171.0 (3)N1—C8—C18—C1171.2 (3)
C9—N1—C6—C5158.3 (3)C7—C8—C18—C11173.2 (2)
C8—N1—C6—C59.5 (3)N1—C8—C18—C19155.8 (2)
C4—C5—C7—C2144.9 (4)C7—C8—C18—C1940.2 (3)
C6—C5—C7—C21137.7 (2)O1—C11—C18—C877.0 (3)
C4—C5—C7—C1772.4 (4)C10—C11—C18—C839.2 (3)
C6—C5—C7—C17105.0 (3)O1—C11—C18—C1952.5 (3)
C4—C5—C7—C8169.2 (3)C10—C11—C18—C19168.7 (2)
C6—C5—C7—C813.5 (3)C13—C14—C19—C20179.8 (3)
C9—N1—C8—C1844.4 (3)C15—C14—C19—C202.0 (3)
C6—N1—C8—C18107.0 (2)C13—C14—C19—C1860.1 (4)
C9—N1—C8—C7168.7 (2)C15—C14—C19—C18122.1 (3)
C6—N1—C8—C717.3 (3)C8—C18—C19—C1461.1 (3)
C5—C7—C8—N117.9 (3)C11—C18—C19—C1466.2 (3)
C21—C7—C8—N1143.1 (2)C8—C18—C19—C2060.5 (3)
C17—C7—C8—N1102.6 (2)C11—C18—C19—C20172.3 (2)
C5—C7—C8—C1899.1 (3)C14—C19—C20—C2156.1 (3)
C21—C7—C8—C1826.0 (3)C18—C19—C20—C2167.8 (3)
C17—C7—C8—C18140.4 (2)C19—C20—C21—N262.1 (3)
C6—N1—C9—O222.1 (5)C19—C20—C21—C756.0 (3)
C8—N1—C9—O2168.7 (3)C16—N2—C21—C20134.5 (2)
C6—N1—C9—C10159.3 (3)C15—N2—C21—C209.4 (3)
C8—N1—C9—C1012.7 (4)C16—N2—C21—C79.7 (3)
O2—C9—C10—C11135.6 (3)C15—N2—C21—C7115.4 (2)
N1—C9—C10—C1145.8 (3)C5—C7—C21—C2083.9 (3)
C12—O1—C11—C1864.6 (3)C17—C7—C21—C20152.9 (2)
C12—O1—C11—C10175.3 (2)C8—C7—C21—C2034.1 (3)
C9—C10—C11—O1140.0 (2)C5—C7—C21—N2155.0 (2)
C9—C10—C11—C1816.7 (3)C17—C7—C21—N231.9 (3)
C11—O1—C12—C1388.9 (3)C8—C7—C21—N286.9 (2)
O1—C12—C13—C1466.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H22···O40.932.172.900 (3)134
N2—H22···O1W0.932.263.017 (3)138
O1W—H11W···O2W0.861.822.673 (3)170
O1W—H12W···O5i0.861.862.694 (3)162
O2W—H21W···O6ii0.861.892.749 (3)173
O2W—H22W···O60.862.012.845 (3)164
O4—H4A···O1Wiii0.841.712.551 (3)174
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+2; (iii) x+1, y1/2, z+2.
