Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107004921/gd3085sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270107004921/gd3085Isup2.hkl |
CCDC reference: 641824
Violet crystals of the title compound were obtained by recrystallization of MgPc crystals obtained as described elsewhere (Janczak & Kubiak, 2001) from n-propylamine. MgPc (about 1 g) was added to n-propylamine (20 ml). The suspension was degassed and sealed into a glass ampoule. The ampoule was heated at 423 K for 10–12 h. During the cooling process, the title crystals were formed (from a hot solution, at about 353–363 K). The presence of water in the crystals is governed by the high affinity of MgPc for water (Janczak & Idemori, 2003).
C-bound H atoms were placed in their geometric positions with C—H distances of 0.93–0.97 Å and treated as riding, with Uiso(H) values of 1.2Ueq(C) (for aromatic) and 1.5Ueq(C) (for aliphatic H atoms) [please check Uiso(H) treatment for non-methyl propylamine atoms]. The H atoms of the coordinated water molecule and amine groups were located in difference Fourier syntheses, but in the final refinement they were constrained, with O—H distances of 0.80 Å and N—H of 0.86–0.90 Å, and with Uiso(H) values of 1.2Ueq(O) and 1.5Ueq(N). Refinement of the occupancy factors for the two independent propylamine units gave values of 0.998 (4) and 0.996 (4); thereafter these occupancies were fixed at unity.
Data collection: KM-4 CCD Software (Kuma, 2004); cell refinement: KM-4 CCD Software; data reduction: KM-4 CCD Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1991); software used to prepare material for publication: SHELXL97.
[Mg(C32H16N8)(H2O)]·2C3H9N | F(000) = 2832 |
Mr = 673.08 | Dx = 1.281 Mg m−3 Dm = 1.28 Mg m−3 Dm measured by floatation |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 2565 reflections |
a = 23.227 (5) Å | θ = 3.0–28.0° |
b = 14.526 (3) Å | µ = 0.10 mm−1 |
c = 20.765 (4) Å | T = 295 K |
β = 94.99 (2)° | Paralellepiped, violet |
V = 6979 (2) Å3 | 0.50 × 0.24 × 0.14 mm |
Z = 8 |
Kuma KM-4 with CCD area-detector diffractometer | 8356 independent reflections |
Radiation source: fine-focus sealed tube | 4307 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
Detector resolution: 1024x1024 with blocks 2x2 pixels mm-1 | θmax = 28.0°, θmin = 3.0° |
ω scans | h = −30→30 |
Absorption correction: analytical face-indexed (SHELXTL; Sheldrick, 1991) | k = −19→18 |
Tmin = 0.949, Tmax = 0.984 | l = −26→27 |
38071 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.107 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0342P)2] where P = (Fo2 + 2Fc2)/3 |
8356 reflections | (Δ/σ)max = 0.002 |
457 parameters | Δρmax = 0.32 e Å−3 |
11 restraints | Δρmin = −0.26 e Å−3 |
[Mg(C32H16N8)(H2O)]·2C3H9N | V = 6979 (2) Å3 |
Mr = 673.08 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 23.227 (5) Å | µ = 0.10 mm−1 |
b = 14.526 (3) Å | T = 295 K |
c = 20.765 (4) Å | 0.50 × 0.24 × 0.14 mm |
β = 94.99 (2)° |
Kuma KM-4 with CCD area-detector diffractometer | 8356 independent reflections |
Absorption correction: analytical face-indexed (SHELXTL; Sheldrick, 1991) | 4307 reflections with I > 2σ(I) |
Tmin = 0.949, Tmax = 0.984 | Rint = 0.034 |
38071 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 11 restraints |
wR(F2) = 0.107 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.32 e Å−3 |
8356 reflections | Δρmin = −0.26 e Å−3 |
457 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mg1 | 0.37154 (3) | 0.34965 (5) | 0.00661 (3) | 0.0508 (2) | |
O1 | 0.40394 (6) | 0.46001 (10) | −0.03204 (8) | 0.0793 (5) | |
H1O | 0.3925 | 0.5119 | −0.0307 | 0.095* | |
H2O | 0.4343 | 0.4632 | −0.0476 | 0.095* | |
N1 | 0.44252 (8) | 0.36053 (12) | 0.15861 (7) | 0.0549 (5) | |
N2 | 0.44256 (7) | 0.28903 (11) | 0.05251 (7) | 0.0540 (5) | |
N3 | 0.47048 (8) | 0.18766 (11) | −0.03231 (8) | 0.0590 (5) | |
N4 | 0.37449 (7) | 0.24826 (11) | −0.06132 (7) | 0.0529 (5) | |
N5 | 0.27973 (8) | 0.26608 (11) | −0.11769 (7) | 0.0533 (5) | |
N6 | 0.28508 (7) | 0.35449 (11) | −0.01852 (7) | 0.0496 (4) | |
N7 | 0.25535 (8) | 0.45126 (11) | 0.06781 (8) | 0.0556 (5) | |
N8 | 0.35225 (7) | 0.39321 (11) | 0.09599 (7) | 0.0518 (4) | |
C1 | 0.46560 (9) | 0.30721 (14) | 0.11489 (9) | 0.0529 (5) | |
C2 | 0.51977 (10) | 0.25828 (14) | 0.12726 (10) | 0.0557 (6) | |
C3 | 0.55900 (10) | 0.25021 (16) | 0.18087 (11) | 0.0695 (7) | |
H3 | 0.5538 | 0.2815 | 0.2190 | 0.083* | |
C4 | 0.60595 (12) | 0.19409 (18) | 0.17566 (12) | 0.0868 (8) | |
H4 | 0.6328 | 0.1877 | 0.2113 | 0.104* | |
C5 | 0.61518 (11) | 0.14654 (18) | 0.11968 (12) | 0.0893 (8) | |
H5 | 0.6479 | 0.1101 | 0.1181 | 0.107* | |
C6 | 0.57576 (10) | 0.15327 (16) | 0.06636 (11) | 0.0756 (7) | |
H6 | 0.5811 | 0.1211 | 0.0286 | 0.091* | |
C7 | 0.52788 (10) | 0.20924 (15) | 0.07034 (10) | 0.0593 (6) | |
C8 | 0.47843 (9) | 0.22891 (14) | 0.02556 (9) | 0.0543 (6) | |
C9 | 0.42200 (10) | 0.19561 (14) | −0.07089 (9) | 0.0522 (5) | |
C10 | 0.41064 (10) | 0.14382 (14) | −0.13084 (9) | 0.0567 (6) | |
C11 | 0.44369 (11) | 0.08086 (16) | −0.16204 (10) | 0.0727 (7) | |
H11 | 0.4810 | 0.0656 | −0.1455 | 0.087* | |
C12 | 0.41916 (13) | 0.04198 (17) | −0.21819 (12) | 0.0861 (8) | |
H12 | 0.4406 | 0.0010 | −0.2408 | 0.103* | |
C13 | 0.36337 (13) | 0.06264 (18) | −0.24161 (11) | 0.0849 (8) | |
H13 | 0.3479 | 0.0344 | −0.2794 | 0.102* | |
C14 | 0.32987 (10) | 0.12374 (16) | −0.21082 (10) | 0.0708 (7) | |
H14 | 0.2922 | 0.1373 | −0.2268 | 0.085* | |
C15 | 0.35504 (10) | 0.16413 (14) | −0.15487 (9) | 0.0572 (6) | |
C16 | 0.33294 (10) | 0.23112 (13) | −0.11003 (9) | 0.0500 (5) | |
C17 | 0.25756 (9) | 0.32278 (13) | −0.07523 (9) | 0.0476 (5) | |
C18 | 0.19927 (9) | 0.35937 (14) | −0.08350 (9) | 0.0525 (5) | |
C19 | 0.15503 (10) | 0.34999 (16) | −0.13226 (10) | 0.0652 (6) | |
H19 | 0.1593 | 0.3137 | −0.1685 | 0.078* | |
C20 | 0.10457 (11) | 0.39672 (18) | −0.12475 (12) | 0.0791 (8) | |
H20 | 0.0744 | 0.3928 | −0.1571 | 0.095* | |
C21 | 0.09744 (11) | 0.44936 (17) | −0.07045 (14) | 0.0815 (8) | |
H21 | 0.0625 | 0.4794 | −0.0669 | 0.098* | |
C22 | 0.14070 (11) | 0.45792 (15) | −0.02210 (11) | 0.0702 (7) | |
H22 | 0.1357 | 0.4929 | 0.0145 | 0.084* | |
C23 | 0.19195 (10) | 0.41314 (14) | −0.02921 (10) | 0.0548 (6) | |
C24 | 0.24653 (9) | 0.40860 (14) | 0.01148 (9) | 0.0505 (5) | |
C25 | 0.30361 (10) | 0.44254 (13) | 0.10704 (9) | 0.0504 (5) | |
C26 | 0.31217 (10) | 0.48651 (14) | 0.16981 (9) | 0.0572 (6) | |
C27 | 0.27845 (10) | 0.54686 (15) | 0.20243 (10) | 0.0715 (7) | |
H27 | 0.2418 | 0.5642 | 0.1851 | 0.086* | |
C28 | 0.30131 (13) | 0.58008 (17) | 0.26138 (11) | 0.0878 (8) | |
H28 | 0.2800 | 0.6218 | 0.2835 | 0.105* | |
C29 | 0.35456 (13) | 0.55321 (18) | 0.28812 (11) | 0.0883 (8) | |
H29 | 0.3683 | 0.5767 | 0.3282 | 0.106* | |
C30 | 0.38883 (11) | 0.49161 (16) | 0.25689 (10) | 0.0746 (7) | |
H30 | 0.4249 | 0.4733 | 0.2754 | 0.090* | |
C31 | 0.36664 (10) | 0.45869 (14) | 0.19684 (9) | 0.0549 (6) | |
C32 | 0.39083 (10) | 0.39934 (13) | 0.14931 (9) | 0.0500 (5) | |
N9 | 0.51568 (13) | 0.4520 (2) | −0.07758 (14) | 0.1452 (12) | |
H91 | 0.4995 | 0.4794 | −0.1131 | 0.218* | |
H92 | 0.5392 | 0.4926 | −0.0559 | 0.218* | |
C33 | 0.5517 (2) | 0.3754 (3) | −0.0977 (2) | 0.181 (2) | |
H331 | 0.5530 | 0.3278 | −0.0648 | 0.213* | |
H332 | 0.5908 | 0.3976 | −0.1003 | 0.213* | |
C34 | 0.53080 (19) | 0.3344 (3) | −0.1606 (2) | 0.200 (3) | |
H341 | 0.5304 | 0.3821 | −0.1934 | 0.264* | |
H342 | 0.4912 | 0.3143 | −0.1581 | 0.264* | |
C35 | 0.56552 (18) | 0.2535 (3) | −0.1826 (2) | 0.216 (2) | |
H351 | 0.5742 | 0.2122 | −0.1470 | 0.324* | |
H352 | 0.6009 | 0.2755 | −0.1979 | 0.324* | |
H353 | 0.5434 | 0.2216 | −0.2170 | 0.324* | |
N10 | 0.3500 (2) | 0.6137 (2) | −0.0773 (2) | 0.1996 (16) | |
H10A | 0.3562 | 0.5850 | −0.1124 | 0.299* | |
H10B | 0.3558 | 0.6727 | −0.0793 | 0.299* | |
C36 | 0.2917 (2) | 0.6079 (4) | −0.0760 (3) | 0.241 (3) | |
H361 | 0.2831 | 0.6014 | −0.0313 | 0.277* | |
H362 | 0.2786 | 0.5522 | −0.0985 | 0.277* | |
C37 | 0.2568 (3) | 0.6880 (5) | −0.1053 (4) | 0.301 (4) | |
H371 | 0.2745 | 0.7460 | −0.0915 | 0.362* | |
H372 | 0.2546 | 0.6851 | −0.1522 | 0.362* | |
C38 | 0.1972 (3) | 0.6795 (5) | −0.0817 (4) | 0.382 (5) | |
H381 | 0.1740 | 0.6392 | −0.1100 | 0.574* | |
H382 | 0.1794 | 0.7391 | −0.0816 | 0.574* | |
H383 | 0.2004 | 0.6547 | −0.0387 | 0.574* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mg1 | 0.0575 (5) | 0.0541 (4) | 0.0407 (3) | 0.0071 (4) | 0.0027 (3) | −0.0008 (3) |
O1 | 0.0757 (13) | 0.0707 (11) | 0.0927 (12) | −0.0025 (9) | 0.0147 (10) | 0.0196 (9) |
N1 | 0.0674 (13) | 0.0539 (11) | 0.0430 (9) | 0.0052 (10) | 0.0025 (9) | 0.0014 (8) |
N2 | 0.0645 (12) | 0.0561 (11) | 0.0411 (9) | 0.0114 (9) | 0.0017 (9) | −0.0002 (8) |
N3 | 0.0656 (14) | 0.0648 (12) | 0.0473 (10) | 0.0129 (10) | 0.0079 (10) | −0.0016 (9) |
N4 | 0.0596 (13) | 0.0565 (11) | 0.0422 (9) | 0.0069 (10) | 0.0011 (9) | 0.0023 (8) |
N5 | 0.0615 (13) | 0.0546 (11) | 0.0442 (10) | −0.0036 (10) | 0.0061 (9) | 0.0043 (8) |
N6 | 0.0536 (12) | 0.0525 (11) | 0.0428 (9) | 0.0018 (9) | 0.0043 (8) | 0.0019 (8) |
N7 | 0.0631 (13) | 0.0543 (11) | 0.0502 (10) | 0.0076 (10) | 0.0098 (10) | −0.0008 (9) |
N8 | 0.0555 (12) | 0.0555 (11) | 0.0444 (9) | 0.0088 (9) | 0.0053 (9) | 0.0016 (8) |
C1 | 0.0616 (16) | 0.0515 (13) | 0.0455 (12) | 0.0025 (12) | 0.0035 (11) | 0.0033 (11) |
C2 | 0.0597 (16) | 0.0532 (14) | 0.0529 (13) | 0.0061 (12) | −0.0022 (12) | 0.0078 (11) |
C3 | 0.0710 (18) | 0.0724 (17) | 0.0629 (15) | 0.0099 (14) | −0.0065 (13) | 0.0042 (12) |
C4 | 0.087 (2) | 0.094 (2) | 0.0743 (17) | 0.0201 (17) | −0.0209 (15) | 0.0073 (15) |
C5 | 0.083 (2) | 0.094 (2) | 0.0867 (18) | 0.0309 (16) | −0.0161 (16) | 0.0038 (16) |
C6 | 0.0749 (18) | 0.0775 (17) | 0.0728 (15) | 0.0259 (15) | −0.0022 (14) | −0.0041 (13) |
C7 | 0.0611 (16) | 0.0595 (15) | 0.0563 (13) | 0.0167 (12) | −0.0009 (12) | 0.0065 (11) |
C8 | 0.0621 (16) | 0.0559 (14) | 0.0448 (12) | 0.0135 (12) | 0.0051 (11) | 0.0035 (11) |
C9 | 0.0576 (16) | 0.0538 (14) | 0.0459 (12) | 0.0086 (12) | 0.0083 (11) | 0.0003 (11) |
C10 | 0.0704 (17) | 0.0539 (14) | 0.0478 (12) | 0.0033 (13) | 0.0158 (12) | −0.0020 (11) |
C11 | 0.0885 (19) | 0.0706 (17) | 0.0606 (14) | 0.0058 (14) | 0.0162 (14) | −0.0091 (13) |
C12 | 0.098 (2) | 0.0820 (19) | 0.0817 (18) | 0.0059 (17) | 0.0265 (17) | −0.0292 (15) |
C13 | 0.104 (2) | 0.085 (2) | 0.0665 (15) | −0.0122 (18) | 0.0118 (16) | −0.0298 (14) |
C14 | 0.0783 (18) | 0.0788 (18) | 0.0565 (13) | −0.0089 (14) | 0.0124 (13) | −0.0195 (13) |
C15 | 0.0751 (18) | 0.0527 (14) | 0.0455 (12) | −0.0053 (13) | 0.0153 (12) | −0.0005 (11) |
C16 | 0.0574 (16) | 0.0511 (14) | 0.0417 (12) | −0.0018 (12) | 0.0051 (11) | 0.0045 (10) |
C17 | 0.0548 (15) | 0.0491 (13) | 0.0390 (11) | −0.0025 (11) | 0.0039 (11) | 0.0093 (10) |
C18 | 0.0547 (16) | 0.0502 (13) | 0.0521 (12) | −0.0010 (12) | 0.0013 (12) | 0.0117 (11) |
C19 | 0.0579 (17) | 0.0708 (16) | 0.0652 (14) | −0.0040 (14) | −0.0044 (13) | 0.0157 (12) |
C20 | 0.0625 (19) | 0.085 (2) | 0.0855 (19) | −0.0088 (15) | −0.0103 (15) | 0.0079 (16) |
C21 | 0.0622 (19) | 0.0767 (19) | 0.103 (2) | 0.0134 (15) | −0.0053 (17) | 0.0157 (16) |
C22 | 0.0637 (17) | 0.0703 (17) | 0.0757 (16) | 0.0111 (14) | 0.0014 (14) | 0.0083 (13) |
C23 | 0.0533 (16) | 0.0492 (14) | 0.0620 (14) | 0.0084 (12) | 0.0007 (12) | 0.0098 (11) |
C24 | 0.0567 (15) | 0.0483 (13) | 0.0474 (12) | 0.0077 (11) | 0.0086 (11) | 0.0082 (10) |
C25 | 0.0586 (16) | 0.0493 (13) | 0.0441 (12) | 0.0040 (12) | 0.0088 (11) | −0.0011 (10) |
C26 | 0.0710 (17) | 0.0518 (14) | 0.0499 (12) | 0.0028 (12) | 0.0121 (12) | −0.0044 (11) |
C27 | 0.0741 (18) | 0.0744 (17) | 0.0663 (15) | 0.0129 (14) | 0.0074 (13) | −0.0151 (13) |
C28 | 0.102 (2) | 0.093 (2) | 0.0701 (17) | 0.0165 (18) | 0.0157 (16) | −0.0288 (15) |
C29 | 0.116 (2) | 0.093 (2) | 0.0557 (14) | 0.0083 (18) | 0.0068 (16) | −0.0291 (14) |
C30 | 0.097 (2) | 0.0759 (17) | 0.0504 (13) | 0.0025 (15) | 0.0031 (13) | −0.0085 (12) |
C31 | 0.0699 (17) | 0.0515 (14) | 0.0442 (12) | −0.0010 (12) | 0.0102 (12) | −0.0038 (10) |
C32 | 0.0593 (16) | 0.0482 (13) | 0.0423 (12) | 0.0022 (12) | 0.0026 (11) | 0.0010 (10) |
N9 | 0.145 (3) | 0.141 (3) | 0.156 (2) | −0.013 (2) | 0.052 (2) | −0.051 (2) |
C33 | 0.204 (7) | 0.164 (5) | 0.168 (4) | −0.114 (5) | −0.018 (4) | 0.074 (4) |
C34 | 0.226 (6) | 0.191 (5) | 0.169 (4) | −0.120 (5) | −0.051 (4) | 0.072 (4) |
C35 | 0.195 (5) | 0.152 (4) | 0.310 (6) | 0.031 (3) | 0.071 (4) | −0.091 (4) |
N10 | 0.218 (4) | 0.122 (3) | 0.258 (4) | 0.022 (3) | 0.016 (4) | 0.047 (3) |
C36 | 0.202 (6) | 0.225 (5) | 0.305 (7) | 0.012 (5) | 0.070 (6) | 0.097 (5) |
C37 | 0.204 (7) | 0.375 (11) | 0.327 (9) | −0.015 (8) | 0.028 (7) | 0.026 (7) |
C38 | 0.412 (13) | 0.377 (11) | 0.350 (10) | 0.037 (10) | −0.020 (10) | 0.026 (8) |
Mg1—O1 | 1.9712 (15) | C18—C19 | 1.385 (3) |
Mg1—N6 | 2.0316 (17) | C18—C23 | 1.394 (3) |
Mg1—N2 | 2.0327 (18) | C19—C20 | 1.375 (3) |
Mg1—N4 | 2.0446 (17) | C19—H19 | 0.9300 |
Mg1—N8 | 2.0471 (16) | C20—C21 | 1.384 (3) |
O1—H1O | 0.80 | C20—H20 | 0.9300 |
O1—H2O | 0.80 | C21—C22 | 1.363 (3) |
N1—C32 | 1.325 (2) | C21—H21 | 0.9300 |
N1—C1 | 1.340 (2) | C22—C23 | 1.376 (3) |
N2—C8 | 1.360 (2) | C22—H22 | 0.9300 |
N2—C1 | 1.383 (2) | C23—C24 | 1.463 (3) |
N3—C9 | 1.329 (2) | C25—C26 | 1.450 (3) |
N3—C8 | 1.341 (2) | C26—C27 | 1.390 (3) |
N4—C16 | 1.359 (2) | C26—C31 | 1.398 (3) |
N4—C9 | 1.371 (2) | C27—C28 | 1.378 (3) |
N5—C16 | 1.333 (2) | C27—H27 | 0.9300 |
N5—C17 | 1.341 (2) | C28—C29 | 1.368 (3) |
N6—C17 | 1.370 (2) | C28—H28 | 0.9300 |
N6—C24 | 1.380 (2) | C29—C30 | 1.395 (3) |
N7—C24 | 1.324 (2) | C29—H29 | 0.9300 |
N7—C25 | 1.333 (2) | C30—C31 | 1.392 (3) |
N8—C32 | 1.365 (2) | C30—H30 | 0.9300 |
N8—C25 | 1.374 (2) | C31—C32 | 1.459 (3) |
C1—C2 | 1.448 (3) | N9—C33 | 1.475 (5) |
C2—C3 | 1.381 (3) | N9—H91 | 0.89 |
C2—C7 | 1.407 (3) | N9—H92 | 0.90 |
C3—C4 | 1.373 (3) | C33—C34 | 1.479 (3) |
C3—H3 | 0.9300 | C33—H331 | 0.9700 |
C4—C5 | 1.385 (3) | C33—H332 | 0.9700 |
C4—H4 | 0.9300 | C34—C35 | 1.518 (3) |
C5—C6 | 1.378 (3) | C34—H341 | 0.9700 |
C5—H5 | 0.9300 | C34—H342 | 0.9700 |
C6—C7 | 1.386 (3) | C35—H351 | 0.9600 |
C6—H6 | 0.9300 | C35—H352 | 0.9600 |
C7—C8 | 1.442 (3) | C35—H353 | 0.9600 |
C9—C10 | 1.459 (3) | N10—C36 | 1.359 (5) |
C10—C15 | 1.375 (3) | N10—H10A | 0.86 |
C10—C11 | 1.390 (3) | N10—H10B | 0.87 |
C11—C12 | 1.374 (3) | C36—C37 | 1.515 (9) |
C11—H11 | 0.9300 | C36—H361 | 0.9700 |
C12—C13 | 1.377 (3) | C36—H362 | 0.9700 |
C12—H12 | 0.9300 | C37—C38 | 1.513 (10) |
C13—C14 | 1.374 (3) | C37—H371 | 0.9700 |
C13—H13 | 0.9300 | C37—H372 | 0.9700 |
C14—C15 | 1.385 (3) | C38—H381 | 0.9600 |
C14—H14 | 0.9300 | C38—H382 | 0.9600 |
C15—C16 | 1.470 (3) | C38—H383 | 0.9600 |
C17—C18 | 1.451 (3) | ||
O1—Mg1—N6 | 105.74 (7) | C20—C19—H19 | 121.5 |
O1—Mg1—N2 | 102.72 (7) | C18—C19—H19 | 121.5 |
N6—Mg1—N2 | 151.54 (7) | C19—C20—C21 | 121.9 (2) |
O1—Mg1—N4 | 105.55 (7) | C19—C20—H20 | 119.0 |
N6—Mg1—N4 | 86.53 (7) | C21—C20—H20 | 119.0 |
N2—Mg1—N4 | 86.38 (7) | C22—C21—C20 | 121.2 (2) |
O1—Mg1—N8 | 103.84 (7) | C22—C21—H21 | 119.4 |
N6—Mg1—N8 | 86.15 (7) | C20—C21—H21 | 119.4 |
N2—Mg1—N8 | 86.64 (7) | C21—C22—C23 | 117.9 (2) |
N4—Mg1—N8 | 150.61 (7) | C21—C22—H22 | 121.1 |
Mg1—O1—H1O | 128 | C23—C22—H22 | 121.1 |
Mg1—O1—H2O | 126 | C22—C23—C18 | 121.3 (2) |
H1O—O1—H2O | 105 | C22—C23—C24 | 132.4 (2) |
C32—N1—C1 | 123.90 (17) | C18—C23—C24 | 106.35 (19) |
C8—N2—C1 | 107.88 (17) | N7—C24—N6 | 127.51 (19) |
C8—N2—Mg1 | 125.88 (13) | N7—C24—C23 | 123.31 (19) |
C1—N2—Mg1 | 126.05 (14) | N6—C24—C23 | 109.18 (17) |
C9—N3—C8 | 123.00 (18) | N7—C25—N8 | 127.41 (17) |
C16—N4—C9 | 108.57 (17) | N7—C25—C26 | 123.3 (2) |
C16—N4—Mg1 | 125.53 (14) | N8—C25—C26 | 109.24 (19) |
C9—N4—Mg1 | 125.27 (14) | C27—C26—C31 | 121.00 (19) |
C16—N5—C17 | 124.09 (17) | C27—C26—C25 | 132.6 (2) |
C17—N6—C24 | 107.88 (17) | C31—C26—C25 | 106.38 (19) |
C17—N6—Mg1 | 125.88 (14) | C28—C27—C26 | 117.6 (2) |
C24—N6—Mg1 | 124.70 (14) | C28—C27—H27 | 121.2 |
C24—N7—C25 | 123.55 (18) | C26—C27—H27 | 121.2 |
C32—N8—C25 | 108.77 (16) | C29—C28—C27 | 121.7 (2) |
C32—N8—Mg1 | 125.13 (14) | C29—C28—H28 | 119.2 |
C25—N8—Mg1 | 124.09 (13) | C27—C28—H28 | 119.2 |
N1—C1—N2 | 126.85 (19) | C28—C29—C30 | 121.8 (2) |
N1—C1—C2 | 123.77 (18) | C28—C29—H29 | 119.1 |
N2—C1—C2 | 109.37 (18) | C30—C29—H29 | 119.1 |
C3—C2—C7 | 120.5 (2) | C31—C30—C29 | 117.1 (2) |
C3—C2—C1 | 133.4 (2) | C31—C30—H30 | 121.5 |
C7—C2—C1 | 106.09 (18) | C29—C30—H30 | 121.5 |
C4—C3—C2 | 117.4 (2) | C30—C31—C26 | 120.8 (2) |
C4—C3—H3 | 121.3 | C30—C31—C32 | 132.4 (2) |
C2—C3—H3 | 121.3 | C26—C31—C32 | 106.71 (17) |
C3—C4—C5 | 123.0 (2) | N1—C32—N8 | 127.79 (18) |
C3—C4—H4 | 118.5 | N1—C32—C31 | 123.37 (18) |
C5—C4—H4 | 118.5 | N8—C32—C31 | 108.83 (18) |
C6—C5—C4 | 119.9 (2) | C33—N9—H91 | 108.2 |
C6—C5—H5 | 120.0 | C33—N9—H92 | 107.6 |
C4—C5—H5 | 120.0 | H91—N9—H92 | 108.4 |
C5—C6—C7 | 118.3 (2) | N9—C33—C34 | 113.8 (4) |
C5—C6—H6 | 120.8 | N9—C33—H331 | 108.8 |
C7—C6—H6 | 120.8 | C34—C33—H331 | 108.8 |
C6—C7—C2 | 120.9 (2) | N9—C33—H332 | 108.8 |
C6—C7—C8 | 132.5 (2) | C34—C33—H332 | 108.8 |
C2—C7—C8 | 106.51 (19) | H331—C33—H332 | 107.7 |
N3—C8—N2 | 127.88 (19) | C33—C34—C35 | 115.8 (5) |
N3—C8—C7 | 121.9 (2) | C33—C34—H341 | 108.3 |
N2—C8—C7 | 110.10 (17) | C35—C34—H341 | 108.3 |
N3—C9—N4 | 127.70 (18) | C33—C34—H342 | 108.3 |
N3—C9—C10 | 123.4 (2) | C35—C34—H342 | 108.3 |
N4—C9—C10 | 108.86 (19) | H341—C34—H342 | 107.4 |
C15—C10—C11 | 120.7 (2) | C34—C35—H351 | 109.5 |
C15—C10—C9 | 107.06 (19) | C34—C35—H352 | 109.5 |
C11—C10—C9 | 132.1 (2) | H351—C35—H352 | 109.5 |
C12—C11—C10 | 117.5 (2) | C34—C35—H353 | 109.5 |
C12—C11—H11 | 121.3 | H351—C35—H353 | 109.5 |
C10—C11—H11 | 121.3 | H352—C35—H353 | 109.5 |
C11—C12—C13 | 121.2 (2) | C36—N10—H10A | 103.2 |
C11—C12—H12 | 119.4 | C36—N10—H10B | 102.7 |
C13—C12—H12 | 119.4 | H10A—N10—H10B | 113.6 |
C14—C13—C12 | 122.0 (2) | N10—C36—C37 | 116.3 (5) |
C14—C13—H13 | 119.0 | N10—C36—H361 | 108.2 |
C12—C13—H13 | 119.0 | C37—C36—H361 | 108.2 |
C13—C14—C15 | 116.7 (2) | N10—C36—H362 | 108.2 |
C13—C14—H14 | 121.7 | C37—C36—H362 | 108.2 |
C15—C14—H14 | 121.7 | H361—C36—H362 | 107.4 |
C10—C15—C14 | 121.9 (2) | C38—C37—C36 | 106.2 (3) |
C10—C15—C16 | 106.31 (19) | C38—C37—H371 | 110.5 |
C14—C15—C16 | 131.8 (2) | C36—C37—H371 | 110.5 |
N5—C16—N4 | 127.60 (19) | C38—C37—H372 | 110.5 |
N5—C16—C15 | 123.23 (19) | C36—C37—H372 | 110.5 |
N4—C16—C15 | 109.16 (19) | H371—C37—H372 | 108.7 |
N5—C17—N6 | 126.46 (19) | C37—C38—H381 | 109.5 |
N5—C17—C18 | 123.70 (18) | C37—C38—H382 | 109.5 |
N6—C17—C18 | 109.84 (18) | H381—C38—H382 | 109.5 |
C19—C18—C23 | 120.8 (2) | C37—C38—H383 | 109.5 |
C19—C18—C17 | 132.5 (2) | H381—C38—H383 | 109.5 |
C23—C18—C17 | 106.73 (18) | H382—C38—H383 | 109.5 |
C20—C19—C18 | 117.0 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H2O···N9 | 0.80 | 2.05 | 2.841 (3) | 170 |
O1—H1O···N10 | 0.80 | 1.99 | 2.689 (4) | 147 |
N9—H92···O1i | 0.90 | 2.26 | 3.092 (3) | 153 |
N10—H10B···Cgi | 0.87 | 2.76 | 3.478 (4) | 141 |
Symmetry code: (i) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Mg(C32H16N8)(H2O)]·2C3H9N |
Mr | 673.08 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 295 |
a, b, c (Å) | 23.227 (5), 14.526 (3), 20.765 (4) |
β (°) | 94.99 (2) |
V (Å3) | 6979 (2) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.50 × 0.24 × 0.14 |
Data collection | |
Diffractometer | Kuma KM-4 with CCD area-detector diffractometer |
Absorption correction | Analytical face-indexed (SHELXTL; Sheldrick, 1991) |
Tmin, Tmax | 0.949, 0.984 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 38071, 8356, 4307 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.661 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.107, 1.01 |
No. of reflections | 8356 |
No. of parameters | 457 |
No. of restraints | 11 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.32, −0.26 |
Computer programs: KM-4 CCD Software (Kuma, 2004), KM-4 CCD Software, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1991), SHELXL97.
Mg1—O1 | 1.9712 (15) | Mg1—N4 | 2.0446 (17) |
Mg1—N6 | 2.0316 (17) | Mg1—N8 | 2.0471 (16) |
Mg1—N2 | 2.0327 (18) | ||
O1—Mg1—N6 | 105.74 (7) | N2—Mg1—N4 | 86.38 (7) |
O1—Mg1—N2 | 102.72 (7) | O1—Mg1—N8 | 103.84 (7) |
N6—Mg1—N2 | 151.54 (7) | N6—Mg1—N8 | 86.15 (7) |
O1—Mg1—N4 | 105.55 (7) | N2—Mg1—N8 | 86.64 (7) |
N6—Mg1—N4 | 86.53 (7) | N4—Mg1—N8 | 150.61 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H2O···N9 | 0.80 | 2.05 | 2.841 (3) | 170 |
O1—H1O···N10 | 0.80 | 1.99 | 2.689 (4) | 147 |
N9—H92···O1i | 0.90 | 2.26 | 3.092 (3) | 153 |
N10—H10B···Cgi | 0.87 | 2.76 | 3.478 (4) | 141 |
Symmetry code: (i) −x+1, −y+1, −z. |
Our interest in magnesium phthalocyanine and its complexes exhibiting (4 + 1)-coordination (Kubiak et al., 1995; Janczak & Kubiak, 2001; Janczak & Idemori, 2002) is due to their similarities to chlorophyll (Clayton, 1966), since they possess a coordination environment of the central Mg atom analogous to that in chlorophyll, as well as due to their optical properties in the solid state, especially the `X-phase'. However, the origin and the nature of the near-IR broad absorption are not completely clear, though several possible explanations can be found in the literature. Endo et al. (1999) suggested that the near-IR broad absorption band arises from the exciton coupling effects and assigned the composition MgPc(H2O)2 [Pc is phthalocyaninate(2-)] to the `X-phase'.
Janczak & Idemori (2003) studied the solid-state near-IR absorption spectra of MgPc and the triclinic modification of MgPcH2O, and suggested that this near-IR absorption arises from the specific molecular arrangement in the crystals. In both near-IR active crystals a similar arrangement of the structural motif can be found, i.e. face-to-face dimers of π–π stacked molecules (Janczak & Kubiak, 2001; Janczak & Idemori, 2003). Furthermore, the monoclinic modification of MgPcH2O does not show the near-IR absorption, since the molecular arrangement is quite different from that in the active triclinic form of MgPcH2O (Mizuguchi, 2002). Thus, the electronic spectra vary significantly as a result of the molecular interactions and, especially, because of the molecular arrangement in the crystals. Therefore, the present structure analysis has been carried out in order to study the correlation between the crystal and electronic structures in the title compound, (I).
The asymmetric unit of (I) consists of aqua(phthalocyaninato)magnesium and two n-propylamine molecules (Fig. 1) linked via O—H···N hydrogen bonds. The MgPcH2O unit is not planar. The central Mg atom exhibits (4 + 1)-coordination by four equatorial isoindole N atoms of the phthalocyaninate(2-) ring and by an axial water molecule. This coordination of Mg is similar to that found in several chlorophyll derivatives (Kratky & Dunitz, 1975; Chow et al., 1975; Serlin et al., 1975). Owing to the interaction with the axially coordinated O atom of the water molecule, the central Mg atom is significantly displaced [0.509 (1) Å] from the weighted least-squares plane defined by the four isoindole N atoms. The displacement of the Mg atom from the N4 plane is comparable to that observed in other aqua–magnesium-phthalocyanine complexes solvated by pyridine (Fischer et al., 1971; Mizuguchi & Mochizuki, 2002) or diethylamine (Kinzhybalo & Janczak, 2007a), as well as in the triclinic and monoclinic modifications of MgPcH2O (Janczak & Idemori, 2003; Mizuguchi, 2002).
In all cases, the displacement of the Mg atom from the N4 plane ranges from 0.442 (2) to 0.496 (2) Å. The displacement of Mg from the N4 plane is significantly smaller (by about 0.15 Å) in the aqua–magnesium–porphyrinate complexes (Choon et al. 1986; McKee & Rodley, 1988; Yang & Jacobson, 1991; Timkovich or??? Timkovitch & Tulinsky, 1969; Velazquez et al., 1992; Barkigia et al. 1983) and in chlorophyll derivatives (Kratky & Dunitz, 1975; Chow et al., 1975; Serlin et al., 1975) owing to the greater flexibilty of the porphyrinate ring system and to the larger central hole in relation to the phthalocyaninate(2-) macroring. The geometry of the MgPcH2O molecule in (I) is comparable to that in the gas phase obtained from molecular orbital calculations (Janczak & Idemori, 2003). However, the ab-initio calculated axial Mg—O bond is significantly longer (2.142 Å) than that found in this crystal [1.9712 (15) Å]. The shortening of this bond is probably due to the interaction with the two n-propylamine molecules and to intermolecular interactions present in the crystal.
The electron-rich N atoms of the n-propylamine molecules each accept an O—H···N hydrogen bond from the water molecule (Fig. 1 and Table 2). Two MgPcH2O.2(n-propylamine) units related by inversion interact via two additional N—H···O hydrogen bonds, forming a dimeric structure. In the dimer, one of the two n-propylamine molecules acts as a bridge (as a donor and as an acceptor) between two MgPcH2O molecules, while the other n-propylamine molecule is involved as an acceptor in a single hydrogen bond (see Fig. 2). However, the orientation of the former n-propylamine molecule in relation to the Pc ring brings one of the H atoms of the amine group close to the C2–C7(1 - x, -y, -z) ring. This orientation results in an N—H···π interaction with the phenyl ring (Table 2), but this interaction is rather weak and therefore plays an insignificant role in the molecular arrangement.
In the crystal structure of (I), the dimeric aggregates, [MgPcH2O.2(n-propylamine)]2, are stacked along the [110] direction in a herringbone fashion, forming layers that are parallel to the (001) crystallographic plane. The dimeric aggregates are arranged in the stack in a back-to-back fashion, with a distance of 3.386 (3) Å between the phthalocyaninato(2-) macrocycles (Fig. 3). This value indicates a strong π–π interaction between the π-clouds of the Pc(2-) ring, since this value is comparable to the typical distance of 3.4 Å between aromatic ring systems involved in such interactions (Pauling, 1960). Since the molecular arrangement of MgPcH2O.2(n-propylamine) is different from that of the triclinic modification of MgPcH2O (Janczak & Idemori, 2003) and MgPcH2O·MPA, where MPA = 2-methoxyethylamine (Kinzhybalo & Janczak, 2007b), which are both near-IR active, the present crystal does not show a near-IR broad absorption band. Instead, it exhibits charactristic absorption bands caused by the molecular distortion. In n-propylamine solution this compound has a UV–Vis spectrum quite similar to that of MgPcH2O in solution (Janczak & Idemori, 2003). In the solid state, a slight broadening of the bands was observed, since upon crystallization the double degeneracy of the excited state is lifted as a result of the molecular distortion (approximately C4v in solution and C1 in the solid state).
The thermogravimetric analysis shows two characteristic steps, the first at about 368 K and the second at about 478 K. These steps correspond exactly to the weight loss of both n-propylamine molecules (17.57%) and the water molecule (2.67%). The second step at 478 K correlate well with the loss of water in the MgPcH2O complex (Janczak & Idemori, 2003). Finally, above 278 K, the sample transforms into the β-modification of MgPc (Kubiak et al., 1995).