In 2-amino-6-methylpyridin-1-ium 2-carboxy-3,4,5,6-tetrachlorobenzoate, C6H9N2+·C8HCl4O4−, there are two perpendicular chains of hydrogen-bonded ions, one arising from the interaction between 2-carboxy-3,4,5,6-tetrachlorobenzoate ions and the other from the interaction between the 2-amino-6-methylpyridin-1-ium and 2-carboxy-3,4,5,6-tetrachlorobenzoate ions. These chains combine to form a two-dimensional network of hydrogen-bonded ions. Cocrystals of bis(2-amino-3-methylpyridin-1-ium) 3,4,5,6-tetrachlorophthalate–3,4,5,6-tetrachlorophthalic acid (1/1), 2C6H9N2+·C8Cl4O42−·C8H2Cl4O4, form finite aggregates of hydrogen-bonded ions. π–π interactions are observed between 2-amino-3-methylpyridin-1-ium cations. Both structures exhibit the characteristic R22(8) motif as a result of the hydrogen bonding between the 2-aminopyridinium and carboxylate units.
Supporting information
CCDC references: 838163; 838164
N-(3-methyl-2-pyridyl)-3,4,5,6-tetrachlorophthalic acid (10 mg, 0.026 mmol) and N-(6-methyl-2-pyridyl)-3,4,5,6-tetrachlorophthalmic acid (10 mg, 0.026 mmol) were heated to 333 K in hydrated methanol (5 ml) until a clear
solution was afforded. Colourless plate-like crystals of (I) were grown upon
cooling to room temperature and colourless prism-like crystals of (II) were
grown after the solution was allowed to stand for 1 week.
H atoms were positioned geometrically and refined as riding on their parent
atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) and
N—H = 0.88 Å and Uiso(H) = 1.2Ueq(N). Hydroxy and methyl
hydrogen atoms were modelled in a similar fashion with O—H = 0.84 Å and
Uiso(H) = 1.5Ueq(C) and C—H = 0.98 Å and
Uiso(H) = 1.5Ueq(N). The most disagreeable reflections were
omitted with those exhibiting a Δ(F2) value greater than 5 s.u.
being removed. The refinement was further improved by restricting the
reflections considered to 25.68° and below. The Flack parameter gives the
expected values for a correct structure within 3 s.u.s. Nonetheless since the
s.u. is moderate, the inverted structure was tested. This yielded a Flack
parameter, x = 1.21 (13) by the 'hole in one' method and x =
1.34 (13) using TWIN/BASF, giving us confidence that we have presented the
correct orientation of the structure with respect to the polar axis direction.
These checks were particularly important given that the precision of the Flack
x parameter is poor owing to a low Friedel coverage of 60%. Refinement
for (II) was reduced to θ = 25.68° to reduce the number of missing data;
however, a number of missing data remain (171 reflections between THmin and
STh/L = 0.600). Analysis of reciprocal-space plots reveal that these
missing portions are fairly randomly dispersed which gives us confidence that
this is not a systematic error.
For both compounds, data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).
(I) 2-amino-6-methylpyridin-1-ium 2-carboxy-3,4,5,6-tetrachlorobenzoate
top
Crystal data top
C6H9N2+·C8HCl4O4− | F(000) = 832 |
Mr = 412.04 | Dx = 1.686 Mg m−3 |
Orthorhombic, Pca21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2ac | Cell parameters from 3604 reflections |
a = 9.441 (14) Å | θ = 1.6–32.9° |
b = 12.56 (2) Å | µ = 0.75 mm−1 |
c = 13.69 (2) Å | T = 120 K |
V = 1623 (4) Å3 | Prism, colorless |
Z = 4 | 0.33 × 0.16 × 0.06 mm |
Data collection top
Rigaku Saturn724+ (2x2 bin mode) diffractometer | 2495 independent reflections |
Radiation source: Sealed Tube | 2302 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.048 |
Detector resolution: 28.5714 pixels mm-1 | θmax = 25.7°, θmin = 3.0° |
profile data from ω–scans | h = −11→9 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −11→15 |
Tmin = 0.866, Tmax = 0.956 | l = −16→13 |
5083 measured reflections | |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.057 | H-atom parameters constrained |
wR(F2) = 0.127 | w = 1/[σ2(Fo2) + (0.0307P)2 + 5.8163P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
2495 reflections | Δρmax = 0.44 e Å−3 |
218 parameters | Δρmin = −0.50 e Å−3 |
1 restraint | Absolute structure: Flack (1983) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.31 (13) |
Crystal data top
C6H9N2+·C8HCl4O4− | V = 1623 (4) Å3 |
Mr = 412.04 | Z = 4 |
Orthorhombic, Pca21 | Mo Kα radiation |
a = 9.441 (14) Å | µ = 0.75 mm−1 |
b = 12.56 (2) Å | T = 120 K |
c = 13.69 (2) Å | 0.33 × 0.16 × 0.06 mm |
Data collection top
Rigaku Saturn724+ (2x2 bin mode) diffractometer | 2495 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2302 reflections with I > 2σ(I) |
Tmin = 0.866, Tmax = 0.956 | Rint = 0.048 |
5083 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.057 | H-atom parameters constrained |
wR(F2) = 0.127 | Δρmax = 0.44 e Å−3 |
S = 1.10 | Δρmin = −0.50 e Å−3 |
2495 reflections | Absolute structure: Flack (1983) |
218 parameters | Absolute structure parameter: −0.31 (13) |
1 restraint | |
Special details top
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are
estimated using the full covariance matrix. The cell s.u.'s are taken into
account individually in the estimation of s.u.'s in distances, angles and
torsion angles; correlations between s.u.'s in cell parameters are only used
when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
2σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
C1 | 0.1965 (6) | 0.8453 (4) | 0.4565 (5) | 0.0244 (14) | |
C2 | 0.1106 (7) | 0.8102 (5) | 0.3749 (5) | 0.0257 (14) | |
C3 | 0.0338 (6) | 0.8757 (4) | 0.3139 (5) | 0.0243 (14) | |
C4 | 0.0453 (6) | 0.9762 (5) | 0.3322 (5) | 0.0294 (16) | |
C5 | 0.1356 (6) | 1.0098 (4) | 0.4085 (5) | 0.0208 (13) | |
C6 | 0.2106 (6) | 0.9452 (5) | 0.4727 (5) | 0.0242 (14) | |
C7 | 0.2715 (7) | 0.7738 (5) | 0.5294 (5) | 0.0247 (13) | |
C8 | 0.0983 (7) | 0.6986 (5) | 0.3543 (5) | 0.0259 (14) | |
Cl3 | −0.07756 (17) | 0.83183 (12) | 0.21553 (14) | 0.0323 (4) | |
Cl4 | −0.05791 (15) | 1.05582 (12) | 0.25660 (13) | 0.0297 (4) | |
Cl5 | 0.15292 (18) | 1.13515 (11) | 0.42892 (13) | 0.0324 (4) | |
Cl6 | 0.33018 (16) | 0.99037 (11) | 0.56559 (12) | 0.0279 (4) | |
O1 | 0.2370 (5) | 0.7841 (3) | 0.6294 (3) | 0.0271 (10) | |
H1O | 0.2834 | 0.7413 | 0.6613 | 0.041* | |
O2 | 0.3531 (5) | 0.7112 (3) | 0.4936 (4) | 0.0330 (11) | |
O3 | 0.0374 (5) | 0.6502 (3) | 0.4219 (4) | 0.0355 (11) | |
O4 | 0.1554 (5) | 0.6685 (3) | 0.2687 (4) | 0.0300 (11) | |
C9 | 0.0473 (7) | 0.4127 (5) | 0.2843 (6) | 0.0360 (17) | |
C10 | 0.0329 (7) | 0.3149 (5) | 0.2538 (6) | 0.0378 (17) | |
H10 | −0.0233 | 0.2671 | 0.2882 | 0.045* | |
C11 | 0.1047 (8) | 0.2821 (5) | 0.1664 (7) | 0.044 (2) | |
H11 | 0.0883 | 0.2127 | 0.1456 | 0.053* | |
C12 | 0.1965 (8) | 0.3433 (5) | 0.1093 (6) | 0.043 (2) | |
H12 | 0.2403 | 0.318 | 0.0531 | 0.051* | |
C13 | 0.2140 (7) | 0.4380 (5) | 0.1424 (6) | 0.0345 (17) | |
C14 | 0.3065 (8) | 0.5108 (5) | 0.0875 (6) | 0.042 (2) | |
H14A | 0.3629 | 0.5515 | 0.1324 | 0.063* | |
H14B | 0.2496 | 0.5582 | 0.0489 | 0.063* | |
H14C | 0.3675 | 0.4703 | 0.0454 | 0.063* | |
N1 | 0.1376 (6) | 0.4701 (4) | 0.2274 (4) | 0.0308 (13) | |
H1N | 0.1505 | 0.5351 | 0.2453 | 0.037* | |
N2 | −0.0249 (7) | 0.4523 (4) | 0.3661 (5) | 0.0428 (16) | |
H2A | −0.0813 | 0.4116 | 0.3983 | 0.051* | |
H2B | −0.0127 | 0.5173 | 0.3841 | 0.051* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
C1 | 0.020 (3) | 0.021 (3) | 0.032 (4) | 0.001 (2) | −0.002 (3) | −0.002 (3) |
C2 | 0.027 (3) | 0.023 (3) | 0.027 (4) | 0.004 (2) | −0.002 (3) | 0.000 (3) |
C3 | 0.023 (3) | 0.017 (3) | 0.033 (4) | −0.003 (2) | −0.003 (3) | 0.000 (3) |
C4 | 0.023 (3) | 0.033 (3) | 0.032 (4) | 0.005 (3) | 0.013 (3) | 0.007 (3) |
C5 | 0.026 (3) | 0.018 (2) | 0.019 (3) | 0.000 (2) | 0.005 (3) | 0.001 (2) |
C6 | 0.024 (3) | 0.024 (3) | 0.024 (4) | 0.001 (2) | −0.003 (3) | −0.003 (3) |
C7 | 0.026 (3) | 0.024 (3) | 0.024 (4) | 0.001 (2) | 0.002 (3) | 0.003 (3) |
C8 | 0.029 (3) | 0.020 (3) | 0.028 (4) | −0.002 (2) | −0.003 (3) | 0.002 (3) |
Cl3 | 0.0319 (8) | 0.0295 (7) | 0.0355 (10) | −0.0023 (6) | −0.0069 (8) | −0.0030 (7) |
Cl4 | 0.0288 (7) | 0.0251 (7) | 0.0353 (10) | 0.0041 (6) | −0.0013 (8) | 0.0014 (7) |
Cl5 | 0.0411 (9) | 0.0179 (6) | 0.0382 (10) | −0.0001 (6) | −0.0025 (8) | −0.0005 (7) |
Cl6 | 0.0284 (7) | 0.0236 (7) | 0.0316 (9) | −0.0023 (6) | −0.0025 (7) | −0.0018 (6) |
O1 | 0.033 (2) | 0.0199 (19) | 0.029 (3) | 0.0067 (18) | 0.003 (2) | −0.0008 (18) |
O2 | 0.040 (3) | 0.021 (2) | 0.037 (3) | 0.0079 (19) | 0.002 (2) | −0.002 (2) |
O3 | 0.052 (3) | 0.020 (2) | 0.034 (3) | −0.0048 (19) | 0.009 (3) | 0.002 (2) |
O4 | 0.040 (3) | 0.0178 (19) | 0.032 (3) | −0.0039 (17) | 0.003 (2) | −0.0023 (19) |
C9 | 0.037 (4) | 0.031 (3) | 0.041 (5) | −0.005 (3) | −0.006 (4) | 0.003 (3) |
C10 | 0.039 (4) | 0.019 (3) | 0.055 (5) | −0.004 (3) | −0.008 (4) | 0.002 (3) |
C11 | 0.044 (4) | 0.022 (3) | 0.067 (6) | −0.001 (3) | 0.000 (4) | −0.005 (3) |
C12 | 0.048 (4) | 0.022 (3) | 0.058 (6) | 0.003 (3) | −0.009 (4) | −0.003 (3) |
C13 | 0.036 (4) | 0.024 (3) | 0.044 (5) | 0.000 (3) | −0.009 (3) | 0.008 (3) |
C14 | 0.048 (4) | 0.026 (3) | 0.052 (6) | −0.002 (3) | 0.005 (4) | 0.004 (3) |
N1 | 0.042 (3) | 0.016 (2) | 0.034 (4) | −0.006 (2) | −0.003 (3) | 0.001 (2) |
N2 | 0.051 (4) | 0.023 (3) | 0.055 (5) | −0.016 (3) | 0.003 (3) | 0.007 (3) |
Geometric parameters (Å, º) top
C1—C6 | 1.282 (8) | C9—C10 | 1.304 (10) |
C1—C2 | 1.449 (9) | C9—N1 | 1.361 (9) |
C1—C7 | 1.518 (9) | C9—N2 | 1.402 (10) |
C2—C3 | 1.380 (9) | C10—C11 | 1.435 (12) |
C2—C8 | 1.434 (8) | C10—H10 | 0.93 |
C3—C4 | 1.291 (9) | C11—C12 | 1.397 (11) |
C3—Cl3 | 1.795 (7) | C11—H11 | 0.93 |
C4—C5 | 1.413 (9) | C12—C13 | 1.284 (9) |
C4—Cl4 | 1.738 (7) | C12—H12 | 0.93 |
C5—C6 | 1.390 (8) | C13—N1 | 1.427 (10) |
C5—Cl5 | 1.607 (6) | C13—C14 | 1.471 (9) |
C6—Cl6 | 1.793 (7) | C14—H14A | 0.96 |
C7—O2 | 1.205 (7) | C14—H14B | 0.96 |
C7—O1 | 1.413 (8) | C14—H14C | 0.96 |
C8—O3 | 1.248 (8) | N1—H1N | 0.86 |
C8—O4 | 1.344 (8) | N2—H2A | 0.86 |
O1—H1O | 0.82 | N2—H2B | 0.86 |
| | | |
C6—C1—C2 | 119.3 (6) | C10—C9—N2 | 122.6 (7) |
C6—C1—C7 | 114.7 (6) | N1—C9—N2 | 124.9 (6) |
C2—C1—C7 | 126.0 (5) | C9—C10—C11 | 119.2 (7) |
C3—C2—C8 | 114.9 (6) | C9—C10—H10 | 120.4 |
C3—C2—C1 | 125.4 (6) | C11—C10—H10 | 120.4 |
C8—C2—C1 | 119.7 (6) | C12—C11—C10 | 127.0 (7) |
C4—C3—C2 | 114.9 (7) | C12—C11—H11 | 116.5 |
C4—C3—Cl3 | 119.7 (5) | C10—C11—H11 | 116.5 |
C2—C3—Cl3 | 125.4 (5) | C13—C12—C11 | 113.1 (8) |
C3—C4—C5 | 119.1 (6) | C13—C12—H12 | 123.5 |
C3—C4—Cl4 | 113.5 (6) | C11—C12—H12 | 123.5 |
C5—C4—Cl4 | 127.4 (5) | C12—C13—N1 | 119.0 (7) |
C6—C5—C4 | 126.9 (5) | C12—C13—C14 | 118.2 (8) |
C6—C5—Cl5 | 114.2 (5) | N1—C13—C14 | 122.8 (6) |
C4—C5—Cl5 | 118.9 (5) | C13—C14—H14A | 109.5 |
C1—C6—C5 | 114.2 (6) | C13—C14—H14B | 109.5 |
C1—C6—Cl6 | 119.9 (5) | H14A—C14—H14B | 109.5 |
C5—C6—Cl6 | 125.8 (4) | C13—C14—H14C | 109.5 |
O2—C7—O1 | 127.0 (6) | H14A—C14—H14C | 109.5 |
O2—C7—C1 | 114.6 (6) | H14B—C14—H14C | 109.5 |
O1—C7—C1 | 118.3 (5) | C9—N1—C13 | 129.2 (5) |
O3—C8—O4 | 134.0 (5) | C9—N1—H1N | 115.4 |
O3—C8—C2 | 111.5 (6) | C13—N1—H1N | 115.4 |
O4—C8—C2 | 114.5 (6) | C9—N2—H2A | 120 |
C7—O1—H1O | 109.5 | C9—N2—H2B | 120 |
C10—C9—N1 | 112.4 (7) | H2A—N2—H2B | 120 |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2B···O3 | 0.86 | 1.81 | 2.666 (8) | 173 |
N2—H2A···O2i | 0.86 | 2.11 | 2.931 (8) | 159 |
N1—H1N···O4 | 0.86 | 1.71 | 2.559 (7) | 171 |
O1—H1O···O4ii | 0.82 | 1.83 | 2.604 (7) | 158 |
Symmetry codes: (i) x−1/2, −y+1, z; (ii) −x+1/2, y, z+1/2. |
(II) bis(2-amino-3-methylpyridin-1-ium) 3,4,5,6-tetrachlorophthalate–
3,4,5,6-tetrachlorophthalic acid (1/1)
top
Crystal data top
2C6H9N2+·C8Cl4O42−·C8H2Cl4O4 | Z = 2 |
Mr = 824.08 | F(000) = 832 |
Triclinic, P1 | Dx = 1.688 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.6972 (17) Å | Cell parameters from 4445 reflections |
b = 13.762 (3) Å | θ = 1.4–33.2° |
c = 15.381 (3) Å | µ = 0.75 mm−1 |
α = 69.388 (9)° | T = 120 K |
β = 75.342 (10)° | Prism, colorless |
γ = 72.618 (1)° | 0.41 × 0.14 × 0.12 mm |
V = 1621.7 (6) Å3 | |
Data collection top
Rigaku Saturn724+ (2x2 bin mode) diffractometer | 5964 independent reflections |
Radiation source: Sealed Tube | 5551 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
Detector resolution: 28.5714 pixels mm-1 | θmax = 25.7°, θmin = 2.8° |
profile data from ω–scans | h = −10→10 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −14→16 |
Tmin = 0.881, Tmax = 0.914 | l = −18→18 |
9810 measured reflections | |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0428P)2 + 1.0334P] where P = (Fo2 + 2Fc2)/3 |
5964 reflections | (Δ/σ)max = 0.002 |
435 parameters | Δρmax = 0.43 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
Crystal data top
2C6H9N2+·C8Cl4O42−·C8H2Cl4O4 | γ = 72.618 (1)° |
Mr = 824.08 | V = 1621.7 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.6972 (17) Å | Mo Kα radiation |
b = 13.762 (3) Å | µ = 0.75 mm−1 |
c = 15.381 (3) Å | T = 120 K |
α = 69.388 (9)° | 0.41 × 0.14 × 0.12 mm |
β = 75.342 (10)° | |
Data collection top
Rigaku Saturn724+ (2x2 bin mode) diffractometer | 5964 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 5551 reflections with I > 2σ(I) |
Tmin = 0.881, Tmax = 0.914 | Rint = 0.033 |
9810 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.43 e Å−3 |
5964 reflections | Δρmin = −0.34 e Å−3 |
435 parameters | |
Special details top
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are
estimated using the full covariance matrix. The cell s.u.'s are taken into
account individually in the estimation of s.u.'s in distances, angles and
torsion angles; correlations between s.u.'s in cell parameters are only used
when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
2σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
C1 | 0.8219 (2) | 0.48117 (15) | 0.23232 (14) | 0.0168 (4) | |
C2 | 0.6754 (2) | 0.50100 (16) | 0.20006 (14) | 0.0171 (4) | |
C3 | 0.6594 (2) | 0.56477 (16) | 0.10873 (14) | 0.0177 (4) | |
C4 | 0.7887 (2) | 0.60750 (16) | 0.04846 (14) | 0.0177 (4) | |
C5 | 0.9371 (2) | 0.58356 (15) | 0.07930 (14) | 0.0174 (4) | |
C6 | 0.9521 (2) | 0.52174 (16) | 0.17141 (14) | 0.0175 (4) | |
C7 | 0.8361 (2) | 0.41522 (16) | 0.33390 (14) | 0.0179 (4) | |
C8 | 0.5333 (2) | 0.45776 (16) | 0.26918 (14) | 0.0182 (4) | |
Cl3 | 0.47607 (6) | 0.59516 (4) | 0.06984 (4) | 0.02412 (13) | |
Cl4 | 0.76717 (6) | 0.68803 (4) | −0.06430 (3) | 0.02502 (13) | |
Cl5 | 1.09952 (6) | 0.63103 (4) | 0.00283 (3) | 0.02045 (12) | |
Cl6 | 1.13483 (6) | 0.49143 (4) | 0.21082 (3) | 0.02290 (12) | |
O1 | 0.82904 (19) | 0.46105 (12) | 0.39140 (10) | 0.0237 (3) | |
O2 | 0.84842 (18) | 0.31577 (11) | 0.35278 (10) | 0.0215 (3) | |
O3 | 0.4826 (2) | 0.49028 (13) | 0.33959 (11) | 0.0291 (4) | |
O4 | 0.47819 (17) | 0.39221 (11) | 0.25293 (10) | 0.0198 (3) | |
C9 | 0.9232 (3) | 0.05523 (16) | 0.20767 (14) | 0.0195 (4) | |
C10 | 0.7747 (3) | 0.08973 (16) | 0.17426 (14) | 0.0200 (4) | |
C11 | 0.7426 (3) | 0.03654 (17) | 0.12159 (14) | 0.0212 (4) | |
C12 | 0.8591 (3) | −0.05110 (17) | 0.10079 (14) | 0.0210 (4) | |
C13 | 1.0081 (3) | −0.08466 (16) | 0.13277 (14) | 0.0218 (4) | |
C14 | 1.0403 (3) | −0.03074 (17) | 0.18561 (14) | 0.0206 (4) | |
C15 | 0.9463 (3) | 0.10950 (17) | 0.27186 (15) | 0.0219 (4) | |
C16 | 0.6457 (2) | 0.17577 (17) | 0.20869 (15) | 0.0211 (4) | |
Cl11 | 0.55442 (7) | 0.07527 (5) | 0.08695 (4) | 0.02970 (14) | |
Cl12 | 0.81806 (7) | −0.11799 (4) | 0.03655 (4) | 0.02806 (13) | |
Cl13 | 1.15223 (7) | −0.19198 (4) | 0.10737 (4) | 0.02924 (14) | |
Cl14 | 1.22773 (6) | −0.06856 (5) | 0.22118 (4) | 0.02861 (13) | |
O5 | 0.92425 (19) | 0.21231 (12) | 0.23277 (10) | 0.0247 (3) | |
H5O | 0.9377 | 0.2404 | 0.2699 | 0.037* | |
O6 | 0.9736 (2) | 0.06017 (13) | 0.35098 (11) | 0.0332 (4) | |
O7 | 0.62076 (18) | 0.26954 (12) | 0.14668 (10) | 0.0223 (3) | |
H7O | 0.5479 | 0.3125 | 0.1711 | 0.033* | |
O8 | 0.5784 (2) | 0.15309 (13) | 0.29054 (11) | 0.0304 (4) | |
C17 | 0.5891 (2) | 0.26491 (16) | 0.57298 (14) | 0.0197 (4) | |
C18 | 0.4778 (3) | 0.21799 (17) | 0.65167 (14) | 0.0207 (4) | |
C19 | 0.4450 (3) | 0.12603 (17) | 0.65291 (15) | 0.0248 (5) | |
H19 | 0.3697 | 0.0943 | 0.7038 | 0.03* | |
C20 | 0.5186 (3) | 0.07690 (18) | 0.58151 (16) | 0.0263 (5) | |
H20 | 0.4948 | 0.0128 | 0.5841 | 0.032* | |
C21 | 0.6247 (3) | 0.12387 (18) | 0.50867 (16) | 0.0261 (5) | |
H21 | 0.6763 | 0.0925 | 0.4595 | 0.031* | |
C22 | 0.4052 (3) | 0.27119 (18) | 0.72747 (16) | 0.0275 (5) | |
H22A | 0.3441 | 0.344 | 0.7003 | 0.041* | |
H22B | 0.4927 | 0.2737 | 0.7556 | 0.041* | |
H22C | 0.3313 | 0.2307 | 0.7761 | 0.041* | |
N1 | 0.6569 (2) | 0.21554 (14) | 0.50616 (12) | 0.0221 (4) | |
H1N | 0.726 | 0.2443 | 0.4582 | 0.027* | |
N2 | 0.6282 (2) | 0.35485 (15) | 0.56363 (13) | 0.0246 (4) | |
H2A | 0.6974 | 0.3812 | 0.5143 | 0.029* | |
H2B | 0.5849 | 0.388 | 0.6067 | 0.029* | |
C23 | 0.1964 (2) | 0.32552 (16) | 0.48343 (14) | 0.0193 (4) | |
C24 | 0.0836 (2) | 0.27476 (17) | 0.55759 (14) | 0.0201 (4) | |
C25 | 0.0513 (3) | 0.18660 (17) | 0.55150 (15) | 0.0226 (4) | |
H25 | −0.0225 | 0.1513 | 0.6007 | 0.027* | |
C26 | 0.1240 (3) | 0.14623 (17) | 0.47443 (16) | 0.0246 (5) | |
H26 | 0.1008 | 0.0842 | 0.4717 | 0.03* | |
C27 | 0.2282 (3) | 0.19830 (17) | 0.40407 (16) | 0.0229 (4) | |
H27 | 0.2764 | 0.1739 | 0.3505 | 0.028* | |
C28 | 0.0050 (3) | 0.32028 (19) | 0.63791 (15) | 0.0268 (5) | |
H28A | −0.0464 | 0.3961 | 0.6132 | 0.04* | |
H28B | 0.0881 | 0.3125 | 0.6741 | 0.04* | |
H28C | −0.0782 | 0.282 | 0.6788 | 0.04* | |
N3 | 0.2634 (2) | 0.28547 (14) | 0.41032 (12) | 0.0201 (4) | |
H3N | 0.3329 | 0.317 | 0.3647 | 0.024* | |
N4 | 0.2406 (2) | 0.41012 (15) | 0.48375 (13) | 0.0247 (4) | |
H4A | 0.3119 | 0.4384 | 0.437 | 0.03* | |
H4B | 0.1986 | 0.4377 | 0.5307 | 0.03* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
C1 | 0.0170 (9) | 0.0137 (9) | 0.0191 (10) | −0.0038 (7) | −0.0003 (7) | −0.0061 (8) |
C2 | 0.0157 (9) | 0.0159 (9) | 0.0197 (10) | −0.0043 (8) | 0.0008 (8) | −0.0074 (8) |
C3 | 0.0135 (9) | 0.0190 (10) | 0.0219 (10) | −0.0019 (8) | −0.0025 (7) | −0.0093 (8) |
C4 | 0.0188 (10) | 0.0162 (10) | 0.0163 (9) | −0.0027 (8) | −0.0007 (8) | −0.0052 (8) |
C5 | 0.0167 (9) | 0.0151 (9) | 0.0201 (10) | −0.0054 (8) | 0.0026 (8) | −0.0073 (8) |
C6 | 0.0153 (9) | 0.0180 (10) | 0.0193 (10) | −0.0028 (8) | −0.0025 (8) | −0.0067 (8) |
C7 | 0.0133 (9) | 0.0206 (10) | 0.0176 (9) | −0.0039 (8) | 0.0004 (7) | −0.0053 (8) |
C8 | 0.0151 (9) | 0.0166 (10) | 0.0214 (10) | −0.0037 (8) | −0.0026 (8) | −0.0041 (8) |
Cl3 | 0.0170 (2) | 0.0295 (3) | 0.0243 (3) | −0.0051 (2) | −0.00616 (19) | −0.0046 (2) |
Cl4 | 0.0252 (3) | 0.0278 (3) | 0.0169 (2) | −0.0065 (2) | −0.00372 (19) | −0.0002 (2) |
Cl5 | 0.0183 (2) | 0.0220 (2) | 0.0195 (2) | −0.00859 (19) | 0.00323 (18) | −0.00555 (19) |
Cl6 | 0.0160 (2) | 0.0299 (3) | 0.0222 (2) | −0.0078 (2) | −0.00399 (18) | −0.0045 (2) |
O1 | 0.0288 (8) | 0.0248 (8) | 0.0191 (7) | −0.0095 (6) | −0.0013 (6) | −0.0074 (6) |
O2 | 0.0271 (8) | 0.0172 (7) | 0.0181 (7) | −0.0050 (6) | −0.0015 (6) | −0.0043 (6) |
O3 | 0.0304 (8) | 0.0336 (9) | 0.0280 (8) | −0.0179 (7) | 0.0118 (7) | −0.0179 (7) |
O4 | 0.0179 (7) | 0.0195 (7) | 0.0226 (7) | −0.0069 (6) | −0.0007 (6) | −0.0067 (6) |
C9 | 0.0229 (10) | 0.0165 (10) | 0.0165 (9) | −0.0074 (8) | 0.0002 (8) | −0.0020 (8) |
C10 | 0.0226 (10) | 0.0186 (10) | 0.0160 (9) | −0.0074 (8) | 0.0015 (8) | −0.0031 (8) |
C11 | 0.0194 (10) | 0.0230 (11) | 0.0196 (10) | −0.0070 (8) | −0.0013 (8) | −0.0043 (8) |
C12 | 0.0274 (11) | 0.0220 (11) | 0.0152 (9) | −0.0118 (9) | 0.0012 (8) | −0.0056 (8) |
C13 | 0.0259 (11) | 0.0185 (10) | 0.0169 (10) | −0.0047 (8) | 0.0030 (8) | −0.0053 (8) |
C14 | 0.0198 (10) | 0.0212 (10) | 0.0174 (10) | −0.0063 (8) | −0.0001 (8) | −0.0025 (8) |
C15 | 0.0224 (10) | 0.0218 (11) | 0.0213 (10) | −0.0081 (8) | −0.0006 (8) | −0.0059 (9) |
C16 | 0.0188 (10) | 0.0222 (11) | 0.0221 (10) | −0.0073 (8) | −0.0001 (8) | −0.0065 (8) |
Cl11 | 0.0230 (3) | 0.0352 (3) | 0.0328 (3) | −0.0075 (2) | −0.0077 (2) | −0.0096 (2) |
Cl12 | 0.0392 (3) | 0.0279 (3) | 0.0221 (3) | −0.0144 (2) | −0.0023 (2) | −0.0100 (2) |
Cl13 | 0.0328 (3) | 0.0232 (3) | 0.0260 (3) | 0.0001 (2) | 0.0011 (2) | −0.0102 (2) |
Cl14 | 0.0206 (3) | 0.0322 (3) | 0.0304 (3) | −0.0043 (2) | −0.0056 (2) | −0.0068 (2) |
O5 | 0.0352 (9) | 0.0203 (8) | 0.0200 (7) | −0.0102 (6) | −0.0034 (6) | −0.0053 (6) |
O6 | 0.0543 (11) | 0.0257 (8) | 0.0235 (8) | −0.0112 (8) | −0.0154 (8) | −0.0041 (7) |
O7 | 0.0224 (7) | 0.0196 (7) | 0.0203 (7) | −0.0021 (6) | −0.0008 (6) | −0.0048 (6) |
O8 | 0.0328 (9) | 0.0247 (8) | 0.0240 (8) | −0.0054 (7) | 0.0080 (7) | −0.0055 (7) |
C17 | 0.0192 (10) | 0.0199 (10) | 0.0185 (10) | −0.0031 (8) | −0.0055 (8) | −0.0036 (8) |
C18 | 0.0197 (10) | 0.0204 (10) | 0.0190 (10) | −0.0041 (8) | −0.0033 (8) | −0.0027 (8) |
C19 | 0.0259 (11) | 0.0236 (11) | 0.0203 (10) | −0.0089 (9) | −0.0020 (8) | 0.0003 (9) |
C20 | 0.0324 (12) | 0.0201 (11) | 0.0281 (11) | −0.0093 (9) | −0.0068 (9) | −0.0051 (9) |
C21 | 0.0313 (12) | 0.0240 (11) | 0.0232 (11) | −0.0063 (9) | −0.0036 (9) | −0.0078 (9) |
C22 | 0.0294 (12) | 0.0263 (12) | 0.0232 (11) | −0.0102 (9) | 0.0037 (9) | −0.0056 (9) |
N1 | 0.0263 (9) | 0.0213 (9) | 0.0178 (8) | −0.0085 (7) | 0.0006 (7) | −0.0052 (7) |
N2 | 0.0290 (10) | 0.0240 (9) | 0.0218 (9) | −0.0122 (8) | 0.0042 (7) | −0.0089 (7) |
C23 | 0.0177 (10) | 0.0181 (10) | 0.0198 (10) | −0.0032 (8) | −0.0041 (8) | −0.0029 (8) |
C24 | 0.0174 (10) | 0.0209 (10) | 0.0186 (10) | −0.0047 (8) | −0.0034 (8) | −0.0013 (8) |
C25 | 0.0198 (10) | 0.0214 (10) | 0.0233 (10) | −0.0071 (8) | −0.0053 (8) | 0.0003 (8) |
C26 | 0.0249 (11) | 0.0212 (11) | 0.0295 (11) | −0.0079 (9) | −0.0068 (9) | −0.0060 (9) |
C27 | 0.0237 (11) | 0.0217 (11) | 0.0247 (11) | −0.0048 (8) | −0.0057 (8) | −0.0076 (9) |
C28 | 0.0263 (11) | 0.0300 (12) | 0.0222 (11) | −0.0099 (9) | 0.0011 (9) | −0.0064 (9) |
N3 | 0.0177 (8) | 0.0203 (9) | 0.0203 (8) | −0.0053 (7) | −0.0009 (7) | −0.0046 (7) |
N4 | 0.0270 (10) | 0.0248 (10) | 0.0230 (9) | −0.0131 (8) | 0.0042 (7) | −0.0079 (8) |
Geometric parameters (Å, º) top
C1—C6 | 1.394 (3) | C17—N2 | 1.330 (3) |
C1—C2 | 1.401 (3) | C17—N1 | 1.346 (3) |
C1—C7 | 1.521 (3) | C17—C18 | 1.431 (3) |
C2—C3 | 1.386 (3) | C18—C19 | 1.371 (3) |
C2—C8 | 1.530 (3) | C18—C22 | 1.499 (3) |
C3—C4 | 1.398 (3) | C19—C20 | 1.408 (3) |
C3—Cl3 | 1.727 (2) | C19—H19 | 0.95 |
C4—C5 | 1.395 (3) | C20—C21 | 1.359 (3) |
C4—Cl4 | 1.720 (2) | C20—H20 | 0.95 |
C5—C6 | 1.388 (3) | C21—N1 | 1.358 (3) |
C5—Cl5 | 1.725 (2) | C21—H21 | 0.95 |
C6—Cl6 | 1.727 (2) | C22—H22A | 0.98 |
C7—O1 | 1.235 (3) | C22—H22B | 0.98 |
C7—O2 | 1.272 (3) | C22—H22C | 0.98 |
C8—O3 | 1.245 (3) | N1—H1N | 0.88 |
C8—O4 | 1.258 (3) | N2—H2A | 0.88 |
C9—C14 | 1.393 (3) | N2—H2B | 0.88 |
C9—C10 | 1.398 (3) | C23—N4 | 1.333 (3) |
C9—C15 | 1.511 (3) | C23—N3 | 1.349 (3) |
C10—C11 | 1.387 (3) | C23—C24 | 1.426 (3) |
C10—C16 | 1.513 (3) | C24—C25 | 1.363 (3) |
C11—C12 | 1.401 (3) | C24—C28 | 1.499 (3) |
C11—Cl11 | 1.722 (2) | C25—C26 | 1.410 (3) |
C12—C13 | 1.392 (3) | C25—H25 | 0.95 |
C12—Cl12 | 1.722 (2) | C26—C27 | 1.361 (3) |
C13—C14 | 1.398 (3) | C26—H26 | 0.95 |
C13—Cl13 | 1.720 (2) | C27—N3 | 1.363 (3) |
C14—Cl14 | 1.724 (2) | C27—H27 | 0.95 |
C15—O6 | 1.211 (3) | C28—H28A | 0.98 |
C15—O5 | 1.303 (3) | C28—H28B | 0.98 |
C16—O8 | 1.218 (3) | C28—H28C | 0.98 |
C16—O7 | 1.301 (3) | N3—H3N | 0.88 |
O5—H5O | 0.84 | N4—H4A | 0.88 |
O7—H7O | 0.84 | N4—H4B | 0.88 |
| | | |
C6—C1—C2 | 119.90 (18) | N1—C17—C18 | 118.42 (19) |
C6—C1—C7 | 121.00 (18) | C19—C18—C17 | 117.4 (2) |
C2—C1—C7 | 119.10 (17) | C19—C18—C22 | 124.00 (19) |
C3—C2—C1 | 119.32 (18) | C17—C18—C22 | 118.63 (19) |
C3—C2—C8 | 121.83 (18) | C18—C19—C20 | 122.4 (2) |
C1—C2—C8 | 118.71 (18) | C18—C19—H19 | 118.8 |
C2—C3—C4 | 120.66 (18) | C20—C19—H19 | 118.8 |
C2—C3—Cl3 | 119.81 (15) | C21—C20—C19 | 118.1 (2) |
C4—C3—Cl3 | 119.50 (16) | C21—C20—H20 | 121 |
C5—C4—C3 | 119.92 (18) | C19—C20—H20 | 121 |
C5—C4—Cl4 | 119.63 (15) | N1—C21—C20 | 120.1 (2) |
C3—C4—Cl4 | 120.44 (16) | N1—C21—H21 | 120 |
C6—C5—C4 | 119.44 (18) | C20—C21—H21 | 120 |
C6—C5—Cl5 | 120.81 (16) | C18—C22—H22A | 109.5 |
C4—C5—Cl5 | 119.76 (15) | C18—C22—H22B | 109.5 |
C5—C6—C1 | 120.66 (18) | H22A—C22—H22B | 109.5 |
C5—C6—Cl6 | 120.07 (15) | C18—C22—H22C | 109.5 |
C1—C6—Cl6 | 119.25 (15) | H22A—C22—H22C | 109.5 |
O1—C7—O2 | 125.39 (19) | H22B—C22—H22C | 109.5 |
O1—C7—C1 | 118.96 (18) | C17—N1—C21 | 123.66 (18) |
O2—C7—C1 | 115.59 (17) | C17—N1—H1N | 118.2 |
O3—C8—O4 | 124.88 (19) | C21—N1—H1N | 118.2 |
O3—C8—C2 | 115.69 (18) | C17—N2—H2A | 120 |
O4—C8—C2 | 119.41 (18) | C17—N2—H2B | 120 |
C14—C9—C10 | 119.72 (19) | H2A—N2—H2B | 120 |
C14—C9—C15 | 122.20 (19) | N4—C23—N3 | 118.35 (18) |
C10—C9—C15 | 117.98 (18) | N4—C23—C24 | 122.8 (2) |
C11—C10—C9 | 120.03 (19) | N3—C23—C24 | 118.80 (19) |
C11—C10—C16 | 122.16 (19) | C25—C24—C23 | 117.9 (2) |
C9—C10—C16 | 117.30 (18) | C25—C24—C28 | 122.84 (19) |
C10—C11—C12 | 120.3 (2) | C23—C24—C28 | 119.27 (19) |
C10—C11—Cl11 | 119.35 (17) | C24—C25—C26 | 122.0 (2) |
C12—C11—Cl11 | 120.33 (16) | C24—C25—H25 | 119 |
C13—C12—C11 | 119.85 (19) | C26—C25—H25 | 119 |
C13—C12—Cl12 | 119.96 (17) | C27—C26—C25 | 118.3 (2) |
C11—C12—Cl12 | 120.19 (17) | C27—C26—H26 | 120.8 |
C12—C13—C14 | 119.76 (19) | C25—C26—H26 | 120.8 |
C12—C13—Cl13 | 120.22 (16) | C26—C27—N3 | 120.1 (2) |
C14—C13—Cl13 | 120.02 (17) | C26—C27—H27 | 120 |
C9—C14—C13 | 120.4 (2) | N3—C27—H27 | 120 |
C9—C14—Cl14 | 119.73 (17) | C24—C28—H28A | 109.5 |
C13—C14—Cl14 | 119.89 (17) | C24—C28—H28B | 109.5 |
O6—C15—O5 | 126.7 (2) | H28A—C28—H28B | 109.5 |
O6—C15—C9 | 121.63 (19) | C24—C28—H28C | 109.5 |
O5—C15—C9 | 111.51 (18) | H28A—C28—H28C | 109.5 |
O8—C16—O7 | 126.1 (2) | H28B—C28—H28C | 109.5 |
O8—C16—C10 | 118.59 (19) | C23—N3—C27 | 122.89 (18) |
O7—C16—C10 | 115.32 (17) | C23—N3—H3N | 118.6 |
C15—O5—H5O | 109.5 | C27—N3—H3N | 118.6 |
C16—O7—H7O | 109.5 | C23—N4—H4A | 120 |
N2—C17—N1 | 118.96 (19) | C23—N4—H4B | 120 |
N2—C17—C18 | 122.6 (2) | H4A—N4—H4B | 120 |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5O···O2 | 0.84 | 1.80 | 2.558 (2) | 149 |
O7—H7O···O4 | 0.84 | 1.83 | 2.593 (2) | 151 |
N1—H1N···O2 | 0.88 | 1.83 | 2.708 (2) | 173 |
N2—H2A···O1 | 0.88 | 2.07 | 2.943 (2) | 171 |
N3—H3N···O4 | 0.88 | 2.01 | 2.891 (2) | 175 |
N4—H4A···O3 | 0.88 | 1.93 | 2.805 (2) | 175 |
N2—H2B···O3i | 0.88 | 1.99 | 2.823 (2) | 157 |
N4—H4B···O1i | 0.88 | 2.07 | 2.892 (2) | 156 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Experimental details
| (I) | (II) |
Crystal data |
Chemical formula | C6H9N2+·C8HCl4O4− | 2C6H9N2+·C8Cl4O42−·C8H2Cl4O4 |
Mr | 412.04 | 824.08 |
Crystal system, space group | Orthorhombic, Pca21 | Triclinic, P1 |
Temperature (K) | 120 | 120 |
a, b, c (Å) | 9.441 (14), 12.56 (2), 13.69 (2) | 8.6972 (17), 13.762 (3), 15.381 (3) |
α, β, γ (°) | 90, 90, 90 | 69.388 (9), 75.342 (10), 72.618 (1) |
V (Å3) | 1623 (4) | 1621.7 (6) |
Z | 4 | 2 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 0.75 | 0.75 |
Crystal size (mm) | 0.33 × 0.16 × 0.06 | 0.41 × 0.14 × 0.12 |
|
Data collection |
Diffractometer | Rigaku Saturn724+ (2x2 bin mode) diffractometer | Rigaku Saturn724+ (2x2 bin mode) diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.866, 0.956 | 0.881, 0.914 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5083, 2495, 2302 | 9810, 5964, 5551 |
Rint | 0.048 | 0.033 |
(sin θ/λ)max (Å−1) | 0.610 | 0.610 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.057, 0.127, 1.10 | 0.036, 0.090, 1.07 |
No. of reflections | 2495 | 5964 |
No. of parameters | 218 | 435 |
No. of restraints | 1 | 0 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.44, −0.50 | 0.43, −0.34 |
Absolute structure | Flack (1983) | ? |
Absolute structure parameter | −0.31 (13) | ? |
Selected geometric parameters (Å, º) for (I) topC7—O2 | 1.205 (7) | C9—N1 | 1.361 (9) |
C7—O1 | 1.413 (8) | C9—N2 | 1.402 (10) |
C8—O3 | 1.248 (8) | C13—N1 | 1.427 (10) |
C8—O4 | 1.344 (8) | | |
| | | |
O2—C7—O1 | 127.0 (6) | N1—C9—N2 | 124.9 (6) |
O3—C8—O4 | 134.0 (5) | C9—N1—C13 | 129.2 (5) |
Hydrogen-bond geometry (Å, º) for (I) top
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2B···O3 | 0.86 | 1.81 | 2.666 (8) | 173 |
N2—H2A···O2i | 0.86 | 2.11 | 2.931 (8) | 159 |
N1—H1N···O4 | 0.86 | 1.71 | 2.559 (7) | 171 |
O1—H1O···O4ii | 0.82 | 1.83 | 2.604 (7) | 158 |
Symmetry codes: (i) x−1/2, −y+1, z; (ii) −x+1/2, y, z+1/2. |
Selected geometric parameters (Å, º) for (II) topC7—O1 | 1.235 (3) | C16—O7 | 1.301 (3) |
C7—O2 | 1.272 (3) | C17—N2 | 1.330 (3) |
C8—O3 | 1.245 (3) | C17—N1 | 1.346 (3) |
C8—O4 | 1.258 (3) | C21—N1 | 1.358 (3) |
C15—O6 | 1.211 (3) | C23—N4 | 1.333 (3) |
C15—O5 | 1.303 (3) | C23—N3 | 1.349 (3) |
C16—O8 | 1.218 (3) | C27—N3 | 1.363 (3) |
| | | |
O1—C7—O2 | 125.39 (19) | N2—C17—N1 | 118.96 (19) |
O3—C8—O4 | 124.88 (19) | C17—N1—C21 | 123.66 (18) |
O6—C15—O5 | 126.7 (2) | N4—C23—N3 | 118.35 (18) |
O8—C16—O7 | 126.1 (2) | C23—N3—C27 | 122.89 (18) |
Hydrogen-bond geometry (Å, º) for (II) top
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5O···O2 | 0.84 | 1.80 | 2.558 (2) | 149 |
O7—H7O···O4 | 0.84 | 1.83 | 2.593 (2) | 151 |
N1—H1N···O2 | 0.88 | 1.83 | 2.708 (2) | 173 |
N2—H2A···O1 | 0.88 | 2.07 | 2.943 (2) | 171 |
N3—H3N···O4 | 0.88 | 2.01 | 2.891 (2) | 175 |
N4—H4A···O3 | 0.88 | 1.93 | 2.805 (2) | 175 |
N2—H2B···O3i | 0.88 | 1.99 | 2.823 (2) | 157 |
N4—H4B···O1i | 0.88 | 2.07 | 2.892 (2) | 156 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
N-(3-methyl-2-pyridyl)-3,4,5,6-tetrachlorophthalmic acid and N-(6-methyl-2-pyridyl)-3,4,5,6-tetrachlorophthalmic acid are known to be pharamacologically active having been shown to exhibit a hypertensive effect in biological systems (Dolzhenko et al., 2003). In the context of this study, these materials are of interest for their potential as a UV-active dye for dye-sensitized solar cell applications. Heating these compounds to 333 K in hydrated methanol produces crystals of two salts: 2-amino-6-methylpyridin-1-ium 2-carboxy-3,4,5,6-tetrachlorobenzoate, [C6H9N2][C8HO4Cl4], (I) (Fig. 1), and 2-amino-3-methylpyridin-1-ium 3,4,5,6-tetrachlorophthalate co-crystallized with 3,4,5,6-tetrachlorophthalic acid, ([C6H9N2]2[C8O4Cl4].C8H2O4Cl4), (II) (Fig. 2). These salts are the result of the reaction of the starting material with water present in the methanol solution (Figs. 3, 4) and the equilibrium that exists between amides and water and the corresponding amines and carboxylic acids. In (I) and (II) protonation of the pyridyl nitrogen results in pyridinium salts stabilized by imino resonance. Interestingly, as 3,4,5,6-tetrachlorophthalic acid co-crystallizes with 2-amino-3-methylpyridin-1-ium phthalate all the products of this reaction are represented stoichiometrically in the crystal structure.
The molecular geometry of the 2-amino-6-methylpyridin-1-ium cation in the structure of (I) can be compared with that of the non-halogenated 2-amino-6-methylpyridinium 2-formylbenzoate monohydrate (Büyükgüngör & Odabaşoǧlu, 2006). This geometry is similar in both compounds, with the characteristic bond-length alternation within the pyridyl ring, which demonstrates the imino resonance stabilizing the positive charge (Fig. 5) (Zhi et al., 2002). The bond geometry of the aromatic ring in the 2-carboxy-3,4,5,6-tetrachlorobenzoate anion in (I) resembles more closely that of the hemihydrate of 3,4,5,6-tetrachlorophthalic acid (Ito et al., 1975) than that of the 2-carboxy-3,4,5,6-tetrachlorobenzoate in a similar salt, 2-methyl-5-ethylpyridinium 3,4,5,6-tetrachlorophthalate (Galloy et al., 1976). This indicates a contribution from the neutral canonical form, which is also observed in the carboxylate group, where O3—C8 is observed to be shorter than O4—C8. The bond distances in the aromatic ring of 2-carboxy-3,4,5,6-tetrachlorobenzoate in (I) range from 1.374 (9) to 1.403 (9) Å.
Compound (I) forms continuous sheets of hydrogen-bonded ions parallel to (010). These sheets contain the characteristic rings with the graph set R22 (8) (Etter, 1990; Bernstein et al., 1995) with amine and pyridinium N atoms acting as donors and the two carboxylate O atoms acting as acceptors (N1—H1N···O4 and N2—H2A···O3), as is well documented in this type of compound (Quah et al., 2010; Hemamalini & Fun, 2010). These rings are linked by chain motifs to form the sheets. The 2-carboxy-3,4,5,6-tetrachlorobenzoate anions form chains with the graph set C11(7) in the [001] direction through O1—H1···O4 (Fig. 6) and the 2-amino-6-methylpyridin-1-ium cations link via the anions forming chains with the graph set C22(9) (through N2—H2A···O3 and N2—H2B···O2) and C22(11) (through N1—H1N···O4 and N2—H2B···O2), giving overall a C22(9)C22(11)[R22(8)] chain of rings parallel to the [100] direction (Fig. 7).
The aromatic rings in the 2-amino-3-methylpyridin-1-ium cations of compound (II) exhibit similar geometry to those in (I) with regard to the bond distances. The distances in the benzene rings of the 3,4,5,6-tetrachlorophthalate dianion and the 3,4,5,6-tetrachlorophthalic acid molecule range between 1.387 (3) and 1.403 (2) Å and 1.389 (3) and 1.399 (3) Å, respectively, altogether more consistent than the bond distances of the 2-carboxy-3,4,5,6-tetrachlorobenzoate anion in (I) or the hemihydrate of 3,4,5,6-tetrachlorophthalic acid. This similarity in bond geometry between the dianion and the neutral acid in (II) strengthens the argument for the contribution of the neutral canonical forms in these compounds. As is observed in similar structures (Ni et al., 2007; Zhi et al., 2002) there are π–π interactions between 2-amino-3-methylpyridin-1-ium cations; the dihedral angle between the two pyridinium rings in the selected asymmetric unit is only 3.8 (2)°, and the corresponding centroid separation is 3.834 (2) Å.
Unlike the two-dimensional network observed in (I), the hydrogen-bonded system in (II) consists of a finite array of four 2-amino-3-methylpyridin-1-ium cations, two 3,4,5,6-tetrachlorophthalate dianions and two molecules of 3,4,5,6-tetrachlorophthalic acid (Fig. 8). The R22(8) ring motifs formed between the pyridinium and the phthalate are once again present with each phthalate dianion forming two such rings parallel to each other because of the π–π interactions between the pyridinium cations, i.e. through N2—H2A···O1 and N1—H1N···O2 for one ring and N4—H4A···O3 and N3—H3N···O4 for the other. In addition to this, each of these rings is connected to an adjacent R22(8) ring through N2—H2B···O1 and N4—H4B···O3 forming an [R22(8)R42(8)R22(8)] motif within an outer R44(16) ring. Further motifs are observed when considering that there are two parallel [R22(8)R42(8)R22(8)] motifs linked by the phthalate dianions; this gives rise to rings with graph sets R44(18) and R44(22).
The 3,4,5,6-tetrachlorophthalic acid molecules and 3,4,5,6-tetrachlorophthalate dianions are also connected by hydrogen bonds with the acid protons donating to carboxylate oxygen acceptors through O5—H5O···O2 and O7—H7O···O4 to create R22(14) motifs. Though there is no direct hydrogen bonding between the acid molecules and the pyridinium cations, rings with the graph set R86(34) are formed between acid molecules through the [R22(8)R42(8)R22(8)] motif.