(III) Strychninium dihydrogen phosphate(V) dihydrate top
Crystal data top
C21H23N2O2+·H2O4P·2H2OF(000) = 496
Mr = 468.43Dx = 1.477 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1674 reflections
a = 7.6407 (12) Åθ = 3.5–27.0°
b = 7.6624 (9) ŵ = 0.18 mm1
c = 17.992 (2) ÅT = 100 K
β = 91.203 (12)°Plate, colourless
V = 1053.1 (2) Å30.15 × 0.10 × 0.06 mm
Z = 2
Data collection top
Kuma KM-4 CCD
diffractometer
2421 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
Graphite monochromatorθmax = 27.0°, θmin = 3.5°
ω scansh = 99
7082 measured reflectionsk = 98
3353 independent reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0241P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3353 reflectionsΔρmax = 0.23 e Å3
289 parametersΔρmin = 0.24 e Å3
1 restraintAbsolute structure: from known structure (Robertson & Beevers, 1951), Flack (1983), 886 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (14)
Crystal data top
C21H23N2O2+·H2O4P·2H2OV = 1053.1 (2) Å3
Mr = 468.43Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.6407 (12) ŵ = 0.18 mm1
b = 7.6624 (9) ÅT = 100 K
c = 17.992 (2) Å0.15 × 0.10 × 0.06 mm
β = 91.203 (12)°
Data collection top
Kuma KM-4 CCD
diffractometer
2421 reflections with I > 2σ(I)
7082 measured reflectionsRint = 0.056
3353 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.083Δρmax = 0.23 e Å3
S = 1.00Δρmin = 0.24 e Å3
3353 reflectionsAbsolute structure: from known structure (Robertson & Beevers, 1951), Flack (1983), 886 Friedel pairs
289 parametersAbsolute structure parameter: 0.05 (14)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0260 (3)0.3554 (3)0.70326 (12)0.0195 (6)
O20.9172 (3)0.0852 (3)0.52588 (12)0.0212 (6)
N10.7684 (3)0.0447 (4)0.63359 (14)0.0133 (7)
N20.4909 (3)0.2025 (4)0.83230 (14)0.0143 (7)
H220.39390.18990.86220.017*
C10.5888 (5)0.2645 (5)0.55887 (18)0.0193 (8)
H10.67800.29070.52460.023*
C20.4247 (5)0.3436 (5)0.55375 (19)0.0204 (9)
H20.40180.42480.51480.024*
C30.2936 (5)0.3073 (5)0.60392 (18)0.0205 (9)
H30.18210.36120.59830.025*
C40.3260 (5)0.1914 (5)0.66256 (19)0.0159 (8)
H40.23860.16930.69820.019*
C50.4884 (4)0.1085 (5)0.66822 (17)0.0140 (8)
C60.6166 (4)0.1450 (4)0.61658 (17)0.0140 (8)
C70.5575 (4)0.0136 (4)0.72794 (19)0.0132 (8)
C80.7318 (4)0.0804 (4)0.69469 (18)0.0129 (8)
H80.82760.07420.73330.015*
C90.8962 (4)0.0026 (5)0.5831 (2)0.0160 (8)
C101.0105 (4)0.1502 (5)0.60675 (19)0.0173 (8)
H10A1.07520.19020.56280.021*
H10B1.09810.10730.64370.021*
C110.9174 (4)0.3096 (5)0.64035 (18)0.0160 (8)
H110.91670.40770.60370.019*
C120.9796 (5)0.5157 (5)0.7401 (2)0.0213 (9)
H12A0.93060.59910.70310.026*
H12B1.08590.56880.76300.026*
C130.8476 (5)0.4826 (5)0.79900 (19)0.0186 (9)
H130.87990.50290.84950.022*
C140.6865 (4)0.4257 (4)0.78276 (19)0.0150 (8)
C150.5587 (4)0.3869 (5)0.84205 (18)0.0175 (8)
H15A0.46010.47050.83890.021*
H15B0.61630.39930.89160.021*
C160.6245 (5)0.0676 (4)0.85649 (19)0.0159 (8)
H16A0.60500.02970.90830.019*
H16B0.74480.11430.85290.019*
C170.5950 (4)0.0820 (5)0.80253 (17)0.0155 (8)
H17A0.49410.15460.81700.019*
H17B0.70040.15670.79950.019*
C180.7293 (4)0.2622 (4)0.65908 (19)0.0146 (8)
H180.66610.24820.61020.018*
C190.6212 (4)0.3947 (5)0.70332 (18)0.0141 (8)
H19A0.62010.50860.67620.017*
C200.4340 (4)0.3226 (5)0.70426 (19)0.0153 (8)
H20A0.35400.41090.72490.018*
H20B0.39350.29460.65300.018*
C210.4327 (4)0.1595 (5)0.75169 (18)0.0160 (8)
H210.31080.11210.75210.019*
P10.16440 (15)0.22066 (15)0.98020 (6)0.0333 (3)
O30.2926 (4)0.2198 (4)1.05036 (13)0.0492 (9)
H3A0.39450.24371.03700.074*
O40.2377 (3)0.1028 (3)0.92117 (13)0.0276 (7)
O50.1703 (3)0.4093 (4)0.94618 (15)0.0472 (9)
H5A0.10790.47650.97130.071*
O60.0144 (4)0.1752 (4)1.00773 (18)0.0589 (10)
O1W0.3748 (4)0.2095 (4)0.97335 (14)0.0510 (10)
H11W0.35030.10800.95570.077*
H12W0.28020.26340.98410.077*
O2W0.0398 (3)0.1224 (4)0.83054 (13)0.0355 (7)
H21W0.00190.19760.86090.053*
H22W0.10360.04820.85460.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0144 (13)0.0220 (15)0.0220 (14)0.0020 (11)0.0002 (10)0.0074 (12)
O20.0224 (14)0.0238 (15)0.0175 (14)0.0002 (12)0.0057 (11)0.0053 (12)
N10.0156 (16)0.0123 (17)0.0122 (15)0.0021 (13)0.0032 (13)0.0005 (13)
N20.0131 (16)0.0155 (18)0.0144 (15)0.0010 (14)0.0055 (12)0.0007 (14)
C10.026 (2)0.0161 (19)0.0162 (19)0.0013 (19)0.0047 (16)0.0021 (17)
C20.033 (2)0.014 (2)0.0139 (19)0.0014 (18)0.0048 (17)0.0003 (16)
C30.021 (2)0.019 (2)0.022 (2)0.0004 (18)0.0029 (16)0.0041 (17)
C40.0180 (19)0.0125 (19)0.0175 (19)0.0007 (16)0.0024 (16)0.0012 (16)
C50.0182 (19)0.0122 (19)0.0115 (18)0.0004 (17)0.0004 (15)0.0014 (16)
C60.017 (2)0.016 (2)0.0084 (18)0.0001 (17)0.0022 (15)0.0054 (16)
C70.019 (2)0.0102 (19)0.0110 (18)0.0022 (16)0.0004 (15)0.0013 (15)
C80.0129 (19)0.014 (2)0.0120 (19)0.0023 (16)0.0011 (15)0.0024 (16)
C90.015 (2)0.015 (2)0.018 (2)0.0056 (17)0.0009 (16)0.0039 (17)
C100.0126 (19)0.019 (2)0.021 (2)0.0021 (16)0.0035 (16)0.0019 (17)
C110.016 (2)0.017 (2)0.0149 (19)0.0015 (17)0.0026 (16)0.0031 (16)
C120.022 (2)0.016 (2)0.027 (2)0.0006 (18)0.0001 (18)0.0068 (18)
C130.022 (2)0.017 (2)0.017 (2)0.0016 (17)0.0025 (16)0.0044 (16)
C140.0179 (19)0.0068 (19)0.0206 (19)0.0013 (16)0.0070 (16)0.0002 (16)
C150.0179 (19)0.014 (2)0.020 (2)0.0030 (17)0.0028 (16)0.0039 (17)
C160.021 (2)0.013 (2)0.014 (2)0.0005 (17)0.0017 (16)0.0013 (16)
C170.0171 (19)0.013 (2)0.0164 (19)0.0022 (17)0.0043 (15)0.0022 (16)
C180.016 (2)0.015 (2)0.0122 (17)0.0001 (16)0.0024 (15)0.0025 (15)
C190.0138 (18)0.0110 (19)0.0174 (18)0.0020 (16)0.0007 (15)0.0028 (16)
C200.0111 (19)0.015 (2)0.020 (2)0.0004 (16)0.0002 (15)0.0010 (16)
C210.0157 (19)0.018 (2)0.0144 (19)0.0003 (16)0.0012 (15)0.0034 (16)
P10.0432 (7)0.0283 (7)0.0293 (6)0.0048 (6)0.0221 (5)0.0039 (6)
O30.103 (3)0.0310 (17)0.0134 (14)0.022 (2)0.0013 (15)0.0023 (15)
O40.0221 (15)0.0384 (18)0.0227 (15)0.0092 (13)0.0088 (12)0.0097 (13)
O50.050 (2)0.0336 (19)0.059 (2)0.0100 (17)0.0330 (17)0.0188 (17)
O60.055 (2)0.034 (2)0.090 (2)0.0016 (16)0.0607 (18)0.0010 (18)
O1W0.057 (2)0.048 (2)0.0468 (19)0.0339 (17)0.0206 (16)0.0231 (16)
O2W0.0351 (16)0.0399 (19)0.0314 (16)0.0118 (15)0.0007 (13)0.0073 (15)
Geometric parameters (Å, º) top
O1—C111.433 (4)C12—C131.500 (5)
O1—C121.443 (4)C12—H12A0.9900
O2—C91.222 (4)C12—H12B0.9900
N1—C91.385 (4)C13—C141.333 (4)
N1—C61.419 (4)C13—H130.9500
N1—C81.490 (4)C14—C151.491 (4)
N2—C161.511 (4)C14—C191.522 (4)
N2—C151.514 (4)C15—H15A0.9900
N2—C211.543 (4)C15—H15B0.9900
N2—H220.9300C16—C171.516 (5)
C1—C21.394 (5)C16—H16A0.9900
C1—C61.397 (5)C16—H16B0.9900
C1—H10.9500C17—H17A0.9900
C2—C31.391 (5)C17—H17B0.9900
C2—H20.9500C18—C191.540 (4)
C3—C41.397 (5)C18—H181.0000
C3—H30.9500C19—C201.534 (4)
C4—C51.396 (5)C19—H19A1.0000
C4—H40.9500C20—C211.513 (5)
C5—C61.393 (4)C20—H20A0.9900
C5—C71.511 (5)C20—H20B0.9900
C7—C211.537 (4)C21—H211.0000
C7—C171.550 (4)P1—O61.504 (3)
C7—C81.558 (5)P1—O41.511 (3)
C8—C181.534 (4)P1—O51.570 (3)
C8—H81.0000P1—O31.582 (3)
C9—C101.516 (5)O3—H3A0.8400
C10—C111.543 (5)O5—H5A0.8400
C10—H10A0.9900O1W—H11W0.86
C10—H10B0.9900O1W—H12W0.86
C11—C181.527 (4)O2W—H21W0.86
C11—H111.0000O2W—H22W0.86
C11—O1—C12115.3 (3)H12A—C12—H12B108.1
C9—N1—C6124.7 (3)C14—C13—C12122.2 (3)
C9—N1—C8118.7 (3)C14—C13—H13118.9
C6—N1—C8110.0 (2)C12—C13—H13118.9
C16—N2—C15112.2 (3)C13—C14—C15121.6 (3)
C16—N2—C21107.7 (2)C13—C14—C19122.7 (3)
C15—N2—C21113.5 (2)C15—C14—C19115.7 (3)
C16—N2—H22107.7C14—C15—N2109.3 (3)
C15—N2—H22107.7C14—C15—H15A109.8
C21—N2—H22107.7N2—C15—H15A109.8
C2—C1—C6117.2 (3)C14—C15—H15B109.8
C2—C1—H1121.4N2—C15—H15B109.8
C6—C1—H1121.4H15A—C15—H15B108.3
C3—C2—C1122.0 (3)N2—C16—C17104.0 (3)
C3—C2—H2119.0N2—C16—H16A110.9
C1—C2—H2119.0C17—C16—H16A110.9
C2—C3—C4119.9 (3)N2—C16—H16B110.9
C2—C3—H3120.0C17—C16—H16B110.9
C4—C3—H3120.0H16A—C16—H16B109.0
C5—C4—C3119.2 (3)C16—C17—C7102.7 (3)
C5—C4—H4120.4C16—C17—H17A111.2
C3—C4—H4120.4C7—C17—H17A111.2
C6—C5—C4119.8 (3)C16—C17—H17B111.2
C6—C5—C7111.0 (3)C7—C17—H17B111.2
C4—C5—C7129.1 (3)H17A—C17—H17B109.1
C5—C6—C1122.0 (3)C11—C18—C8107.7 (3)
C5—C6—N1109.3 (3)C11—C18—C19118.3 (3)
C1—C6—N1128.7 (3)C8—C18—C19112.6 (3)
C5—C7—C21116.0 (3)C11—C18—H18105.7
C5—C7—C17112.3 (3)C8—C18—H18105.7
C21—C7—C17102.0 (3)C19—C18—H18105.7
C5—C7—C8102.7 (3)C14—C19—C20109.5 (3)
C21—C7—C8114.1 (3)C14—C19—C18114.8 (3)
C17—C7—C8110.1 (3)C20—C19—C18106.2 (3)
N1—C8—C18106.1 (2)C14—C19—H19A108.8
N1—C8—C7104.3 (3)C20—C19—H19A108.8
C18—C8—C7117.1 (3)C18—C19—H19A108.8
N1—C8—H8109.7C21—C20—C19108.7 (3)
C18—C8—H8109.7C21—C20—H20A109.9
C7—C8—H8109.7C19—C20—H20A109.9
O2—C9—N1122.6 (3)C21—C20—H20B109.9
O2—C9—C10123.4 (3)C19—C20—H20B109.9
N1—C9—C10114.0 (3)H20A—C20—H20B108.3
C9—C10—C11117.0 (3)C20—C21—C7115.6 (3)
C9—C10—H10A108.1C20—C21—N2110.4 (3)
C11—C10—H10A108.1C7—C21—N2104.4 (3)
C9—C10—H10B108.1C20—C21—H21108.7
C11—C10—H10B108.1C7—C21—H21108.7
H10A—C10—H10B107.3N2—C21—H21108.7
O1—C11—C18114.6 (3)O6—P1—O4116.46 (17)
O1—C11—C10103.9 (3)O6—P1—O5112.05 (17)
C18—C11—C10110.0 (3)O4—P1—O5105.20 (15)
O1—C11—H11109.4O6—P1—O3106.72 (19)
C18—C11—H11109.4O4—P1—O3109.02 (17)
C10—C11—H11109.4O5—P1—O3107.02 (17)
O1—C12—C13110.8 (3)P1—O3—H3A109.5
O1—C12—H12A109.5P1—O5—H5A109.5
C13—C12—H12A109.5H11W—O1W—H12W109.9
O1—C12—H12B109.5H21W—O2W—H22W109.7
C13—C12—H12B109.5
C6—C1—C2—C30.5 (5)C12—C13—C14—C15177.6 (3)
C1—C2—C3—C41.5 (5)C12—C13—C14—C191.9 (5)
C2—C3—C4—C52.4 (5)C13—C14—C15—N2125.8 (3)
C3—C4—C5—C61.4 (5)C19—C14—C15—N253.7 (4)
C3—C4—C5—C7176.5 (3)C16—N2—C15—C1474.7 (3)
C4—C5—C6—C10.6 (5)C21—N2—C15—C1447.7 (3)
C7—C5—C6—C1175.4 (3)C15—N2—C16—C17144.8 (3)
C4—C5—C6—N1179.6 (3)C21—N2—C16—C1719.2 (3)
C7—C5—C6—N14.4 (4)N2—C16—C17—C738.8 (3)
C2—C1—C6—C51.5 (5)C5—C7—C17—C16168.6 (3)
C2—C1—C6—N1178.8 (3)C21—C7—C17—C1643.7 (3)
C9—N1—C6—C5157.6 (3)C8—C7—C17—C1677.7 (3)
C8—N1—C6—C56.8 (4)O1—C11—C18—C874.2 (3)
C9—N1—C6—C122.6 (5)C10—C11—C18—C842.3 (3)
C8—N1—C6—C1173.4 (3)O1—C11—C18—C1955.0 (4)
C6—C5—C7—C21138.1 (3)C10—C11—C18—C19171.5 (3)
C4—C5—C7—C2146.5 (5)N1—C8—C18—C1171.8 (3)
C6—C5—C7—C17105.2 (3)C7—C8—C18—C11172.4 (3)
C4—C5—C7—C1770.3 (5)N1—C8—C18—C19155.9 (3)
C6—C5—C7—C813.0 (4)C7—C8—C18—C1940.0 (4)
C4—C5—C7—C8171.6 (3)C13—C14—C19—C20177.7 (3)
C9—N1—C8—C1843.1 (4)C15—C14—C19—C201.9 (4)
C6—N1—C8—C18109.7 (3)C13—C14—C19—C1858.4 (5)
C9—N1—C8—C7167.4 (3)C15—C14—C19—C18121.1 (3)
C6—N1—C8—C714.6 (3)C11—C18—C19—C1466.4 (4)
C5—C7—C8—N116.0 (3)C8—C18—C19—C1460.5 (4)
C21—C7—C8—N1142.3 (3)C11—C18—C19—C20172.6 (3)
C17—C7—C8—N1103.7 (3)C8—C18—C19—C2060.6 (3)
C5—C7—C8—C18100.9 (3)C14—C19—C20—C2155.8 (4)
C21—C7—C8—C1825.5 (4)C18—C19—C20—C2168.6 (3)
C17—C7—C8—C18139.4 (3)C19—C20—C21—C757.1 (4)
C6—N1—C9—O220.9 (5)C19—C20—C21—N261.1 (3)
C8—N1—C9—O2169.4 (3)C5—C7—C21—C2084.8 (4)
C6—N1—C9—C10161.1 (3)C17—C7—C21—C20152.9 (3)
C8—N1—C9—C1012.6 (4)C8—C7—C21—C2034.2 (4)
O2—C9—C10—C11138.8 (3)C5—C7—C21—N2153.7 (3)
N1—C9—C10—C1143.2 (4)C17—C7—C21—N231.4 (3)
C12—O1—C11—C1867.2 (4)C8—C7—C21—N287.3 (3)
C12—O1—C11—C10172.8 (2)C16—N2—C21—C20133.0 (3)
C9—C10—C11—O1136.0 (3)C15—N2—C21—C208.1 (3)
C9—C10—C11—C1812.9 (4)C16—N2—C21—C78.1 (3)
C11—O1—C12—C1388.5 (3)C15—N2—C21—C7116.7 (3)
O1—C12—C13—C1465.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H22···O40.931.752.648 (3)163
O1W—H11W···O40.861.932.768 (4)166
O1W—H12W···O6i0.862.092.919 (4)161
O2W—H21W···O6i0.862.563.307 (4)146
O2W—H22W···O40.861.942.797 (3)172
O3—H3A···O1Wii0.841.812.642 (4)169
O5—H5A···O6iii0.841.732.510 (4)154
Symmetry codes: (i) x, y1/2, z+2; (ii) x+1, y+1/2, z+2; (iii) x, y+1/2, z+2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC21H23N2O2+·ClO4·H2OC21H23N2O2+·HO4S·2H2OC21H23N2O2+·H2O4P·2H2O
Mr452.88468.51468.43
Crystal system, space groupMonoclinic, P21Monoclinic, P21Monoclinic, P21
Temperature (K)100100100
a, b, c (Å)7.8016 (8), 7.6538 (9), 16.5597 (17)7.7884 (8), 7.6686 (8), 17.5780 (18)7.6407 (12), 7.6624 (9), 17.992 (2)
β (°) 93.966 (9) 100.388 (7) 91.203 (12)
V3)986.44 (18)1032.66 (18)1053.1 (2)
Z222
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.240.210.18
Crystal size (mm)0.10 × 0.10 × 0.050.35 × 0.25 × 0.150.15 × 0.10 × 0.06
Data collection
DiffractometerKuma KM-4 CCD
diffractometer
Kuma KM-4 CCD
diffractometer
Kuma KM-4 CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13754, 4042, 3083 6972, 4009, 3552 7082, 3353, 2421
Rint0.0840.0760.056
(sin θ/λ)max1)0.6820.6490.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.140, 1.01 0.047, 0.126, 1.05 0.054, 0.083, 1.00
No. of reflections404240093353
No. of parameters293289289
No. of restraints4011
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.91, 0.870.33, 0.550.23, 0.24
Absolute structureFrom known structure (Robertson & Beevers, 1951), Flack (1983), 1225 Friedel pairsFrom known structure (Robertson & Beevers, 1951), Flack (1983), 1465 Friedel pairs?From known structure (Robertson & Beevers, 1951), Flack (1983), 886 Friedel pairs
Absolute structure parameter0.09 (10)0.14 (9)0.05 (14)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2001), CrysAlis RED (Oxford Diffraction, 2001), CrysAlis RED, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL-NT (Bruker, 1999), SHELXL97.

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2—H22···O1W0.931.952.758 (4)145
N2—H22···O40.932.273.004 (5)135
N2—H22···O4A0.932.503.073 (10)120
O1W—H11W···O6i0.861.972.709 (5)143
O1W—H11W···O6Ai0.862.433.238 (12)158
O1W—H12W···O5ii0.861.982.791 (5)156
O1W—H12W···O6Aii0.862.423.244 (12)159
Symmetry codes: (i) x, y+1/2, z+1; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N2—H22···O40.932.172.900 (3)134
N2—H22···O1W0.932.263.017 (3)138
O1W—H11W···O2W0.861.822.673 (3)170
O1W—H12W···O5i0.861.862.694 (3)162
O2W—H21W···O6ii0.861.892.749 (3)173
O2W—H22W···O60.862.012.845 (3)164
O4—H4A···O1Wiii0.841.712.551 (3)174
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+2; (iii) x+1, y1/2, z+2.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N2—H22···O40.931.752.648 (3)163
O1W—H11W···O40.861.932.768 (4)166
O1W—H12W···O6i0.862.092.919 (4)161
O2W—H21W···O6i0.862.563.307 (4)146
O2W—H22W···O40.861.942.797 (3)172
O3—H3A···O1Wii0.841.812.642 (4)169
O5—H5A···O6iii0.841.732.510 (4)154
Symmetry codes: (i) x, y1/2, z+2; (ii) x+1, y+1/2, z+2; (iii) x, y+1/2, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds