Download citation
Download citation
link to html
Comparison of the structures of strychninium N-phthaloyl-β-alaninate N-phthaloyl-β-alanine, C21H23N2O2+·C11H8NO4·C11H9NO4, and brucinium N-phthaloyl-β-alaninate 5.67-hydrate, C23H27N2O4+·C11H8NO4·5.67H2O, reveals that, unlike strychninium cations, brucinium cations display a tendency to produce stacking inter­actions with cocrystallizing guests.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106005555/gd1431sup1.cif
Contains datablocks 1, 2, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106005555/gd14311sup2.hkl
Contains datablock 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106005555/gd14312sup3.hkl
Contains datablock 2

CCDC references: 605684; 605685

Comment top

Strychnine and its dimethoxy derivative, brucine, are well known as resolving agents of racemic acids by fractional crystallization of diastereomeric salts (Jacques et al., 1991; Eliel & Wilen, 1994). Recently, we demonstrated the matching of donor/acceptor properties of both resolved compounds at the surface of self-assembed resolving agents during racemic resolution of N-benzoyl- and N-phthaloyl-α-alanine by strychnine and brucine (Bialonska & Ciunik, 2004). In addition, various D– or L-enantiomers of the α-alanine derivative were recognized by the surfaces of self-assembled strychnine and brucine. We describe here the molecular recognition of N-phthaloyl-β-alanine by both strychnine and brucine in the title compounds, (1) and (2) (Fig. 1).

In (1), the N-phthaloyl-β-alanine molecules and N-phthaloyl-β-alaninate anions are linked by O—H···O and C—H···O hydrogen bonds, and ππ interactions, to form three-dimensional networks with large channels extending along the [100] direction (Fig. 2). The channels are occupied by columns of strychninium cations linked by C—H···O and C—H···π hydrogen bonds. A similar strychnine self-assembly is present in crystals of (-)-strychninium (+)-neopentyl phthalate chloroform solvate (Yuan et al., 1994). The strychninium cations and N-phthaloyl-β-alaninate anions are linked by N—H+···O hydrogen bonds, formed between the protonated tertiary amine atom N2 of the cation and atom O3 of the deprotonated carboxyl group of the anion (Table 1). The structure is additionally stabilized by a number of weak C—H···O hydrogen bonds.

In (2), the protonated tertiary amine atom N2 of the brucinium cation is a hydrogen-bond donor, and atom O5, or atoms O5A and O6A, of the deprotonated, disordered, carboxyl group of the N-phthaloyl-β-alaninate anion are the acceptors (Table 2). The arene ring of the brucinium cation and the phthaloyl group of the β-alanine derivative participate in ππ interactions extending along the [010] direction. Channels are present between the neighboring columns, resulting from the ππ stacking of the arene rings of the brucinium cations and the phthaloyl groups of the N-phthaloyl-β-alaninate anions. The shortest and longest diameters of the channel are approximately 5.25 and 11.25 Å, respectively (Fig. 3). The channels are occupied by hydrogen-bonded water molecules.

Atoms O5 and O6 of the anion, carbonyl atom O4 of the brucinium cation, and the water molecules form a hydrogen-bonded tape of type 3T6(2) (Infantes & Motherwell, 2002) that extends along the [010] direction. The 3T6(2) tape is constructed from three T6(2) tapes, linked by their edges. ???The T6(2) tapes are formed by six-membered rings, with two neighboring six-membered rings sharing one side. In (2), the O1W, O3W, O4W and O5W water molecules, located in the central part of the channel, form one T6(2) tape, and two neighboring six-membered rings of water molecules share one side (the O1W···O3Wi side; see Fig. 4). Two different six-membered rings, linked by one side, form the nother T6(2) tapes. One of these six-membered rings is formed by the O1W, O2W, O3W, O4W and O5W water molecules, as well as by the disordered carboxyl group of the N-phthaloyl-β-alaninate anion either via atom O5 or via both atom O5A and atom O6A. The third cyclic hexamer involves the O2W, O4W, O5W and O6W water molecules, carbonyl atom O4 of the brucinium cation, and either atom O6A or both atom O5 and atom O6 of the disordered carboxyl groups of the anions. [PLEASE CHECK CAREFULLY; text has been altered.]

The resulting 3T6(2) tape is linked to atom O7 of the phthaloyl group of the N-phthaloyl-β-alaninate anion. The three cyclic hexamers of the 3T6(2) tape exhibit a more or less deformed boat conformation. The average O···O distance in the 3T6(2) tape is 2.79 Å, similar to that found in ice Ih (2.759 Å at 143 K; Eisenberg & Kauzmann, 1969) and in liquid water (2.85 Å; Narten et al., 1982). The water-molecule tape remains stable at room temperature. Thermogravimetric analysis shows that the crystals of (2) lose ca 13.5% of their weight, in one step, near 373 K, which seems to correspond to complete loss of the water of crystallization.

As mentioned above, the columnar self-assembly of strychninium cations in (1) is similar to that in (-)-strychninium (+)-neopentyl phthalate chloroform solvate (Yuan et al., 1994). It is noteworthy that the columnar self-assembly of strychninium cations in (1) is also similar to the self-assembly of brucinium cations in brucinium N-phthaloyl-L-α-alaninate sesquihydrate (Bialonska & Ciunik, 2004). The similarity of the crystal structures of (2) and brucinium N-phthaloyl-L-α-alaninate sesquihydrate is revealed in the ππ stacking interactions.

In both of these crystals, the brucine arene rings, and the phthaloyl groups of the N-phthaloyl-β- or N-phthaloyl-L-α-alaninate anions, participate in ππ interactions. Various brucine and strychnine self-assemblies in the structures under investigation are due to the presence of two methoxy groups linked to the arene ring of brucine. Comparison of the crystal structures of the strychninium and brucinium salts with N-phthaloyl-D– and N-phthaloyl-L-α-alanine, as well as that with N-phthaloyl-β-alanine, shows that the presence of the two methoxy groups in brucine molecules is responsible for the tendency of brucine to exhibit stacking interactions with the phthaloyl group of the α- or β-alanine derivative. The ππ stacking, involving brucine arene rings and guest anions, is also observed in crystals of other brucinium salt (Kuwata et al., 1993). This tendency to form stacks has not been observed in strychnine, which has no methoxy groups.

In summary, comparison of the crystal structures of (1) and (2) has allowed us to discover one of the differences between these alkaloids in molecular recognition. Unlike strychninium cations, brucinium cations display a greater tendency to stacking interactions with cocrystallizing guests.

Experimental top

Crystals of (1) and (2) were obtained from ethanol solutions containing equimolar amount of the alkaloid (commercially available) and N-phthaloyl-β-alanine (Wróbel, 1983). The crystallizations were performed at room temperature by slow evaporation of the solvent.

Refinement top

In (2), the carboxyl group was found to be disordered over two positions, viz. sites C24, O5 and O6, and C24A, O5A and O6A, with occupancy factors of 0.67 and 1/3, respectively. The O6W water molecule also has partial occupancy (0.67). All the occupancy factors for the disordered carboxyl group of the N-phthaloyl-β-alaninate anion and the O6W water molecule were initially refined and their occupancy parameters were then fixed prior to the final refinements. In both compounds, all H atoms bonded to C and N atoms were treated as riding atoms, with C—H distances of 0.95–1.00 Å and N—H distances of 0.93 Å. The remained H atoms were located in difference maps and then refined with isotropic displacement parameters before being fixed prior to the final cycles of refinement. Friedel pairs were merged before the final refinement. The absolute configurations of (1) and (2) were chosen on the basis of the known absolute configurations of strychnine (Robertson & Beevers, 1951) and brucine (Toda et al., 1985), respectively.

Computing details top

For both compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2001); cell refinement: CrysAlis RED (Oxford Diffraction, 2001); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-NT (Bruker, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom-numbering scheme in the crystal structure of (a) (1) and (b) (2). Non-H atoms are shown as 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing of (1). N-phthaloyl-β-alaninate anions and N-phthaloyl-β-alanine molecules (grey) form a three-dimensional network, with channels occupied by columns of strychnine cations extending along the [100] direction. For clarity, H atoms have been omitted.
[Figure 3] Fig. 3. The packing of (2), showing the columnar packing of the brucinium cations. Channels, extending along the [010] direction, between consecutive brucine columns are occupied by water molecules.
[Figure 4] Fig. 4. The 3T6(2) tape in the crystal of (2). [Symmetry codes: (i) −x + 1, y + 1/2, −z + 1, (ii) x + 1, y, z, (iii) x, y − 1, z, (iv) x + 1, y − 1, z.] (See also Table 1.)
(1) strychninium N-phthaloyl-β-alaninate N-phthaloyl-β-alanine top
Crystal data top
C21H23N2O2+·C11H8NO4·C11H9NO4F(000) = 1624
Mr = 772.79Dx = 1.419 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1032 reflections
a = 7.788 (2) Åθ = 3.4–28.6°
b = 16.596 (3) ŵ = 0.10 mm1
c = 27.986 (3) ÅT = 100 K
V = 3617.2 (12) Å3Block, colourless
Z = 40.30 × 0.30 × 0.30 mm
Data collection top
Kuma KM-4 CCD
diffractometer
3791 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.064
Graphite monochromatorθmax = 27.5°, θmin = 3.4°
ω scansh = 89
24819 measured reflectionsk = 2121
4630 independent reflectionsl = 3635
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0474P)2P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4630 reflectionsΔρmax = 0.19 e Å3
514 parametersΔρmin = 0.20 e Å3
0 restraintsAbsolute structure: from known structure (Robertson & Beevers, 1951)
Primary atom site location: structure-invariant direct methods
Crystal data top
C21H23N2O2+·C11H8NO4·C11H9NO4V = 3617.2 (12) Å3
Mr = 772.79Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.788 (2) ŵ = 0.10 mm1
b = 16.596 (3) ÅT = 100 K
c = 27.986 (3) Å0.30 × 0.30 × 0.30 mm
Data collection top
Kuma KM-4 CCD
diffractometer
3791 reflections with I > 2σ(I)
24819 measured reflectionsRint = 0.064
4630 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.06Δρmax = 0.19 e Å3
4630 reflectionsΔρmin = 0.20 e Å3
514 parametersAbsolute structure: from known structure (Robertson & Beevers, 1951)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3783 (3)0.32529 (12)0.37423 (7)0.0293 (5)
O20.3111 (3)0.15709 (11)0.50709 (7)0.0289 (5)
N10.3642 (3)0.29172 (13)0.50803 (8)0.0193 (5)
N20.3702 (3)0.56469 (14)0.47815 (9)0.0252 (6)
H2A0.36650.61510.49270.030*
C10.2907 (4)0.25233 (19)0.59324 (11)0.0267 (7)
H10.30220.19590.58830.032*
C20.2442 (4)0.2838 (2)0.63744 (11)0.0329 (8)
H20.22220.24810.66330.040*
C30.2293 (4)0.3662 (2)0.64466 (11)0.0329 (8)
H30.19690.38590.67520.040*
C40.2608 (4)0.42001 (18)0.60799 (10)0.0270 (7)
H40.25190.47640.61320.032*
C50.3057 (4)0.39010 (17)0.56341 (10)0.0214 (6)
C60.3199 (3)0.30743 (17)0.55636 (10)0.0213 (6)
C70.3595 (3)0.43601 (16)0.51923 (10)0.0195 (6)
C80.3635 (4)0.36828 (15)0.48046 (10)0.0188 (6)
H80.47170.37260.46140.023*
C90.3309 (4)0.22053 (17)0.48519 (11)0.0229 (6)
C100.3233 (4)0.22344 (17)0.43127 (10)0.0265 (7)
H10A0.25290.17740.42030.032*
H10B0.44110.21510.41890.032*
C110.2511 (4)0.30048 (17)0.40814 (10)0.0240 (6)
H110.14320.28660.39060.029*
C120.3248 (5)0.3893 (2)0.34349 (11)0.0362 (8)
H12A0.20060.38370.33670.043*
H12B0.38730.38540.31280.043*
C130.3577 (4)0.47018 (19)0.36539 (11)0.0327 (8)
H130.43980.50450.35070.039*
C140.2776 (4)0.49635 (19)0.40438 (11)0.0288 (7)
C150.3210 (4)0.57573 (18)0.42658 (11)0.0331 (8)
H15A0.22080.61220.42440.040*
H15B0.41760.60080.40900.040*
C160.5502 (4)0.53222 (17)0.48403 (11)0.0245 (7)
H16A0.63260.57630.49060.029*
H16B0.58750.50290.45500.029*
C170.5368 (4)0.47578 (17)0.52624 (10)0.0224 (6)
H17A0.54190.50580.55680.027*
H17B0.62970.43510.52570.027*
C180.2089 (4)0.36334 (16)0.44656 (10)0.0215 (6)
H180.11370.33940.46590.026*
C190.1444 (4)0.44609 (17)0.43085 (10)0.0254 (7)
H190.04180.43880.40980.030*
C200.0889 (4)0.49094 (17)0.47634 (11)0.0266 (7)
H20A0.02960.54170.46780.032*
H20B0.00880.45720.49510.032*
C210.2481 (4)0.50923 (17)0.50560 (10)0.0239 (6)
H210.21210.53720.53560.029*
O30.3892 (3)0.70460 (12)0.52130 (8)0.0350 (5)
O40.3578 (3)0.64022 (13)0.59074 (8)0.0391 (6)
O50.5829 (3)0.81687 (13)0.72577 (8)0.0403 (6)
O60.2279 (3)0.94199 (14)0.61885 (8)0.0411 (6)
N30.4002 (3)0.86166 (14)0.66610 (9)0.0291 (6)
C220.3893 (4)0.70134 (18)0.56728 (12)0.0293 (7)
C230.4366 (4)0.77910 (18)0.59289 (11)0.0333 (8)
H23A0.56320.78300.59520.040*
H23B0.39550.82550.57380.040*
C240.3606 (5)0.78410 (18)0.64259 (11)0.0331 (8)
H24A0.23440.77750.64050.040*
H24B0.40640.73940.66230.040*
C250.5038 (4)0.8704 (2)0.70667 (11)0.0317 (7)
C260.4900 (4)0.95727 (18)0.72022 (11)0.0286 (7)
C270.5608 (4)0.9993 (2)0.75846 (11)0.0355 (8)
H270.63540.97370.78060.043*
C280.5174 (4)1.0810 (2)0.76288 (12)0.0379 (8)
H280.56411.11140.78850.046*
C290.4090 (5)1.1179 (2)0.73103 (12)0.0379 (8)
H290.38151.17320.73510.045*
C300.3377 (4)1.07511 (19)0.69232 (11)0.0325 (7)
H300.26231.10030.67020.039*
C310.3823 (4)0.99526 (18)0.68801 (10)0.0275 (7)
C320.3234 (4)0.93388 (18)0.65275 (11)0.0292 (7)
O3A0.3794 (4)0.76255 (13)0.40666 (9)0.0478 (7)
O4A0.4184 (3)0.83651 (13)0.47276 (8)0.0406 (6)
H4A0.40780.79170.48640.061*
O5A0.1516 (3)1.06452 (13)0.36571 (8)0.0374 (6)
O6A0.5389 (3)0.92779 (13)0.27318 (9)0.0407 (6)
N3A0.3374 (3)0.97864 (14)0.32570 (9)0.0288 (6)
C22A0.4027 (4)0.82693 (19)0.42625 (12)0.0336 (8)
C23A0.4205 (4)0.90450 (18)0.39852 (11)0.0332 (8)
H23C0.54180.91130.38870.040*
H23D0.38970.95030.41950.040*
C24A0.3066 (4)0.90611 (18)0.35423 (11)0.0323 (8)
H24C0.33000.85780.33450.039*
H24D0.18460.90440.36410.039*
C25A0.2548 (4)1.05245 (19)0.33398 (11)0.0298 (7)
C26A0.3204 (4)1.10923 (18)0.29698 (10)0.0282 (7)
C27A0.2864 (4)1.18908 (19)0.28906 (11)0.0337 (8)
H27A0.20481.21730.30800.040*
C28A0.3753 (5)1.2276 (2)0.25239 (11)0.0379 (8)
H28A0.35391.28300.24620.046*
C29A0.4937 (5)1.1869 (2)0.22495 (12)0.0390 (8)
H29A0.55301.21480.20040.047*
C30A0.5283 (4)1.1053 (2)0.23252 (11)0.0344 (8)
H30A0.61011.07710.21370.041*
C31A0.4381 (4)1.06739 (18)0.26864 (11)0.0269 (7)
C32A0.4500 (4)0.98314 (19)0.28745 (11)0.0304 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0279 (12)0.0368 (12)0.0233 (11)0.0023 (10)0.0022 (9)0.0005 (9)
O20.0277 (12)0.0190 (11)0.0400 (13)0.0002 (9)0.0083 (10)0.0023 (10)
N10.0197 (12)0.0184 (12)0.0197 (12)0.0005 (10)0.0008 (10)0.0016 (10)
N20.0257 (13)0.0177 (12)0.0322 (14)0.0011 (11)0.0029 (11)0.0012 (11)
C10.0208 (16)0.0277 (16)0.0316 (17)0.0023 (13)0.0044 (13)0.0057 (14)
C20.0234 (17)0.049 (2)0.0259 (17)0.0006 (15)0.0017 (13)0.0084 (15)
C30.0263 (17)0.047 (2)0.0259 (17)0.0008 (15)0.0005 (14)0.0042 (15)
C40.0255 (16)0.0285 (17)0.0271 (16)0.0032 (14)0.0007 (13)0.0052 (13)
C50.0171 (14)0.0233 (15)0.0238 (15)0.0026 (12)0.0002 (12)0.0005 (12)
C60.0120 (13)0.0275 (16)0.0245 (15)0.0001 (12)0.0008 (11)0.0005 (13)
C70.0157 (14)0.0217 (14)0.0211 (14)0.0014 (12)0.0009 (11)0.0023 (12)
C80.0185 (15)0.0142 (13)0.0237 (15)0.0022 (11)0.0006 (12)0.0025 (11)
C90.0113 (14)0.0219 (15)0.0356 (17)0.0007 (12)0.0010 (12)0.0013 (13)
C100.0256 (16)0.0240 (16)0.0300 (17)0.0025 (13)0.0022 (13)0.0062 (13)
C110.0195 (14)0.0300 (16)0.0225 (15)0.0054 (13)0.0011 (12)0.0038 (12)
C120.040 (2)0.045 (2)0.0238 (17)0.0053 (17)0.0006 (15)0.0038 (15)
C130.0396 (19)0.0365 (18)0.0219 (16)0.0064 (15)0.0080 (15)0.0099 (14)
C140.0279 (17)0.0290 (16)0.0294 (17)0.0002 (14)0.0107 (14)0.0067 (14)
C150.0343 (18)0.0283 (17)0.0367 (18)0.0010 (15)0.0067 (15)0.0098 (14)
C160.0194 (15)0.0234 (15)0.0308 (17)0.0011 (12)0.0030 (13)0.0002 (13)
C170.0229 (15)0.0191 (14)0.0251 (16)0.0025 (12)0.0007 (12)0.0036 (12)
C180.0171 (14)0.0227 (15)0.0248 (15)0.0036 (12)0.0040 (12)0.0010 (12)
C190.0208 (15)0.0274 (16)0.0280 (16)0.0002 (13)0.0056 (13)0.0024 (13)
C200.0207 (15)0.0224 (15)0.0367 (17)0.0042 (13)0.0040 (13)0.0001 (14)
C210.0223 (15)0.0189 (14)0.0305 (16)0.0016 (12)0.0008 (13)0.0007 (12)
O30.0494 (15)0.0209 (11)0.0346 (13)0.0016 (10)0.0034 (11)0.0010 (10)
O40.0521 (15)0.0233 (12)0.0418 (14)0.0072 (11)0.0066 (12)0.0008 (10)
O50.0401 (14)0.0355 (13)0.0453 (14)0.0070 (11)0.0102 (11)0.0063 (11)
O60.0483 (15)0.0411 (14)0.0338 (13)0.0090 (12)0.0107 (11)0.0028 (11)
N30.0332 (15)0.0252 (13)0.0287 (14)0.0007 (12)0.0041 (12)0.0006 (11)
C220.0262 (17)0.0223 (16)0.040 (2)0.0009 (14)0.0047 (15)0.0003 (14)
C230.0344 (19)0.0231 (17)0.042 (2)0.0045 (14)0.0080 (16)0.0025 (15)
C240.042 (2)0.0250 (16)0.0324 (18)0.0037 (15)0.0007 (15)0.0005 (14)
C250.0266 (17)0.0365 (19)0.0321 (18)0.0014 (15)0.0005 (14)0.0024 (15)
C260.0256 (16)0.0310 (17)0.0292 (17)0.0032 (14)0.0045 (13)0.0019 (14)
C270.0306 (19)0.045 (2)0.0307 (18)0.0045 (15)0.0003 (15)0.0040 (16)
C280.0334 (19)0.047 (2)0.0337 (19)0.0083 (16)0.0074 (16)0.0125 (17)
C290.042 (2)0.0277 (17)0.044 (2)0.0086 (16)0.0165 (17)0.0042 (16)
C300.0351 (18)0.0312 (17)0.0312 (17)0.0001 (15)0.0090 (14)0.0015 (14)
C310.0280 (17)0.0280 (16)0.0266 (16)0.0027 (14)0.0049 (13)0.0011 (14)
C320.0303 (17)0.0322 (18)0.0252 (16)0.0026 (15)0.0033 (14)0.0029 (14)
O3A0.0676 (18)0.0251 (13)0.0507 (15)0.0073 (13)0.0089 (14)0.0013 (11)
O4A0.0607 (16)0.0231 (12)0.0379 (14)0.0033 (11)0.0003 (12)0.0033 (10)
O5A0.0362 (13)0.0411 (14)0.0348 (13)0.0009 (11)0.0070 (11)0.0049 (11)
O6A0.0384 (14)0.0376 (13)0.0462 (14)0.0072 (11)0.0045 (11)0.0091 (11)
N3A0.0303 (15)0.0278 (14)0.0283 (14)0.0011 (11)0.0001 (11)0.0004 (11)
C22A0.0319 (19)0.0249 (17)0.044 (2)0.0026 (15)0.0004 (16)0.0018 (16)
C23A0.0330 (18)0.0263 (17)0.0404 (19)0.0038 (15)0.0054 (15)0.0015 (15)
C24A0.0377 (19)0.0249 (17)0.0344 (18)0.0062 (15)0.0008 (15)0.0004 (14)
C25A0.0290 (17)0.0328 (17)0.0275 (17)0.0037 (15)0.0037 (14)0.0074 (14)
C26A0.0283 (17)0.0304 (17)0.0260 (16)0.0049 (14)0.0018 (14)0.0049 (14)
C27A0.0375 (19)0.0317 (18)0.0318 (18)0.0028 (15)0.0073 (15)0.0035 (14)
C28A0.048 (2)0.0299 (18)0.0364 (19)0.0077 (16)0.0107 (17)0.0023 (15)
C29A0.038 (2)0.046 (2)0.0329 (19)0.0124 (17)0.0054 (16)0.0047 (17)
C30A0.0301 (18)0.047 (2)0.0263 (17)0.0058 (16)0.0035 (14)0.0034 (16)
C31A0.0263 (16)0.0312 (16)0.0232 (15)0.0035 (13)0.0008 (13)0.0052 (13)
C32A0.0309 (18)0.0331 (18)0.0273 (17)0.0022 (15)0.0031 (14)0.0056 (14)
Geometric parameters (Å, º) top
O1—C121.429 (4)C21—H211.0000
O1—C111.432 (3)O3—C221.288 (4)
O2—C91.228 (3)O4—C221.233 (4)
N1—C91.368 (3)O5—C251.206 (4)
N1—C61.420 (3)O6—C321.213 (4)
N1—C81.487 (3)N3—C321.391 (4)
N2—C151.504 (4)N3—C251.401 (4)
N2—C161.511 (4)N3—C241.478 (4)
N2—C211.530 (4)C22—C231.522 (4)
N2—H2A0.9300C23—C241.514 (4)
C1—C21.391 (4)C23—H23A0.9900
C1—C61.397 (4)C23—H23B0.9900
C1—H10.9500C24—H24A0.9900
C2—C31.388 (4)C24—H24B0.9900
C2—H20.9500C25—C261.495 (4)
C3—C41.382 (4)C26—C311.383 (4)
C3—H30.9500C26—C271.391 (4)
C4—C51.388 (4)C27—C281.403 (5)
C4—H40.9500C27—H270.9500
C5—C61.390 (4)C28—C291.372 (5)
C5—C71.512 (4)C28—H280.9500
C7—C211.541 (4)C29—C301.409 (5)
C7—C171.543 (4)C29—H290.9500
C7—C81.563 (4)C30—C311.375 (4)
C8—C181.535 (4)C30—H300.9500
C8—H81.0000C31—C321.490 (4)
C9—C101.511 (4)O3A—C22A1.214 (4)
C10—C111.540 (4)O4A—C22A1.317 (4)
C10—H10A0.9900O4A—H4A0.8400
C10—H10B0.9900O5A—C25A1.214 (4)
C11—C181.534 (4)O6A—C32A1.218 (4)
C11—H111.0000N3A—C32A1.386 (4)
C12—C131.498 (4)N3A—C25A1.403 (4)
C12—H12A0.9900N3A—C24A1.464 (4)
C12—H12B0.9900C22A—C23A1.510 (4)
C13—C141.330 (4)C23A—C24A1.524 (4)
C13—H130.9500C23A—H23C0.9900
C14—C151.495 (4)C23A—H23D0.9900
C14—C191.523 (4)C24A—H24C0.9900
C15—H15A0.9900C24A—H24D0.9900
C15—H15B0.9900C25A—C26A1.491 (4)
C16—C171.511 (4)C26A—C27A1.370 (4)
C16—H16A0.9900C26A—C31A1.397 (4)
C16—H16B0.9900C27A—C28A1.394 (4)
C17—H17A0.9900C27A—H27A0.9500
C17—H17B0.9900C28A—C29A1.377 (5)
C18—C191.527 (4)C28A—H28A0.9500
C18—H181.0000C29A—C30A1.397 (5)
C19—C201.537 (4)C29A—H29A0.9500
C19—H191.0000C30A—C31A1.382 (4)
C20—C211.516 (4)C30A—H30A0.9500
C20—H20A0.9900C31A—C32A1.497 (4)
C20—H20B0.9900
C12—O1—C11114.3 (2)C21—C20—C19108.3 (2)
C9—N1—C6123.9 (2)C21—C20—H20A110.0
C9—N1—C8119.7 (2)C19—C20—H20A110.0
C6—N1—C8109.7 (2)C21—C20—H20B110.0
C15—N2—C16112.6 (2)C19—C20—H20B110.0
C15—N2—C21113.4 (2)H20A—C20—H20B108.4
C16—N2—C21107.9 (2)C20—C21—N2110.9 (2)
C15—N2—H2A107.6C20—C21—C7115.8 (2)
C16—N2—H2A107.6N2—C21—C7104.4 (2)
C21—N2—H2A107.6C20—C21—H21108.5
C2—C1—C6117.0 (3)N2—C21—H21108.5
C2—C1—H1121.5C7—C21—H21108.5
C6—C1—H1121.5C32—N3—C25112.1 (2)
C3—C2—C1121.4 (3)C32—N3—C24122.8 (3)
C3—C2—H2119.3C25—N3—C24124.8 (3)
C1—C2—H2119.3O4—C22—O3124.5 (3)
C4—C3—C2120.9 (3)O4—C22—C23119.7 (3)
C4—C3—H3119.5O3—C22—C23115.8 (3)
C2—C3—H3119.5C24—C23—C22112.6 (2)
C3—C4—C5118.8 (3)C24—C23—H23A109.1
C3—C4—H4120.6C22—C23—H23A109.1
C5—C4—H4120.6C24—C23—H23B109.1
C4—C5—C6120.0 (3)C22—C23—H23B109.1
C4—C5—C7128.7 (3)H23A—C23—H23B107.8
C6—C5—C7111.1 (2)N3—C24—C23112.0 (2)
C5—C6—C1121.9 (3)N3—C24—H24A109.2
C5—C6—N1109.6 (2)C23—C24—H24A109.2
C1—C6—N1128.5 (3)N3—C24—H24B109.2
C5—C7—C21116.4 (2)C23—C24—H24B109.2
C5—C7—C17111.1 (2)H24A—C24—H24B107.9
C21—C7—C17101.4 (2)O5—C25—N3125.3 (3)
C5—C7—C8102.2 (2)O5—C25—C26129.4 (3)
C21—C7—C8114.0 (2)N3—C25—C26105.3 (3)
C17—C7—C8112.2 (2)C31—C26—C27120.9 (3)
N1—C8—C18106.1 (2)C31—C26—C25108.5 (3)
N1—C8—C7104.8 (2)C27—C26—C25130.5 (3)
C18—C8—C7116.9 (2)C26—C27—C28117.1 (3)
N1—C8—H8109.6C26—C27—H27121.4
C18—C8—H8109.6C28—C27—H27121.4
C7—C8—H8109.6C29—C28—C27121.5 (3)
O2—C9—N1122.1 (3)C29—C28—H28119.2
O2—C9—C10121.4 (3)C27—C28—H28119.2
N1—C9—C10116.5 (2)C28—C29—C30121.1 (3)
C9—C10—C11117.4 (2)C28—C29—H29119.5
C9—C10—H10A107.9C30—C29—H29119.5
C11—C10—H10A107.9C31—C30—C29117.0 (3)
C9—C10—H10B107.9C31—C30—H30121.5
C11—C10—H10B107.9C29—C30—H30121.5
H10A—C10—H10B107.2C30—C31—C26122.3 (3)
O1—C11—C18114.7 (2)C30—C31—C32129.7 (3)
O1—C11—C10105.3 (2)C26—C31—C32107.8 (3)
C18—C11—C10110.4 (2)O6—C32—N3124.7 (3)
O1—C11—H11108.8O6—C32—C31129.1 (3)
C18—C11—H11108.8N3—C32—C31106.2 (3)
C10—C11—H11108.8C22A—O4A—H4A109.5
O1—C12—C13111.7 (2)C32A—N3A—C25A111.8 (2)
O1—C12—H12A109.3C32A—N3A—C24A124.7 (3)
C13—C12—H12A109.3C25A—N3A—C24A123.6 (3)
O1—C12—H12B109.3O3A—C22A—O4A124.5 (3)
C13—C12—H12B109.3O3A—C22A—C23A122.1 (3)
H12A—C12—H12B107.9O4A—C22A—C23A113.4 (3)
C14—C13—C12123.2 (3)C22A—C23A—C24A112.3 (3)
C14—C13—H13118.4C22A—C23A—H23C109.1
C12—C13—H13118.4C24A—C23A—H23C109.1
C13—C14—C15121.5 (3)C22A—C23A—H23D109.1
C13—C14—C19122.7 (3)C24A—C23A—H23D109.1
C15—C14—C19115.7 (3)H23C—C23A—H23D107.9
C14—C15—N2110.4 (2)N3A—C24A—C23A111.3 (2)
C14—C15—H15A109.6N3A—C24A—H24C109.4
N2—C15—H15A109.6C23A—C24A—H24C109.4
C14—C15—H15B109.6N3A—C24A—H24D109.4
N2—C15—H15B109.6C23A—C24A—H24D109.4
H15A—C15—H15B108.1H24C—C24A—H24D108.0
N2—C16—C17104.0 (2)O5A—C25A—N3A124.6 (3)
N2—C16—H16A111.0O5A—C25A—C26A129.1 (3)
C17—C16—H16A111.0N3A—C25A—C26A106.3 (3)
N2—C16—H16B111.0C27A—C26A—C31A121.1 (3)
C17—C16—H16B111.0C27A—C26A—C25A131.1 (3)
H16A—C16—H16B109.0C31A—C26A—C25A107.8 (3)
C16—C17—C7103.2 (2)C26A—C27A—C28A117.8 (3)
C16—C17—H17A111.1C26A—C27A—H27A121.1
C7—C17—H17A111.1C28A—C27A—H27A121.1
C16—C17—H17B111.1C29A—C28A—C27A121.2 (3)
C7—C17—H17B111.1C29A—C28A—H28A119.4
H17A—C17—H17B109.1C27A—C28A—H28A119.4
C19—C18—C11118.7 (2)C28A—C29A—C30A121.4 (3)
C19—C18—C8112.8 (2)C28A—C29A—H29A119.3
C11—C18—C8107.6 (2)C30A—C29A—H29A119.3
C19—C18—H18105.6C31A—C30A—C29A117.0 (3)
C11—C18—H18105.6C31A—C30A—H30A121.5
C8—C18—H18105.6C29A—C30A—H30A121.5
C14—C19—C18114.1 (2)C30A—C31A—C26A121.5 (3)
C14—C19—C20109.2 (2)C30A—C31A—C32A130.6 (3)
C18—C19—C20106.8 (2)C26A—C31A—C32A107.8 (3)
C14—C19—H19108.9O6A—C32A—N3A124.9 (3)
C18—C19—H19108.9O6A—C32A—C31A128.6 (3)
C20—C19—H19108.9N3A—C32A—C31A106.4 (3)
C6—C1—C2—C30.7 (5)C15—N2—C21—C2010.3 (3)
C1—C2—C3—C40.2 (5)C16—N2—C21—C20135.7 (2)
C2—C3—C4—C50.9 (5)C15—N2—C21—C7115.2 (2)
C3—C4—C5—C60.6 (4)C16—N2—C21—C710.2 (3)
C3—C4—C5—C7174.7 (3)C5—C7—C21—C2084.3 (3)
C4—C5—C6—C10.3 (4)C17—C7—C21—C20155.0 (2)
C7—C5—C6—C1174.8 (3)C8—C7—C21—C2034.2 (3)
C4—C5—C6—N1179.1 (3)C5—C7—C21—N2153.3 (2)
C7—C5—C6—N15.9 (3)C17—C7—C21—N232.7 (3)
C2—C1—C6—C50.9 (4)C8—C7—C21—N288.1 (3)
C2—C1—C6—N1178.3 (3)O4—C22—C23—C2427.3 (4)
C9—N1—C6—C5156.3 (3)O3—C22—C23—C24154.1 (3)
C8—N1—C6—C55.5 (3)C32—N3—C24—C2372.5 (4)
C9—N1—C6—C123.0 (4)C25—N3—C24—C23114.1 (3)
C8—N1—C6—C1173.8 (3)C22—C23—C24—N3177.1 (3)
C4—C5—C7—C2146.8 (4)C32—N3—C25—O5179.1 (3)
C6—C5—C7—C21138.7 (3)C24—N3—C25—O55.1 (5)
C4—C5—C7—C1768.5 (4)C32—N3—C25—C260.2 (3)
C6—C5—C7—C17106.0 (3)C24—N3—C25—C26173.8 (3)
C4—C5—C7—C8171.6 (3)O5—C25—C26—C31179.0 (3)
C6—C5—C7—C813.9 (3)N3—C25—C26—C310.1 (3)
C9—N1—C8—C1841.9 (3)O5—C25—C26—C271.3 (6)
C6—N1—C8—C18110.3 (2)N3—C25—C26—C27177.6 (3)
C9—N1—C8—C7166.2 (2)C31—C26—C27—C280.4 (5)
C6—N1—C8—C713.9 (3)C25—C26—C27—C28177.1 (3)
C5—C7—C8—N116.1 (3)C26—C27—C28—C290.3 (5)
C21—C7—C8—N1142.5 (2)C27—C28—C29—C300.4 (5)
C17—C7—C8—N1102.9 (3)C28—C29—C30—C310.2 (5)
C5—C7—C8—C18101.0 (3)C29—C30—C31—C260.9 (5)
C21—C7—C8—C1825.4 (3)C29—C30—C31—C32177.1 (3)
C17—C7—C8—C18140.0 (2)C27—C26—C31—C301.0 (5)
C6—N1—C9—O223.6 (4)C25—C26—C31—C30177.0 (3)
C8—N1—C9—O2171.7 (3)C27—C26—C31—C32177.9 (3)
C6—N1—C9—C10157.6 (3)C25—C26—C31—C320.1 (3)
C8—N1—C9—C109.5 (4)C25—N3—C32—O6179.9 (3)
O2—C9—C10—C11147.1 (3)C24—N3—C32—O65.8 (5)
N1—C9—C10—C1134.2 (4)C25—N3—C32—C310.1 (3)
C12—O1—C11—C1867.5 (3)C24—N3—C32—C31174.0 (3)
C12—O1—C11—C10171.0 (2)C30—C31—C32—O63.2 (6)
C9—C10—C11—O1127.6 (3)C26—C31—C32—O6179.8 (3)
C9—C10—C11—C183.3 (4)C30—C31—C32—N3176.5 (3)
C11—O1—C12—C1386.8 (3)C26—C31—C32—N30.0 (3)
O1—C12—C13—C1465.9 (4)O3A—C22A—C23A—C24A35.2 (5)
C12—C13—C14—C15176.7 (3)O4A—C22A—C23A—C24A146.1 (3)
C12—C13—C14—C190.3 (5)C32A—N3A—C24A—C23A94.1 (3)
C13—C14—C15—N2123.9 (3)C25A—N3A—C24A—C23A86.1 (4)
C19—C14—C15—N252.7 (4)C22A—C23A—C24A—N3A174.9 (3)
C16—N2—C15—C1477.1 (3)C32A—N3A—C25A—O5A179.2 (3)
C21—N2—C15—C1445.7 (3)C24A—N3A—C25A—O5A1.0 (5)
C15—N2—C16—C17142.9 (2)C32A—N3A—C25A—C26A0.6 (3)
C21—N2—C16—C1717.1 (3)C24A—N3A—C25A—C26A179.3 (3)
N2—C16—C17—C737.8 (3)O5A—C25A—C26A—C27A1.4 (6)
C5—C7—C17—C16168.1 (2)N3A—C25A—C26A—C27A178.4 (3)
C21—C7—C17—C1643.8 (3)O5A—C25A—C26A—C31A179.6 (3)
C8—C7—C17—C1678.2 (3)N3A—C25A—C26A—C31A0.1 (3)
O1—C11—C18—C1958.0 (3)C31A—C26A—C27A—C28A1.2 (5)
C10—C11—C18—C19176.8 (2)C25A—C26A—C27A—C28A176.9 (3)
O1—C11—C18—C871.6 (3)C26A—C27A—C28A—C29A0.0 (5)
C10—C11—C18—C847.2 (3)C27A—C28A—C29A—C30A0.5 (5)
N1—C8—C18—C19156.4 (2)C28A—C29A—C30A—C31A0.2 (5)
C7—C8—C18—C1940.1 (3)C29A—C30A—C31A—C26A1.4 (4)
N1—C8—C18—C1170.7 (3)C29A—C30A—C31A—C32A176.6 (3)
C7—C8—C18—C11172.9 (2)C27A—C26A—C31A—C30A1.9 (5)
C13—C14—C19—C1855.8 (4)C25A—C26A—C31A—C30A176.5 (3)
C15—C14—C19—C18120.8 (3)C27A—C26A—C31A—C32A178.1 (3)
C13—C14—C19—C20175.2 (3)C25A—C26A—C31A—C32A0.4 (3)
C15—C14—C19—C201.3 (3)C25A—N3A—C32A—O6A179.1 (3)
C11—C18—C19—C1467.2 (3)C24A—N3A—C32A—O6A1.0 (5)
C8—C18—C19—C1460.0 (3)C25A—N3A—C32A—C31A0.8 (3)
C11—C18—C19—C20172.0 (2)C24A—N3A—C32A—C31A179.1 (3)
C8—C18—C19—C2060.8 (3)C30A—C31A—C32A—O6A3.5 (5)
C14—C19—C20—C2155.5 (3)C26A—C31A—C32A—O6A179.2 (3)
C18—C19—C20—C2168.3 (3)C30A—C31A—C32A—N3A176.4 (3)
C19—C20—C21—N262.4 (3)C26A—C31A—C32A—N3A0.7 (3)
C19—C20—C21—C756.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.931.702.621 (3)172
O4A—H4A···O30.841.752.586 (3)173
(2) brucinium N-phthaloyl-β-alaninate 5.67-hydrate top
Crystal data top
C23H27N2O4+·C11H8NO4·5.67H2OF(000) = 761.4
Mr = 715.80Dx = 1.384 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 10253 reflections
a = 11.527 (2) Åθ = 3.3–28.1°
b = 7.6690 (13) ŵ = 0.11 mm1
c = 19.500 (3) ÅT = 100 K
β = 94.832 (14)°Block, colourless
V = 1717.7 (5) Å30.25 × 0.20 × 0.20 mm
Z = 2
Data collection top
Kuma KM-4 CCD
diffractometer
2391 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.114
Graphite monochromatorθmax = 27.0°, θmin = 3.3°
ω scansh = 1414
11409 measured reflectionsk = 89
3937 independent reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.078H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0298P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
3937 reflectionsΔρmax = 0.24 e Å3
488 parametersΔρmin = 0.28 e Å3
79 restraintsAbsolute structure: from known structure (Toda et al., 1985)
Primary atom site location: structure-invariant direct methods
Crystal data top
C23H27N2O4+·C11H8NO4·5.67H2OV = 1717.7 (5) Å3
Mr = 715.80Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.527 (2) ŵ = 0.11 mm1
b = 7.6690 (13) ÅT = 100 K
c = 19.500 (3) Å0.25 × 0.20 × 0.20 mm
β = 94.832 (14)°
Data collection top
Kuma KM-4 CCD
diffractometer
2391 reflections with I > 2σ(I)
11409 measured reflectionsRint = 0.114
3937 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07879 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.01Δρmax = 0.24 e Å3
3937 reflectionsΔρmin = 0.28 e Å3
488 parametersAbsolute structure: from known structure (Toda et al., 1985)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.0742 (3)0.6124 (6)0.01214 (19)0.0284 (11)
O20.0728 (3)0.3055 (6)0.40005 (19)0.0314 (12)
O30.1379 (3)0.1972 (6)0.4226 (2)0.0313 (12)
O40.1748 (3)0.5548 (7)0.1622 (2)0.0388 (13)
N10.0046 (4)0.4322 (7)0.1598 (2)0.0178 (12)
N20.3778 (4)0.2693 (6)0.1185 (2)0.0222 (13)
H20.44290.20880.13730.027*
C10.0499 (5)0.3734 (9)0.2804 (3)0.0249 (16)
H10.12750.41530.27250.030*
C20.0079 (5)0.3109 (9)0.3443 (3)0.0289 (17)
C30.1065 (5)0.2499 (8)0.3568 (3)0.0234 (15)
C40.1802 (5)0.2466 (8)0.3036 (3)0.0207 (15)
H40.25750.20330.31100.025*
C50.1372 (5)0.3086 (8)0.2392 (3)0.0169 (14)
C60.0252 (5)0.3727 (8)0.2282 (3)0.0183 (14)
C70.1977 (5)0.3074 (8)0.1728 (3)0.0161 (13)
C80.1140 (4)0.4221 (8)0.1240 (3)0.0176 (14)
H80.09780.36150.07880.021*
C90.0818 (5)0.5418 (9)0.1349 (3)0.0253 (16)
C100.0612 (5)0.6427 (9)0.0701 (3)0.0243 (15)
H10A0.10300.75510.07180.029*
H10B0.09810.57670.03040.029*
C110.0647 (4)0.6829 (8)0.0549 (3)0.0211 (15)
H110.07470.81220.05290.025*
C120.1800 (5)0.6603 (11)0.0429 (3)0.041 (2)
H12A0.20240.78060.02900.050*
H12B0.16550.65800.09370.050*
C130.2782 (5)0.5372 (10)0.0209 (3)0.0352 (18)
H130.31060.46930.05530.042*
C140.3219 (5)0.5183 (9)0.0436 (3)0.0232 (15)
C150.4171 (5)0.3882 (9)0.0631 (3)0.0271 (15)
H15A0.48920.44990.08020.032*
H15B0.43380.31870.02230.032*
C160.2905 (5)0.1364 (8)0.0893 (3)0.0252 (15)
H16A0.32880.02330.08160.030*
H16B0.25100.17730.04520.030*
C170.2044 (5)0.1196 (8)0.1442 (3)0.0204 (14)
H17A0.23330.03690.18070.024*
H17B0.12740.07980.12380.024*
C180.1501 (5)0.6102 (8)0.1117 (3)0.0179 (14)
H180.13670.67640.15450.021*
C190.2817 (5)0.6229 (9)0.1026 (3)0.0232 (15)
H190.30210.74810.09590.028*
C200.3452 (5)0.5585 (8)0.1711 (3)0.0234 (15)
H20A0.42960.58250.17150.028*
H20B0.31490.62090.21030.028*
C210.3251 (5)0.3661 (8)0.1779 (3)0.0184 (14)
H210.36440.32500.22270.022*
C220.1865 (5)0.3832 (10)0.3923 (3)0.0331 (18)
H22A0.22390.37050.43540.050*
H22B0.23370.32490.35500.050*
H22C0.17940.50730.38140.050*
C230.2581 (5)0.1522 (10)0.4395 (3)0.0313 (17)
H23A0.26940.11760.48790.047*
H23B0.30730.25330.43160.047*
H23C0.27950.05520.41030.047*
O50.5402 (5)0.1069 (8)0.1972 (3)0.0226 (14)0.67
O60.5212 (4)0.1184 (8)0.1251 (3)0.0250 (14)0.67
C240.5718 (8)0.0377 (9)0.1751 (4)0.021 (2)0.67
O5A0.5877 (9)0.1359 (15)0.1593 (6)0.017 (2)0.33
O6A0.4656 (9)0.0574 (17)0.1982 (6)0.028 (2)0.33
C24A0.5661 (12)0.001 (2)0.1923 (11)0.021 (3)0.33
O70.7790 (3)0.0955 (6)0.40047 (19)0.0322 (11)
O80.9803 (3)0.0818 (6)0.2075 (2)0.0276 (10)
N30.8564 (4)0.0694 (7)0.2949 (2)0.0205 (12)
C250.6772 (5)0.1144 (9)0.2173 (3)0.0304 (16)
H25A0.72230.18020.18790.036*
H25B0.64920.19560.25060.036*
C260.7566 (5)0.0155 (9)0.2571 (3)0.0275 (16)
H26A0.78520.10140.22450.033*
H26B0.71140.07950.29000.033*
C270.8597 (5)0.1180 (9)0.3644 (3)0.0247 (15)
C280.9751 (5)0.2001 (8)0.3818 (3)0.0194 (14)
C291.0202 (5)0.2751 (9)0.4417 (3)0.0275 (16)
H290.97730.28040.48120.033*
C301.1337 (5)0.3446 (9)0.4422 (3)0.0288 (16)
H301.16790.40050.48250.035*
C311.1956 (5)0.3318 (8)0.3844 (3)0.0268 (16)
H311.27220.37830.38590.032*
C321.1484 (5)0.2529 (8)0.3248 (3)0.0238 (15)
H321.19170.24310.28560.029*
C331.0374 (5)0.1892 (8)0.3237 (3)0.0195 (14)
C340.9613 (5)0.1097 (8)0.2666 (3)0.0228 (15)
O1W0.5430 (3)0.3935 (7)0.4523 (2)0.0533 (14)
H11W0.54670.28330.45330.080*
H12W0.50460.42770.48550.080*
O2W0.6318 (3)0.4378 (6)0.2309 (2)0.0447 (13)
H21W0.66950.49320.20270.067*
H22W0.61140.34060.21400.067*
O3W0.5550 (4)0.0312 (7)0.4341 (2)0.0437 (13)
H31W0.62380.00400.43190.065*
H32W0.51300.00760.39980.065*
O4W0.4280 (4)0.0782 (11)0.3170 (3)0.104 (3)
H41W0.42600.18990.32960.156*
H42W0.43720.07430.27420.156*
O5W0.4836 (4)0.5588 (8)0.3270 (2)0.077 (2)
H51W0.51300.52380.36620.116*
H52W0.51680.51050.29590.116*
O6W0.6351 (5)0.3856 (10)0.0668 (3)0.047 (2)0.67
H61W0.58880.33930.09140.071*0.67
H62W0.69830.40240.08930.071*0.67
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.027 (2)0.037 (3)0.021 (2)0.010 (2)0.0062 (19)0.007 (2)
O20.015 (2)0.058 (3)0.022 (2)0.004 (2)0.0079 (19)0.001 (2)
O30.031 (3)0.044 (3)0.020 (3)0.006 (2)0.007 (2)0.008 (2)
O40.016 (2)0.074 (4)0.028 (3)0.004 (2)0.006 (2)0.003 (2)
N10.016 (3)0.022 (3)0.015 (3)0.003 (2)0.003 (2)0.006 (2)
N20.019 (3)0.025 (3)0.022 (3)0.015 (2)0.002 (2)0.001 (3)
C10.012 (3)0.040 (4)0.023 (3)0.003 (3)0.004 (3)0.010 (3)
C20.018 (3)0.048 (5)0.022 (4)0.005 (3)0.006 (3)0.002 (3)
C30.034 (4)0.024 (4)0.013 (3)0.012 (3)0.008 (3)0.004 (3)
C40.019 (3)0.019 (4)0.024 (4)0.008 (3)0.002 (3)0.003 (3)
C50.020 (3)0.015 (3)0.016 (3)0.002 (3)0.006 (3)0.006 (3)
C60.014 (3)0.023 (4)0.017 (3)0.009 (3)0.003 (3)0.001 (3)
C70.021 (3)0.012 (3)0.016 (3)0.003 (3)0.006 (3)0.002 (3)
C80.013 (3)0.020 (4)0.021 (3)0.005 (3)0.006 (2)0.001 (3)
C90.027 (4)0.027 (4)0.021 (4)0.001 (3)0.005 (3)0.012 (3)
C100.024 (4)0.023 (4)0.026 (3)0.013 (3)0.001 (3)0.001 (3)
C110.019 (3)0.018 (4)0.027 (4)0.004 (3)0.006 (3)0.000 (3)
C120.029 (4)0.059 (6)0.037 (4)0.013 (4)0.006 (3)0.016 (4)
C130.033 (4)0.049 (5)0.027 (4)0.010 (4)0.021 (3)0.017 (4)
C140.027 (4)0.025 (4)0.019 (3)0.006 (3)0.012 (3)0.009 (3)
C150.022 (3)0.036 (4)0.025 (3)0.006 (3)0.013 (3)0.015 (3)
C160.037 (4)0.020 (4)0.017 (3)0.002 (3)0.007 (3)0.012 (3)
C170.021 (3)0.021 (4)0.019 (3)0.014 (3)0.000 (3)0.001 (3)
C180.023 (3)0.008 (3)0.022 (3)0.004 (3)0.003 (3)0.003 (3)
C190.018 (3)0.021 (4)0.032 (4)0.002 (3)0.010 (3)0.013 (3)
C200.019 (3)0.026 (4)0.025 (4)0.003 (3)0.002 (3)0.002 (3)
C210.023 (3)0.018 (4)0.015 (3)0.002 (3)0.007 (3)0.010 (3)
C220.022 (4)0.054 (5)0.025 (4)0.007 (4)0.012 (3)0.006 (4)
C230.029 (4)0.043 (5)0.021 (4)0.006 (3)0.003 (3)0.005 (3)
O50.020 (3)0.017 (3)0.031 (3)0.004 (3)0.000 (3)0.004 (3)
O60.020 (3)0.028 (4)0.028 (3)0.002 (3)0.003 (3)0.000 (3)
C240.019 (4)0.018 (4)0.025 (4)0.001 (3)0.005 (3)0.015 (4)
O5A0.014 (5)0.019 (5)0.018 (5)0.003 (4)0.005 (4)0.011 (5)
O6A0.024 (4)0.025 (5)0.034 (5)0.001 (4)0.000 (4)0.009 (4)
C24A0.018 (5)0.019 (5)0.025 (5)0.000 (5)0.002 (4)0.006 (5)
O70.024 (2)0.045 (3)0.029 (2)0.008 (2)0.015 (2)0.003 (2)
O80.029 (2)0.031 (3)0.023 (2)0.004 (2)0.0042 (19)0.002 (2)
N30.016 (3)0.027 (3)0.018 (3)0.007 (2)0.002 (2)0.003 (2)
C250.020 (3)0.023 (4)0.046 (4)0.003 (3)0.012 (3)0.010 (4)
C260.025 (4)0.034 (4)0.022 (4)0.008 (3)0.004 (3)0.003 (3)
C270.024 (3)0.030 (4)0.019 (3)0.001 (3)0.002 (3)0.005 (3)
C280.013 (3)0.023 (4)0.023 (4)0.002 (3)0.004 (3)0.003 (3)
C290.035 (4)0.031 (4)0.017 (4)0.008 (3)0.003 (3)0.005 (3)
C300.031 (4)0.032 (4)0.022 (4)0.011 (3)0.007 (3)0.003 (3)
C310.019 (3)0.023 (4)0.038 (4)0.005 (3)0.001 (3)0.004 (3)
C320.018 (3)0.034 (4)0.019 (4)0.007 (3)0.002 (3)0.007 (3)
C330.022 (3)0.025 (4)0.013 (3)0.007 (3)0.005 (3)0.010 (3)
C340.027 (3)0.019 (4)0.022 (4)0.013 (3)0.000 (3)0.003 (3)
O1W0.049 (3)0.064 (4)0.049 (3)0.003 (3)0.020 (2)0.006 (3)
O2W0.031 (3)0.034 (3)0.069 (3)0.002 (2)0.004 (2)0.018 (3)
O3W0.033 (3)0.064 (4)0.035 (3)0.007 (3)0.006 (2)0.007 (3)
O4W0.039 (3)0.214 (8)0.060 (4)0.017 (5)0.011 (3)0.050 (5)
O5W0.053 (3)0.155 (7)0.024 (3)0.025 (4)0.010 (2)0.005 (3)
O6W0.037 (4)0.054 (5)0.050 (5)0.006 (4)0.004 (3)0.017 (4)
Geometric parameters (Å, º) top
O1—C111.427 (6)C19—H191.0000
O1—C121.450 (7)C20—C211.501 (8)
O2—C21.371 (7)C20—H20A0.9900
O2—C221.436 (6)C20—H20B0.9900
O3—C31.365 (6)C21—H211.0000
O3—C231.439 (6)C22—H22A0.9800
O4—C91.240 (6)C22—H22B0.9800
N1—C91.362 (7)C22—H22C0.9800
N1—C61.411 (6)C23—H23A0.9800
N1—C81.494 (6)C23—H23B0.9800
N2—C161.510 (7)C23—H23C0.9800
N2—C151.513 (7)O5—C241.255 (5)
N2—C211.543 (6)O6—C241.256 (5)
N2—H20.9300C24—C251.527 (10)
C1—C21.384 (8)O5A—C24A1.256 (6)
C1—C61.391 (7)O6A—C24A1.255 (6)
C1—H10.9500C24A—C251.598 (17)
C2—C31.401 (8)O7—C271.224 (6)
C3—C41.395 (7)O8—C341.209 (6)
C4—C51.394 (8)N3—C271.404 (7)
C4—H40.9500N3—C341.405 (7)
C5—C61.381 (7)N3—C261.466 (7)
C5—C71.522 (7)C25—C261.520 (8)
C7—C211.532 (7)C25—H25A0.9513
C7—C171.549 (8)C25—H25B0.9743
C7—C81.566 (7)C26—H26A0.9900
C8—C181.525 (8)C26—H26B0.9900
C8—H81.0000C27—C281.485 (8)
C9—C101.519 (8)C28—C291.366 (8)
C10—C111.536 (7)C28—C331.393 (7)
C10—H10A0.9900C29—C301.411 (7)
C10—H10B0.9900C29—H290.9500
C11—C181.525 (7)C30—C311.388 (8)
C11—H111.0000C30—H300.9500
C12—C131.509 (9)C31—C321.382 (8)
C12—H12A0.9900C31—H310.9500
C12—H12B0.9900C32—C331.368 (7)
C13—C141.323 (7)C32—H320.9500
C13—H130.9500C33—C341.490 (8)
C14—C191.507 (8)O1W—H11W0.8460
C14—C151.508 (8)O1W—H12W0.8563
C15—H15A0.9900O2W—H21W0.8433
C15—H15B0.9900O2W—H22W0.8402
C16—C171.525 (7)O3W—H31W0.8426
C16—H16A0.9900O3W—H32W0.8455
C16—H16B0.9900O4W—H41W0.8925
C17—H17A0.9900O4W—H42W0.8503
C17—H17B0.9900O5W—H51W0.8523
C18—C191.545 (7)O5W—H52W0.8323
C18—H181.0000O6W—H61W0.8277
C19—C201.548 (7)O6W—H62W0.8273
C11—O1—C12114.5 (5)C8—C18—C19111.2 (5)
C2—O2—C22117.3 (5)C11—C18—H18106.6
C3—O3—C23117.4 (4)C8—C18—H18106.6
C9—N1—C6126.6 (5)C19—C18—H18106.6
C9—N1—C8119.1 (5)C14—C19—C18115.0 (5)
C6—N1—C8110.1 (4)C14—C19—C20109.6 (5)
C16—N2—C15111.6 (4)C18—C19—C20106.2 (4)
C16—N2—C21108.5 (4)C14—C19—H19108.7
C15—N2—C21114.0 (4)C18—C19—H19108.7
C16—N2—H2107.5C20—C19—H19108.7
C15—N2—H2107.5C21—C20—C19108.9 (5)
C21—N2—H2107.5C21—C20—H20A109.9
C2—C1—C6117.7 (5)C19—C20—H20A109.9
C2—C1—H1121.1C21—C20—H20B109.9
C6—C1—H1121.1C19—C20—H20B109.9
O2—C2—C1123.4 (6)H20A—C20—H20B108.3
O2—C2—C3114.9 (5)C20—C21—C7115.9 (5)
C1—C2—C3121.7 (5)C20—C21—N2109.5 (5)
O3—C3—C4124.3 (6)C7—C21—N2104.2 (4)
O3—C3—C2115.6 (5)C20—C21—H21109.0
C4—C3—C2120.0 (6)C7—C21—H21109.0
C5—C4—C3118.1 (6)N2—C21—H21109.0
C5—C4—H4121.0O2—C22—H22A109.5
C3—C4—H4121.0O2—C22—H22B109.5
C6—C5—C4121.2 (5)H22A—C22—H22B109.5
C6—C5—C7111.1 (5)O2—C22—H22C109.5
C4—C5—C7127.6 (5)H22A—C22—H22C109.5
C5—C6—C1121.3 (5)H22B—C22—H22C109.5
C5—C6—N1110.0 (5)O3—C23—H23A109.5
C1—C6—N1128.7 (5)O3—C23—H23B109.5
C5—C7—C21116.6 (4)H23A—C23—H23B109.5
C5—C7—C17110.7 (5)O3—C23—H23C109.5
C21—C7—C17102.7 (4)H23A—C23—H23C109.5
C5—C7—C8102.1 (4)H23B—C23—H23C109.5
C21—C7—C8114.4 (5)O5—C24—O6124.9 (8)
C17—C7—C8110.5 (5)O5—C24—C25113.4 (6)
N1—C8—C18106.0 (5)O6—C24—C25121.7 (6)
N1—C8—C7104.3 (4)O6A—C24A—O5A124.4 (15)
C18—C8—C7117.7 (4)O6A—C24A—C25119.9 (11)
N1—C8—H8109.5O5A—C24A—C25115.1 (10)
C18—C8—H8109.5C27—N3—C34111.6 (5)
C7—C8—H8109.5C27—N3—C26124.0 (4)
O4—C9—N1122.0 (6)C34—N3—C26124.4 (5)
O4—C9—C10121.2 (6)C26—C25—C24116.1 (5)
N1—C9—C10116.7 (5)C26—C25—C24A103.0 (9)
C9—C10—C11118.7 (5)C24—C25—C24A16.6 (9)
C9—C10—H10A107.6C26—C25—H25A108.7
C11—C10—H10A107.6C24—C25—H25A109.2
C9—C10—H10B107.6C24A—C25—H25A125.0
C11—C10—H10B107.6C26—C25—H25B107.4
H10A—C10—H10B107.1C24—C25—H25B108.1
O1—C11—C18115.6 (4)C24A—C25—H25B104.7
O1—C11—C10104.3 (4)H25A—C25—H25B107.0
C18—C11—C10110.4 (5)N3—C26—C25112.2 (5)
O1—C11—H11108.7N3—C26—H26A109.2
C18—C11—H11108.7C25—C26—H26A109.2
C10—C11—H11108.7N3—C26—H26B109.2
O1—C12—C13111.1 (5)C25—C26—H26B109.2
O1—C12—H12A109.4H26A—C26—H26B107.9
C13—C12—H12A109.4O7—C27—N3123.9 (5)
O1—C12—H12B109.4O7—C27—C28129.6 (6)
C13—C12—H12B109.4N3—C27—C28106.5 (5)
H12A—C12—H12B108.0C29—C28—C33122.4 (6)
C14—C13—C12123.7 (6)C29—C28—C27130.0 (5)
C14—C13—H13118.1C33—C28—C27107.6 (5)
C12—C13—H13118.1C28—C29—C30116.8 (5)
C13—C14—C19123.4 (6)C28—C29—H29121.6
C13—C14—C15121.5 (6)C30—C29—H29121.6
C19—C14—C15115.1 (5)C31—C30—C29120.5 (6)
C14—C15—N2108.9 (4)C31—C30—H30119.8
C14—C15—H15A109.9C29—C30—H30119.8
N2—C15—H15A109.9C32—C31—C30121.5 (6)
C14—C15—H15B109.9C32—C31—H31119.3
N2—C15—H15B109.9C30—C31—H31119.3
H15A—C15—H15B108.3C33—C32—C31118.1 (5)
N2—C16—C17104.1 (4)C33—C32—H32121.0
N2—C16—H16A110.9C31—C32—H32121.0
C17—C16—H16A110.9C32—C33—C28120.8 (6)
N2—C16—H16B110.9C32—C33—C34130.4 (5)
C17—C16—H16B110.9C28—C33—C34108.8 (5)
H16A—C16—H16B108.9O8—C34—N3124.5 (5)
C16—C17—C7103.3 (5)O8—C34—C33130.0 (5)
C16—C17—H17A111.1N3—C34—C33105.5 (5)
C7—C17—H17A111.1H11W—O1W—H12W108.5
C16—C17—H17B111.1H21W—O2W—H22W109.6
C7—C17—H17B111.1H31W—O3W—H32W109.0
H17A—C17—H17B109.1H41W—O4W—H42W108.2
C11—C18—C8107.0 (4)H51W—O5W—H52W109.9
C11—C18—C19118.3 (5)H61W—O6W—H62W110.0
C22—O2—C2—C15.6 (9)C10—C11—C18—C19174.7 (5)
C22—O2—C2—C3173.6 (5)N1—C8—C18—C1172.3 (5)
C6—C1—C2—O2179.6 (6)C7—C8—C18—C11171.5 (4)
C6—C1—C2—C30.5 (10)N1—C8—C18—C19157.2 (4)
C23—O3—C3—C46.6 (8)C7—C8—C18—C1941.0 (6)
C23—O3—C3—C2173.2 (6)C13—C14—C19—C1856.7 (8)
O2—C2—C3—O31.2 (8)C15—C14—C19—C18123.3 (5)
C1—C2—C3—O3178.0 (6)C13—C14—C19—C20176.1 (6)
O2—C2—C3—C4179.0 (5)C15—C14—C19—C203.9 (7)
C1—C2—C3—C41.8 (10)C11—C18—C19—C1464.9 (7)
O3—C3—C4—C5178.4 (5)C8—C18—C19—C1459.4 (6)
C2—C3—C4—C51.3 (9)C11—C18—C19—C20173.8 (5)
C3—C4—C5—C60.4 (9)C8—C18—C19—C2061.9 (6)
C3—C4—C5—C7175.7 (6)C14—C19—C20—C2155.5 (6)
C4—C5—C6—C11.8 (9)C18—C19—C20—C2169.2 (6)
C7—C5—C6—C1174.9 (6)C19—C20—C21—C755.2 (6)
C4—C5—C6—N1178.0 (5)C19—C20—C21—N262.3 (6)
C7—C5—C6—N15.3 (7)C5—C7—C21—C2087.0 (6)
C2—C1—C6—C51.3 (10)C17—C7—C21—C20151.8 (5)
C2—C1—C6—N1178.5 (6)C8—C7—C21—C2032.0 (7)
C9—N1—C6—C5162.0 (6)C5—C7—C21—N2152.6 (5)
C8—N1—C6—C55.4 (7)C17—C7—C21—N231.4 (5)
C9—N1—C6—C117.8 (10)C8—C7—C21—N288.4 (5)
C8—N1—C6—C1174.4 (6)C16—N2—C21—C20134.6 (5)
C6—C5—C7—C21138.3 (5)C15—N2—C21—C209.6 (6)
C4—C5—C7—C2145.2 (8)C16—N2—C21—C79.9 (6)
C6—C5—C7—C17104.8 (6)C15—N2—C21—C7115.0 (5)
C4—C5—C7—C1771.6 (7)O5—C24—C25—C2624.8 (10)
C6—C5—C7—C812.9 (6)O6—C24—C25—C26157.8 (7)
C4—C5—C7—C8170.7 (6)O5—C24—C25—C24A15.4 (15)
C9—N1—C8—C1846.9 (6)O6—C24—C25—C24A162 (3)
C6—N1—C8—C18111.7 (5)O6A—C24A—C25—C26134.7 (18)
C9—N1—C8—C7171.8 (5)O5A—C24A—C25—C2654 (2)
C6—N1—C8—C713.2 (6)O6A—C24A—C25—C2482 (3)
C5—C7—C8—N115.0 (6)O5A—C24A—C25—C2489 (3)
C21—C7—C8—N1141.9 (4)C27—N3—C26—C2595.4 (7)
C17—C7—C8—N1102.7 (5)C34—N3—C26—C2585.6 (7)
C5—C7—C8—C18102.1 (5)C24—C25—C26—N3178.9 (6)
C21—C7—C8—C1824.9 (7)C24A—C25—C26—N3170.3 (7)
C17—C7—C8—C18140.2 (5)C34—N3—C27—O7179.6 (6)
C6—N1—C9—O425.7 (9)C26—N3—C27—O70.5 (10)
C8—N1—C9—O4179.5 (5)C34—N3—C27—C281.4 (7)
C6—N1—C9—C10156.7 (6)C26—N3—C27—C28179.6 (5)
C8—N1—C9—C102.0 (8)O7—C27—C28—C291.7 (12)
O4—C9—C10—C11155.4 (6)N3—C27—C28—C29177.2 (6)
N1—C9—C10—C1127.0 (8)O7—C27—C28—C33178.1 (7)
C12—O1—C11—C1868.6 (7)N3—C27—C28—C332.9 (7)
C12—O1—C11—C10170.0 (5)C33—C28—C29—C300.9 (10)
C9—C10—C11—O1124.5 (6)C27—C28—C29—C30179.3 (6)
C9—C10—C11—C180.4 (8)C28—C29—C30—C311.5 (10)
C11—O1—C12—C1386.0 (7)C29—C30—C31—C320.6 (10)
O1—C12—C13—C1462.7 (9)C30—C31—C32—C330.9 (9)
C12—C13—C14—C192.4 (10)C31—C32—C33—C281.5 (9)
C12—C13—C14—C15177.6 (6)C31—C32—C33—C34175.4 (6)
C13—C14—C15—N2125.1 (6)C29—C28—C33—C320.7 (10)
C19—C14—C15—N255.0 (7)C27—C28—C33—C32179.2 (6)
C16—N2—C15—C1475.9 (6)C29—C28—C33—C34176.8 (6)
C21—N2—C15—C1447.4 (7)C27—C28—C33—C343.3 (7)
C15—N2—C16—C17142.4 (4)C27—N3—C34—O8179.6 (6)
C21—N2—C16—C1716.0 (6)C26—N3—C34—O81.3 (10)
N2—C16—C17—C735.6 (6)C27—N3—C34—C330.6 (7)
C5—C7—C17—C16167.1 (4)C26—N3—C34—C33178.5 (5)
C21—C7—C17—C1641.9 (5)C32—C33—C34—O80.5 (11)
C8—C7—C17—C1680.5 (5)C28—C33—C34—O8177.7 (6)
O1—C11—C18—C869.8 (6)C32—C33—C34—N3179.7 (6)
C10—C11—C18—C848.3 (6)C28—C33—C34—N32.5 (7)
O1—C11—C18—C1956.5 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O50.931.742.632 (8)161
N2—H2···O5A0.931.782.685 (11)164
N2—H2···O6A0.932.373.074 (13)133
O1W—H11W···O3W0.851.972.806 (8)168
O1W—H12W···O3Wi0.861.932.779 (6)169
O2W—H21W···O4ii0.842.082.840 (6)151
O2W—H22W···O5A0.841.902.729 (13)167
O2W—H22W···O50.841.992.805 (8)164
O3W—H31W···O70.842.062.886 (5)166
O3W—H32W···O4W0.851.902.738 (6)174
O4W—H41W···O5Wiii0.892.042.860 (11)152
O4W—H42W···O6A0.851.552.398 (13)174
O4W—H42W···O50.852.433.107 (9)137
O5W—H51W···O1W0.851.962.786 (7)163
O5W—H52W···O2W0.831.992.800 (6)164
O6W—H61W···O60.832.002.733 (9)147
O6W—H62W···O4iv0.831.982.790 (7)166
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y, z; (iii) x, y1, z; (iv) x+1, y1, z.

Experimental details

(1)(2)
Crystal data
Chemical formulaC21H23N2O2+·C11H8NO4·C11H9NO4C23H27N2O4+·C11H8NO4·5.67H2O
Mr772.79715.80
Crystal system, space groupOrthorhombic, P212121Monoclinic, P21
Temperature (K)100100
a, b, c (Å)7.788 (2), 16.596 (3), 27.986 (3)11.527 (2), 7.6690 (13), 19.500 (3)
α, β, γ (°)90, 90, 9090, 94.832 (14), 90
V3)3617.2 (12)1717.7 (5)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.100.11
Crystal size (mm)0.30 × 0.30 × 0.300.25 × 0.20 × 0.20
Data collection
DiffractometerKuma KM-4 CCD
diffractometer
Kuma KM-4 CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
24819, 4630, 3791 11409, 3937, 2391
Rint0.0640.114
(sin θ/λ)max1)0.6500.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.100, 1.06 0.078, 0.114, 1.01
No. of reflections46303937
No. of parameters514488
No. of restraints079
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.200.24, 0.28
Absolute structureFrom known structure (Robertson & Beevers, 1951)From known structure (Toda et al., 1985)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2001), CrysAlis RED (Oxford Diffraction, 2001), CrysAlis RED, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL-NT (Bruker, 1999), SHELXL97.

Hydrogen-bond geometry (Å, º) for (1) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.931.702.621 (3)172
O4A—H4A···O30.841.752.586 (3)173
Hydrogen-bond geometry (Å, º) for (2) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O50.931.742.632 (8)161
N2—H2···O5A0.931.782.685 (11)164
N2—H2···O6A0.932.373.074 (13)133
O1W—H11W···O3W0.851.972.806 (8)168
O1W—H12W···O3Wi0.861.932.779 (6)169
O2W—H21W···O4ii0.842.082.840 (6)151
O2W—H22W···O5A0.841.902.729 (13)167
O2W—H22W···O50.841.992.805 (8)164
O3W—H31W···O70.842.062.886 (5)166
O3W—H32W···O4W0.851.902.738 (6)174
O4W—H41W···O5Wiii0.892.042.860 (11)152
O4W—H42W···O6A0.851.552.398 (13)174
O4W—H42W···O50.852.433.107 (9)137
O5W—H51W···O1W0.851.962.786 (7)163
O5W—H52W···O2W0.831.992.800 (6)164
O6W—H61W···O60.832.002.733 (9)147
O6W—H62W···O4iv0.831.982.790 (7)166
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y, z; (iii) x, y1, z; (iv) x+1, y1, z.
ππ interactions (Å, °) in (II). Cg1 and Cg2 represent the centroids of the C1–C6 and C28–C33 rings, respectively. top
CgICgJCg···CgInterplanar angleCgI-perp'CgJ-perpSlippage
Cg1Cg2v3.703 (4)4.8 (3)3.4643.4721.287
Notes: Cg···Cg is the distance between ring centroids. The interplanar angle is that between the planes of rings I and J. CgI-perp is the perpendicular distance of CgI from ring J. CgJ-perp is the perpendicular distance of CgJ from ring I. Symmetry code: (v) x − 1, y + 1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds