Download citation
Download citation
link to html
Three potassium edta (edta is ethyl­enediamine­tetra­acetic acid, H4Y) salts which have different degrees of ionization of the edta anion, namely dipotassium 2-({2-[bis­(carboxyl­atometh­yl)aza­nium­yl]eth­yl}(carboxyl­atometh­yl)aza­nium­yl)acetate di­hydrate, 2K+·C10H14N2O82−·2H2O, (I), tripotassium 2,2′-({2-[bis(carboxylatomethyl)amino]ethyl}ammonio)diacetate dihydrate, 3K+·C10H13N2O83−·2H2O, (II), and tetra­potassium 2,2′,2′′,2′′′-(ethane-1,2-diyldinitrilo)­tetra­ace­tate 3.92-hydrate, 4K+·C10H12N2O84−·3.92H2O, (III), were ob­tained in crystalline form from water solutions after mixing edta with potassium hydroxide in different molar ratios. In (II), a new mode of coordination of the edta anion to the metal is observed. The HY3− anion contains one deprotonated N atom coordinated to K+ and the second N atom is involved in intra­molecular bifurcated N—H...O and N—H...N hydrogen bonds. The overall conformation of the HY3− anions is very similar to that of the Y4− anions in (III), although a slightly different spatial arrangement of the –CH2COO groups in relation to (III) is observed, whereas the H2Y2− anions in (I) adopt a distinctly different geometry. The preferred synclinal conformation of the –NCH2CH2N– moiety was found for all edta anions. In all three crystals, the anions and water mol­ecules are arranged in three-dimensional networks linked via O—H...O and C—H...O [and N—H...O in (I) and (II)] hydrogen bonds. K...O inter­actions also contribute to the three-dimensional polymeric architecture of the salts.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827011102244X/gd3395sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827011102244X/gd3395Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827011102244X/gd3395IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827011102244X/gd3395IIIsup4.hkl
Contains datablock III

CCDC references: 838146; 838147; 838148

Comment top

In the literature the most common form of edta [edta = ethylenediamine tetraacetic acid = 2,2',2",2"'-(ethane-1,2-diyldinitrilo)tetraacetic acid] in crystals is the tetra-anion Y4- (Y4- = [C10H12N2O8]4-). Another anionic form of edta is H2Y2- reported in salts of Na, K and Rb (Font-Bardia et al., 1993; Cotrait, 1969, 1970). Therefore, it seemed an attractive idea to obtain and structurally characterize crystalline potassium edta salts, epecially the tripotassium edta salt, (II), which is an example of a new coordination mode of this edta anion to a metal centre, tetrapotassium edta (III) - analogous to the Na4Y.5H2O salt (Font-Bardia et al., 1993). Potassium edta salts are used as anticoagulants for haematologic examinations of human and animal blood (Balakrishnan et al., 2006; Hekimsoy et al., 2004; Vatn et al., 2000; Olsen et al., 2001; Sanchez-Migallon Guzman et al., 2008). In addition, potassium edta salts have applications as chelating agents in cosmetics (Lanigan & Yamarik, 2002).

The strategies for preparing the potassium edta salts reported here, (I), (II) and (III), result from the occurrence of acid–base equilibria in aqueous solution between edta anions in different ionization states. The acidity of solutions plays a crucial role in controlling the particular forms of the edta anions, H3Y-, H2Y2-, HY3- and Y4- (Harris, 1999), as follows. The H3Y- anion is dominant in aqueous solutions at pH values around 2.5 and its conjugate acid – the H4Y zwitterion – at pH ~1.8. In the pH range of 2.7–6.1 [pKa{H2Y2-} = 2.69; pKa{HY3-} = 6.13] the equilibrium shifts towards the H2Y2- ion. The HY3- ion dominates in aqueous solutions in the pH range 6.1–10.4 (pKa{Y4-} = 10.37) whereas the Y4- anion dominates at pH above 10.4.

In contrast to the coordination modes in the salts (I), (II), (III), in the majority of compounds that contain edta anions and potassium cations the usual coordination of edta to K+ is via one carboxylate group in a monodentate or bidentate way. The literature provides many examples of such compounds, among which the most typical include: the acetate O atom acting as a linker between two metal atoms, e.g. between two K cations, as in K4[Co(H2O)6][Co(C10H12N2O8)]2[Mo8O26].6H2O (Lee et al., 2002); or between one K cation and another metal such as Fe, Sb, Mo (Solans et al., 1984; Ilyukhin & Petrosyants, 2001; Kneale & Geddes, 1975); or between one K cation and a lanthanoid cation, as in K[Ho(C10H12N2O8)(H2O)3].2H2O (Sakagami et al., 1999). Furthermore, the carboxylate O atom of edta can bridge three metal atoms, shown in the following examples: three K cations, as in K2[Ga(C10H12O8N2)(OH).6H2O (Ilyukhin & Petrosyants, 2001); two K cations and another cation such as a lanthanoid, as in K[Yb(C10H12N2O8)(H2O).5H2O (Sakagami et al., 1997); or one K cation and two transition metal centres, as in K[Mo2(C12H15N2O10)(OH)2 (Kneale & Geddes, 1975).

The present paper reports the structures of three potassium edta salts, K2[C10H14N2O8].2H2O, (I), K3[C10H13N2O8]. 2H2O, (II), and K4[C10H12N2O8].3.93H2O, (III) (Fig. 1). The geometries of the anions in (I)–(III) are described and compared with those in the dirubidium, di- and tetrasodium edta salts. In addition, the coordination modes of the edta anions to K+ ions and the arrangements in the crystal lattices are discussed.

Compound (II) contains one HY3- anion, three K+ ions and two water molecules of hydration, where the anion is composed of four acetate CH2COO- arms linked to a NCH2CH2NH+ fragment which adopts a gauche conformation; a novel coordination mode is observed. The HY3- ion coordinates to the cation (K1) via one deprotonated N atom (N1) and three acetate O atoms (O11, O21, O32), while the second N atom (N2) is involved in the intramolecular bifurcated N—H···O and N—H···N hydrogen bonds (Figs. 1b, 2a, Tables 2 and 6). Furthermore, in the coordination polyhedron of K1 two symmetry-related anions are also present and bonded in a bidentate mode (via O32vi and O42vi) (all symmetry codes are given in Table 6) forming an eight-membered ring, and in a monodentate (via O41vii) fashion (Fig. 2b, Table 6). The (OOCCH2)2NCH2CH2NH+(CH2COO)2 unit observed here can also be distinguished in the structure of a fully esterified form of edta acid with the proton added to one of the nitrogen atoms: (C14H25N2O8)2[W6Cl14] (Adams et al., 1993), where intramolecular N—H···N and N—H···O hydrogen bonds occur, but the coordination to the metal atom is not observed. In the case of the atom K2, the six-coordination sphere is formed by three HY3- anions and one water molecule, O2W (Fig. 2c, Table 6). The anion coordinates to K2 in a bidentate manner via O31 and O32, and is involved in coordination to K2viii in a monodentate way via O22 as well as interacting with K2vi via two oxygen O21 and O42 (making an 11-membered chelate ring) (Fig. 2d, Table 6). The K3 is surrounded by five edta anions coordinated via O atoms in a monodentate way and by two water molecules.

In the crystal structure of (II), O—H···O hydrogen bonds are present, where water molecules act as donors and carboxylate O atoms as acceptors (Table 2). Weak hydrogen bonds of the C—H···O type, where the acetate O atoms participate, also contribute to the structure. The HY3- anions, water molecules and K cations are arranged in layers parallel to (100) (Fig. 3a). The interaction between acetate O atoms, water molecules and K cations results in a three-dimensional network.

The asymmetric unit of compound (III) comprises two Y4- anions [denoted (IIIa) and (IIIb)], eight potassium cations and water molecules (Fig. 1c). The overall conformations of the (IIIa) and (IIIb) anions are similar although the spatial arrangements of their acetate arms are not quite the same (Fig. 4). The overall conformations of anions in (III) are comparable with those of the corresponding Y4- anion in Na4[edta].5H2O (Font-Bardia et al., 1993) and the HY3- ion in (II), although the spatial location of analogous acetate arms are not exactly the same. Both edta anions in compound (IIIa) chelate K+ via six ligating atoms (two N and four carboxylate O atoms) which results in the formation of five-membered rings at both K1 and K2, similar to the complexes of Y4- ions with many metals: for example NH4[Co(C10H12N2O8)].2H2O (Weakliem & Hoard, 1959), [(H2O)4Mn(C10H12N2O8)Cu]n.2nH2O (Solans et al., 1983), [Ti(C10H12N2O8)].2H2O (Fackler et al., 1985).

Each of four chelate rings formed by the acetate arms with K1 adopt the δ conformation (δδδδ) (Corey & Bailar, 1959; Beattie, 1971; Lee, 1972). In the case of coordination at K2 (coordination number = 8) (Fig. 5b, Table 6) the {K2,O11B,C11B,C12B,N1B} ring adopts the λ conformation, the {K2,O21B,C21B,C22B,N1B} and {K2,O32B,C31B,C32B,N2B} rings are in δ conformation, whereas the {K2,O42B,C41B,C42B,N2B} ring adopts a near-envelope conformation; four atoms, O42B, C41B, C42B, N2B, are nearly in the same plane (Table 5).

The eight-coordination sphere of K1 is made up of two type-(IIIa) anions and one water molecule (Fig. 5a, Table 6). The (IIIa) anion chelates K1 forming a cage structure and coordinates to K1xii in a monodentate way via O11A. The seven-coordinate sphere of K3 is built up from three Y4- anions and two water molecules (Fig. 5c, Table 6). The (IIIa) anion is bonded to K3xvi through a bidentate –CH2COO- group and coordinates to K3xv in a monodentate manner via O41A. The (IIIb) anion coordinates to K3 in a bidentate manner through O22B and O42B atoms of –CH2COO- groups bonded to two different N atoms which results in the formation of an 11-membered ring, as in (II) and in Rb2[H2edta].2H2O (Cotrait, 1970). Such an 11-membered ring can be distinguished at K5 as well (Table 6). The environment of K4 is made up of three Y4- ions and two water molecules (Table 6). The coordination spheres of the K6–K8 cations are built by anions linked to K+ ions through monodentate carboxylate groups and water molecules.

The shortest K···K distances are in the range 3.6949 (9)–4.4803 (15) Å, where adjacent K+ cations are bridged by edta anions via O atoms giving a three-dimensional polymeric structure. Compound (III) also contains numerous O—H···O hydrogen bonds in which the O atoms of anions and water molecules are involved (Table 3). Adjacent anions and water molecules form layers while K cations act as linkers between such layers. The Y4- anions, K+ cations and water molecules are arranged in ribbons extending along the [001] direction (Fig. 3b). Weak C—H···O hydrogen bonds are also observed between neighbouring anions and between anions and water molecules.

The dipotassium edta salt (I) was initially studied by Cotrait (1969) who used photographic methods at room temperature. This salt contains an H2Y2- anion, two potassium cations and two water molecules. In the H2Y2- anion the NH+CH2CH2NH+ fragment adopts a gauche conformation. Atoms N1 and N2 are both involved in the intramolecular hydrogen bonds, bi- and trifurcated, respectively (Table 1, Fig. 1a). This anion is also found in Rb2[H2edta].2H2O (Cotrait, 1970) and Na2[H2edta].2H2O (Font-Bardia et al., 1993) salts. The H2Y2- ion in (I) has a different overall conformation in relation to the relevant anions in the dirubidium and disodium edta salts (Cotrait, 1970; Font-Bardia et al., 1993) in which NCH2CH2N units adopt an antiperiplanar conformation and the acetate arms have a different geometry. However, the anion in (I) has similar overall geometry to the Y4- ligand in complexes such as Li[FeY].3H2O, NH4[CoY].2H2O, [MgY(H2O)][Mg(H2O)6].2H2O, Ca2Y(H2O)3].4H2O (Lind et al., 1964; Weakliem & Hoard, 1959; Pozhidaev et al., 1973; Barnett & Uchtman, 1979). Such similarity may result from the occurrence of intramolecular hydrogen bonds of the N—H···O type in (I) (mentioned above).

In the coordination polyhedron of atom K1 in (I), the edta anion acts as a tridentate ligand (Fig. 6). The coordination sphere of K1 is made up of four different edta anions and one water molecule, O1W. The coordination is via two O atoms (O11 and O21) derived from two different CH2COO- groups joined to the N1 atom and via O32 atom. The symmetry-related anions which occupy positions in the coordination sphere of the K1 cation are bonded to K1 in a monodentate fashion via O12i, O22ii, O31iii atoms (Table 6, Fig. 6). Similarly to K1 the coordination sphere of the K2 cation is made up of four H2Y2- anions and one water molecule (O2W) as well. However, two anions chelate K2 by bidentate carboxylate groups (O21, O22 and O41v, O42v) while the other two are bonded in a monodentate manner through O11ii and O31iv (Table 6).

As with compounds (II) and (III), compound (I) has a three-dimensional polymeric structure in which potassium cations are bridged by acetate O atoms. Additionally the K···O interactions result in tetrameric, centrosymmetric motifs where the shortest K···K distances are in the range 3.6987 (10)–4.6515 (11) Å (Fig. 6, Table 6).

The crystal structure of (I) is stabilized by a three-dimensional network of intermolecular hydrogen bonds of O—H···O and C—H···O types (Table 1). As in (II) and (III), a layered architecture built of anions, water molecules and K+ cations is observed.

Consideration of the geometries of the anions in (I)–(III) leads to the following conclusions. The preferred conformation of the NCH2CH2N unit of anions in (I)–(III) is synclinal. The overall geometry of the edta anions in potassium salts can be classified into two basic groups. The first one is formed by anions in (II) and (III), the overall conformations of which are very similar with small differences in the spatial arrangement of the corresponding CH2COO- groups (Fig. 7), whereas a distinctly different conformation is adopted by the anion in (I) (Fig. 7), classified into the second group of edta geometry. The overall conformation of H2Y2- in (I) is similar to that in the complexes noted above, in which the acetate arms of Y4- are involved in five-membered rings with a metal atom. The values of C—Nprotonated bond lengths in (I) are similar to values in (II) and the relevant values of C—Nunprotonated bond lengths in (II) and (III) are also similar (Table 5).

Related literature top

For related literature, see: Lis, 1975

Experimental top

The three salts were obtained by reactions of free edta with potassium hydroxide and crystallized from water solutions under a gentle stream of nitrogen. All operations were performed at room temperature. All compounds used for syntheses were obtained commercially and not further purified. The strategies for preparing salts (I)–(III) are based on slow crystallization from water solutions prepared by mixing edta acid and potassium hydroxide in the different molar ratios. Contrary to our procedures of preparation, both the corresponding di- and tetrasodium edta salts were obtained in the reactions between edta acid and disodium carbonate in aqueous solutions at controlled pH (Font-Bardia et al., 1993).

For the synthesis of (I), free edta (0.16 g, 0.55 mmol) and potassium hydroxide (0.064 g, 1.1 mmol) were mixed at the molar ratio of 1:2. A small amount of distilled water (about 5 ml) was added, and the mixture was stirred for about 15 min. The solution (pH value ca. 4–4.5) was filtered to remove insoluble crystals of edta acid, and the filtered solution was allowed to evaporate. The crystals have the same cell dimensions as those reported by Cotrait (1969).

Compound (I) was also obtained as a result of mixing edta with potassium hydroxide at the molar ratio of 1:3. The KOH (2.318 g, 0.04139 mol) was dissolved in distilled water (about 7 ml) and the edta (4.031 g, 0.01379 mol) added to this solution. This mixture was stirred at room temperature until a clear solution was obtained. The crystallization was carried out by evaporation as in the case of the previous procedure. The crystals in the form of long plates were obtained from solution with a pH of about 6.5–7.

For the synthesis of (II), potassium hydroxide (0.3832 g, 6.843 mmol) was dissolved in a minimal amount of distilled water. The edta (0.5003 g, 1.712 mmol) was added to give a molar ratio of 1:4 with continuous stirring to give a clear solution with a pH of about 10.5. The solution was allowed to evaporate to give colourless crystals in the form of plates during 1 d.

The crystalline salt (III) was obtained as a result of the reaction of edta with potassium hydroxide mixed at the molar ratio of 1:5. Preparative procedures were performed as in the case of salt (II). KOH (1.85 g, 0.0334 mol) was dissolved in a minimal amount of distilled water. The edta (1.928 g, 6.597 mmol) was added (the pH was about 13). The solution was evaporated under a nitrogen stream. The crystals appeared in the form of blocks.

Refinement top

In the case of the H2Y2-, (I), and HY3-, (II), anions the H atoms of N—H groups were localized in the difference Fourier maps but introduced in positions calculated from geometry, with N—H distances of 0.93 Å and Uiso(H) = 1.2Ueq(N). The methylene H atoms in (I)–(III) were treated as riding atoms in geometrically idealized positions with C—H distances of 0.99 Å and Uiso(H) = 1.2Ueq(C).

In (III) partial disorder is present in the case of the acetate group (O31B, O32B, C31B), certain water molecules (O7W, O8W, O9W) and the K7 cation. Disorder of the carboxylate oxygen atoms was identified from the difference Fourier map peaks close to O31B and O32B with distances of approximately 0.52 and 0.42 Å, respectively. Because of the fact that both O atoms and the C31B atom belong to the same carboxylate group, the disorder was modelled for each of them between two positions, with occupancies of 0.793 (11) and 0.207 (11); the minor-occupancy components were refined isotropically.

Additionally in the difference Fourier map two peaks were localized and interpreted as disorder of the oxygen atoms of water molecules. Peaks were at distances of 0.61 and 0.74 Å from O7W and O9W atoms, respectively, and were introduced as O71W and O91W. The O7W atom was modelled as disordered in two positions with occupancies of 0.892 (10) and 0.108 (10). The sum of occupation factors for O9W and O91W atoms was smaller than unity. Therefore the disorder was modelled with occupancies of 0.282 (14) and 0.298 (14) for O9W and O91W, respectively. The K7 cation was also disordered in two positions with occupancies of 0.947 (8) and 0.053 (8). The O8W atom was located in the difference Fourier map and refined with an occupancy of 0.267 (2).

The H atoms which belong to water molecules (O7W, O8W and O9W) were localized in the difference Fourier map and introduced with distance constraints for the O—H and H—H distances of 0.84 (2) and 1.41 (2) Å, respectively. In the last stages of refinement these H atoms were permitted to ride at the positions previously established, with Uiso(H) = 1.5Ueq(O), giving O—H distances in the range 0.83–0.87 Å.

Computing details top

For all compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric part of the unit cell in crystal of (a) K2[H2Y].2H2O, (I), (b) K3[HY].2H2O, (II), and (c) K4[Y].3.92H2O, (III). For (I) and (II), the N—H···O and for (I) N—H···N intramolecular hydrogen bonds are shown by dashed lines. Displacement ellipsoids are shown at the 30% probability level. The disordered atoms (O31C, O32C, O7W and K71) in (III) have been removed for clarity.
[Figure 2] Fig. 2. (a) The new coordination mode of the HY3- anion to K+ in (II); only ligating O atoms from symmetry-related anions in the coordination sphere of K1 are shown for clarity. (b) The coordination environment of K1. (c) The coordination sphere of the K2 cation in (II). (d) The environment of the HY3- anion. [Symmetry codes: (vi) -x + 1, -y + 2, -z + 1; (vii) x - 1, y, z; (viii) x, y, z + 1; (x) x, y + 1, z; (xi) -x, -y + 2, -z.]
[Figure 3] Fig. 3. Packing diagrams: (a) for (II) showing layers parallel to the (010) plane; (b) for (III) showing ribbons built up from the anions, water molecules and K+ cations extending along the [001] direction. Water molecules in cavities (O9W and O91W) and disordered atoms (O31C, O32C, O7W and K71) in (III) have been omitted for clarity.
[Figure 4] Fig. 4. The molecular structure of two crystallographically independent Y4- anions in (III) (left). A comparison of the geometry of respective anions (right). The reference points are distinguished by atoms N1, C1, C2 and N2. Disordered atoms O31C and O32C have been removed for clarity.
[Figure 5] Fig. 5. The coordination environment of (a) the K1, (b) the K2 and (c) the K3 cation in (III). Disordered atoms O31C and O32C in (III) have been omitted for clarity. [Symmetry codes: (xii) x + 1/2, -y + 1/2, -z + 1; (xiii) -x + 1/2, y + 1/2, -z + 3/2; (xv) -x + 1, y, -z + 3/2; (xvi) x, -y + 1, z + 1/2.]
[Figure 6] Fig. 6. The coordination sphere of K1 in (I) (top). The tetrameric structure built by four adjacent K+ cations in (I) (bottom). [Symmetry codes: (i) x + 1/2, -y + 3/2, z + 1/2; (ii) -x + 1, -y + 1, -z + 1; (iii) x + 1/2, -y + 3/2, z - 1/2.]
[Figure 7] Fig. 7. The molecular structures for the H2Y2- anion in (I) and the HY3- anion in (II) (top). A comparison of the geometry of respective anions (bottom). The reference points are distinguished by atoms N1, C1, C2 and N2.
(I) dipotassium 2-({2-[bis(carboxylatomethyl)azaniumyl]ethyl}(carboxylatomethyl)azaniumyl)acetate dihydrate top
Crystal data top
2K+·C10H14N2O82·2H2OF(000) = 840
Mr = 404.46Dx = 1.695 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 16880 reflections
a = 8.869 (3) Åθ = 4.3–38.6°
b = 18.653 (5) ŵ = 0.65 mm1
c = 9.613 (3) ÅT = 110 K
β = 94.56 (3)°Block, colourless
V = 1585.3 (8) Å30.31 × 0.12 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur PX KM-4-CCD
diffractometer
8782 independent reflections
Radiation source: fine-focus sealed tube6388 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 38.6°, θmin = 4.3°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
h = 1415
Tmin = 0.879, Tmax = 0.959k = 3232
30091 measured reflectionsl = 1216
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.032P)2]
where P = (Fo2 + 2Fc2)/3
8782 reflections(Δ/σ)max = 0.002
217 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
2K+·C10H14N2O82·2H2OV = 1585.3 (8) Å3
Mr = 404.46Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.869 (3) ŵ = 0.65 mm1
b = 18.653 (5) ÅT = 110 K
c = 9.613 (3) Å0.31 × 0.12 × 0.08 mm
β = 94.56 (3)°
Data collection top
Oxford Diffraction Xcalibur PX KM-4-CCD
diffractometer
8782 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
6388 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 0.959Rint = 0.034
30091 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.02Δρmax = 0.55 e Å3
8782 reflectionsΔρmin = 0.43 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.57928 (2)0.655529 (9)0.589830 (18)0.01163 (4)
K20.44431 (2)0.432278 (11)0.75620 (2)0.01597 (4)
O110.39078 (7)0.67095 (3)0.36045 (6)0.01317 (11)
O120.27573 (7)0.73966 (3)0.19097 (6)0.01392 (11)
O210.32992 (7)0.55632 (3)0.62596 (6)0.01241 (11)
O220.25824 (8)0.46147 (3)0.49239 (7)0.01610 (12)
O310.25343 (7)0.81123 (3)0.82693 (6)0.01322 (11)
O320.32438 (7)0.71948 (3)0.69470 (6)0.01323 (11)
O410.25913 (8)0.53198 (4)1.13856 (6)0.01757 (13)
O420.39042 (8)0.58474 (5)0.97715 (7)0.02619 (17)
N10.13838 (7)0.64856 (3)0.48919 (7)0.00789 (11)
H10.22860.65620.54330.009*
N20.14064 (8)0.62336 (3)0.81555 (7)0.00866 (11)
H20.22950.61270.77460.010*
C10.01165 (9)0.66241 (4)0.58071 (8)0.00948 (13)
H1A0.08570.65680.52380.011*
H1B0.01840.71280.61320.011*
C20.01047 (9)0.61382 (4)0.70708 (8)0.00990 (13)
H2A0.08480.62200.75180.012*
H2B0.00980.56340.67470.012*
C110.27998 (9)0.70379 (4)0.30110 (8)0.00979 (13)
C120.13176 (9)0.70201 (4)0.37285 (8)0.01051 (13)
H12A0.11150.75020.41030.013*
H12B0.04740.68960.30340.013*
C210.25256 (9)0.52601 (4)0.52646 (8)0.01022 (13)
C220.14114 (9)0.57280 (4)0.43680 (8)0.00986 (13)
H22A0.17000.57280.33940.012*
H22B0.03840.55200.43690.012*
C310.25209 (9)0.74667 (4)0.78901 (8)0.01004 (13)
C320.15280 (9)0.69829 (4)0.87130 (8)0.01054 (13)
H32A0.19490.69670.96980.013*
H32B0.05020.71940.86960.013*
C410.27168 (10)0.56253 (5)1.02329 (8)0.01405 (15)
C420.12428 (9)0.57083 (4)0.93155 (8)0.01151 (14)
H42A0.09370.52370.89140.014*
H42B0.04360.58740.98940.014*
O1W0.65494 (8)0.60818 (4)0.85551 (7)0.01817 (13)
H11W0.68290.56470.84400.027*
H12W0.56530.60510.88240.027*
O2W0.17125 (8)0.40097 (4)0.88160 (8)0.02328 (15)
H22W0.18130.36750.82140.035*
H21W0.21390.38410.95800.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.01054 (7)0.01151 (7)0.01245 (7)0.00030 (6)0.00140 (5)0.00081 (6)
K20.01416 (8)0.01864 (9)0.01488 (8)0.00442 (6)0.00024 (6)0.00273 (7)
O110.0086 (2)0.0168 (3)0.0139 (3)0.0011 (2)0.0002 (2)0.0026 (2)
O120.0147 (3)0.0154 (3)0.0119 (3)0.0000 (2)0.0028 (2)0.0048 (2)
O210.0126 (3)0.0112 (3)0.0130 (3)0.0013 (2)0.0013 (2)0.0014 (2)
O220.0209 (3)0.0084 (3)0.0185 (3)0.0024 (2)0.0009 (2)0.0019 (2)
O310.0141 (3)0.0086 (2)0.0167 (3)0.0009 (2)0.0007 (2)0.0018 (2)
O320.0127 (3)0.0135 (3)0.0138 (3)0.0025 (2)0.0029 (2)0.0032 (2)
O410.0248 (3)0.0180 (3)0.0099 (2)0.0059 (3)0.0015 (2)0.0038 (2)
O420.0125 (3)0.0469 (5)0.0193 (3)0.0052 (3)0.0028 (3)0.0119 (3)
N10.0075 (3)0.0080 (3)0.0082 (2)0.0004 (2)0.0010 (2)0.0007 (2)
N20.0093 (3)0.0083 (3)0.0084 (3)0.0000 (2)0.0008 (2)0.0003 (2)
C10.0079 (3)0.0117 (3)0.0090 (3)0.0014 (2)0.0011 (2)0.0007 (2)
C20.0091 (3)0.0121 (3)0.0085 (3)0.0020 (2)0.0004 (3)0.0002 (2)
C110.0096 (3)0.0096 (3)0.0101 (3)0.0014 (2)0.0009 (3)0.0008 (2)
C120.0102 (3)0.0110 (3)0.0105 (3)0.0015 (3)0.0020 (3)0.0039 (3)
C210.0103 (3)0.0095 (3)0.0111 (3)0.0003 (2)0.0029 (3)0.0011 (3)
C220.0114 (3)0.0083 (3)0.0098 (3)0.0003 (2)0.0006 (3)0.0008 (2)
C310.0092 (3)0.0101 (3)0.0103 (3)0.0007 (2)0.0024 (3)0.0001 (3)
C320.0130 (3)0.0082 (3)0.0104 (3)0.0002 (3)0.0010 (3)0.0014 (2)
C410.0159 (4)0.0157 (4)0.0106 (3)0.0059 (3)0.0016 (3)0.0012 (3)
C420.0139 (3)0.0111 (3)0.0096 (3)0.0003 (3)0.0015 (3)0.0033 (3)
O1W0.0181 (3)0.0159 (3)0.0211 (3)0.0013 (2)0.0053 (3)0.0038 (2)
O2W0.0237 (4)0.0212 (3)0.0250 (3)0.0040 (3)0.0017 (3)0.0079 (3)
Geometric parameters (Å, º) top
K1—O112.6746 (11)N1—C221.5010 (11)
K1—O1W2.7350 (11)N1—C11.5038 (11)
K1—O12i2.7447 (9)N1—H10.9300
K1—O22ii2.7650 (9)N2—C321.4978 (11)
K1—O322.8129 (10)N2—C421.5001 (10)
K1—O212.9255 (9)N2—C21.5035 (11)
K1—O31iii3.1269 (12)N2—H20.9300
K1—K2ii3.6987 (10)C1—C21.5163 (11)
K1—K24.6515 (11)C1—H1A0.9900
K2—O11ii2.7138 (9)C1—H1B0.9900
K2—O212.7836 (9)C2—H2A0.9900
K2—O41iv2.8218 (12)C2—H2B0.9900
K2—O2W2.8502 (12)C11—C121.5326 (12)
K2—O42iv2.8675 (12)C12—H12A0.9900
K2—O31v2.9309 (9)C12—H12B0.9900
K2—O222.9641 (12)C21—C221.5316 (12)
O11—C111.2560 (10)C22—H22A0.9900
O12—C111.2505 (10)C22—H22B0.9900
O21—C211.2652 (10)C31—C321.5252 (12)
O22—C211.2498 (10)C32—H32A0.9900
O31—C311.2580 (10)C32—H32B0.9900
O32—C311.2579 (10)C41—C421.5256 (13)
O41—C411.2588 (11)C42—H42A0.9900
O42—C411.2457 (12)C42—H42B0.9900
N1—C121.4959 (10)
O11—K1—O1W153.56 (2)C11—O11—K1147.37 (6)
O11—K1—O12i123.57 (3)C11—O11—K2ii125.89 (5)
O1W—K1—O12i78.32 (3)K1—O11—K2ii86.69 (3)
O11—K1—O22ii98.92 (3)C11—O12—K1vi131.04 (6)
O1W—K1—O22ii85.26 (3)C21—O21—K297.18 (5)
O12i—K1—O22ii109.44 (3)C21—O21—K1124.23 (5)
O11—K1—O3277.43 (3)K2—O21—K1109.10 (3)
O1W—K1—O3286.95 (3)C21—O22—K1ii150.23 (6)
O12i—K1—O3294.39 (3)C21—O22—K289.08 (5)
O22ii—K1—O32152.77 (2)K1ii—O22—K280.34 (2)
O11—K1—O2174.75 (3)C31—O31—K2vii131.82 (5)
O1W—K1—O2179.43 (3)C31—O31—K1viii115.48 (5)
O12i—K1—O21150.82 (2)K2vii—O31—K1viii75.18 (2)
O22ii—K1—O2187.18 (3)C31—O32—K1154.08 (5)
O32—K1—O2165.73 (3)C41—O41—K2iv93.64 (6)
O11—K1—O31iii68.22 (3)C41—O42—K2iv91.80 (6)
O1W—K1—O31iii135.93 (3)C12—N1—C22112.17 (6)
O12i—K1—O31iii78.73 (3)C12—N1—C1109.65 (6)
O22ii—K1—O31iii67.87 (2)C22—N1—C1113.01 (6)
O32—K1—O31iii131.93 (2)C32—N2—C42110.61 (6)
O21—K1—O31iii130.39 (2)C32—N2—C2112.83 (6)
O11ii—K2—O21126.37 (3)C42—N2—C2108.90 (6)
O11ii—K2—O41iv78.36 (3)N1—C1—C2114.78 (7)
O21—K2—O41iv105.12 (3)N2—C2—C1115.54 (7)
O11ii—K2—O2W122.23 (3)O12—C11—O11127.98 (8)
O21—K2—O2W93.95 (3)O12—C11—C12115.05 (7)
O41iv—K2—O2W134.10 (3)O11—C11—C12116.95 (7)
O11ii—K2—O42iv92.11 (3)N1—C12—C11111.52 (7)
O21—K2—O42iv129.51 (2)O22—C21—O21126.72 (8)
O41iv—K2—O42iv46.37 (3)O22—C21—C22116.05 (7)
O2W—K2—O42iv89.45 (3)O21—C21—C22117.24 (7)
O11ii—K2—O31v70.80 (3)N1—C22—C21112.00 (6)
O21—K2—O31v109.20 (3)O32—C31—O31126.95 (8)
O41iv—K2—O31v143.16 (2)O32—C31—C32118.93 (7)
O2W—K2—O31v56.45 (2)O31—C31—C32114.11 (7)
O42iv—K2—O31v114.25 (3)N2—C32—C31113.24 (7)
O11ii—K2—O2293.35 (3)O42—C41—O41126.90 (9)
O21—K2—O2245.913 (19)O42—C41—C42118.05 (8)
O41iv—K2—O22134.67 (3)O41—C41—C42115.03 (8)
O2W—K2—O2288.02 (3)N2—C42—C41111.53 (7)
O42iv—K2—O22174.52 (2)H11W—O1W—H12W105.1
O31v—K2—O2268.15 (3)H22W—O2W—H21W104.3
C12—N1—C1—C2177.17 (6)O22—C21—C22—N1177.84 (7)
C22—N1—C1—C256.90 (9)O21—C21—C22—N12.74 (10)
C32—N2—C2—C157.78 (9)C42—N2—C32—C31147.71 (7)
C42—N2—C2—C1178.99 (6)C2—N2—C32—C3190.02 (8)
N1—C1—C2—N266.78 (9)O32—C31—C32—N26.78 (10)
C22—N1—C12—C1169.17 (8)O31—C31—C32—N2174.33 (7)
C1—N1—C12—C11164.42 (6)C32—N2—C42—C4171.56 (8)
O12—C11—C12—N1170.42 (7)C2—N2—C42—C41163.89 (6)
O11—C11—C12—N111.14 (10)O42—C41—C42—N216.05 (11)
C12—N1—C22—C21138.63 (7)O41—C41—C42—N2165.31 (7)
C1—N1—C22—C2196.80 (8)
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1/2, y+3/2, z1/2; (iv) x+1, y+1, z+2; (v) x+1/2, y1/2, z+3/2; (vi) x1/2, y+3/2, z1/2; (vii) x+1/2, y+1/2, z+3/2; (viii) x1/2, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O320.932.012.8029 (12)142
N1—H1···O210.932.192.6869 (11)112
N2—H2···O210.932.042.8617 (12)147
N2—H2···O320.932.322.7425 (11)107
N2—H2···O420.932.382.7004 (13)100
O1W—H12W···O420.861.902.7384 (13)166
O1W—H11W···O41iv0.861.882.7226 (12)167
O2W—H21W···O1Wiv0.862.062.8588 (14)154
O2W—H22W···O31v0.861.902.7350 (11)164
C1—H1A···O31vi0.992.353.2480 (15)150
C2—H2A···O1Wix0.992.603.5644 (16)165
C1—H1B···O12viii0.992.503.0316 (12)114
C22—H22A···O41x0.992.283.2205 (14)159
C32—H32A···O12xi0.992.333.2703 (14)158
C32—H32B···O11viii0.992.483.3647 (12)148
C42—H42A···O2W0.992.393.2365 (14)143
C42—H42B···O2Wxii0.992.363.3349 (15)166
Symmetry codes: (iv) x+1, y+1, z+2; (v) x+1/2, y1/2, z+3/2; (vi) x1/2, y+3/2, z1/2; (viii) x1/2, y+3/2, z+1/2; (ix) x1, y, z; (x) x, y, z1; (xi) x, y, z+1; (xii) x, y+1, z+2.
(II) tripotassium 2-({2-[bis(carboxylatomethyl)amino]ethyl}(carboxylatomethyl)azaniumyl)acetate dihydrate top
Crystal data top
3K+·C10H13N2O83·2H2OZ = 2
Mr = 442.56F(000) = 456
Triclinic, P1Dx = 1.749 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.074 (3) ÅCell parameters from 15331 reflections
b = 9.987 (3) Åθ = 4.6–38.5°
c = 11.045 (3) ŵ = 0.87 mm1
α = 101.68 (3)°T = 110 K
β = 102.19 (3)°Block, colourless
γ = 96.85 (3)°0.27 × 0.19 × 0.19 mm
V = 840.2 (5) Å3
Data collection top
Oxford Diffraction Xcalibur PX KM-4-CCD
diffractometer
9029 independent reflections
Radiation source: fine-focus sealed tube7083 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 38.5°, θmin = 4.6°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
h = 1214
Tmin = 0.808, Tmax = 0.886k = 1717
24301 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.036P)2]
where P = (Fo2 + 2Fc2)/3
9029 reflections(Δ/σ)max = 0.002
226 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
3K+·C10H13N2O83·2H2Oγ = 96.85 (3)°
Mr = 442.56V = 840.2 (5) Å3
Triclinic, P1Z = 2
a = 8.074 (3) ÅMo Kα radiation
b = 9.987 (3) ŵ = 0.87 mm1
c = 11.045 (3) ÅT = 110 K
α = 101.68 (3)°0.27 × 0.19 × 0.19 mm
β = 102.19 (3)°
Data collection top
Oxford Diffraction Xcalibur PX KM-4-CCD
diffractometer
9029 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
7083 reflections with I > 2σ(I)
Tmin = 0.808, Tmax = 0.886Rint = 0.022
24301 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.01Δρmax = 0.44 e Å3
9029 reflectionsΔρmin = 0.34 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.29419 (2)0.897638 (16)0.399042 (15)0.01204 (3)
K20.44262 (2)0.858824 (16)0.776214 (15)0.01304 (3)
K30.04772 (2)1.175392 (17)0.197522 (16)0.01501 (4)
O110.19850 (8)0.62235 (6)0.37444 (5)0.01568 (11)
O120.00447 (8)0.45612 (6)0.23735 (6)0.01919 (12)
O210.24837 (8)0.93201 (6)0.16198 (5)0.01876 (12)
O220.27947 (7)0.91022 (6)0.03641 (5)0.01477 (10)
O310.63291 (7)0.68285 (6)0.67029 (5)0.01262 (10)
O320.56755 (7)0.83383 (5)0.55001 (5)0.01175 (9)
O410.98013 (7)0.97410 (6)0.32934 (6)0.01934 (12)
O420.69826 (7)0.95450 (6)0.32534 (6)0.01763 (11)
N10.34185 (8)0.66795 (6)0.16978 (6)0.01018 (10)
N20.67292 (8)0.69855 (6)0.35625 (6)0.00924 (10)
H20.59620.76100.35420.011*
C10.44530 (9)0.55601 (7)0.17190 (7)0.01126 (12)
H1A0.42540.49860.08420.014*
H1B0.40620.49570.22490.014*
C20.63588 (9)0.60959 (8)0.22374 (7)0.01151 (12)
H2A0.69840.53020.22430.014*
H2B0.67750.66430.16750.014*
C110.11830 (9)0.55599 (8)0.26489 (7)0.01243 (12)
C120.16162 (9)0.60412 (8)0.15001 (7)0.01358 (13)
H12A0.13360.52320.07620.016*
H12B0.08720.67190.12800.016*
C210.28766 (9)0.86909 (8)0.06529 (7)0.01100 (12)
C220.35924 (10)0.73331 (8)0.06427 (7)0.01230 (12)
H22A0.30040.66600.01680.015*
H22B0.48280.75190.06520.015*
C310.61234 (9)0.72172 (7)0.56826 (6)0.00932 (11)
C320.64230 (10)0.62151 (7)0.45385 (7)0.01175 (12)
H32A0.74300.57770.48140.014*
H32B0.54060.54740.41690.014*
C410.84165 (10)0.91617 (8)0.34322 (7)0.01214 (12)
C420.84879 (9)0.78345 (7)0.39235 (7)0.01150 (12)
H42A0.92840.72940.35500.014*
H42B0.89210.80770.48620.014*
O2W0.15351 (9)0.68563 (6)0.62234 (6)0.02288 (13)
H21W0.10250.62150.64900.034*
H22W0.14840.65230.54350.034*
O3W0.15902 (9)1.16026 (7)0.02942 (6)0.02384 (13)
H31W0.20251.08540.03170.036*
H32W0.07741.14270.09730.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.01345 (7)0.00980 (6)0.01197 (6)0.00261 (5)0.00048 (5)0.00286 (5)
K20.01559 (7)0.01287 (7)0.01388 (7)0.00500 (5)0.00732 (5)0.00498 (5)
K30.01370 (7)0.01448 (7)0.01500 (7)0.00094 (5)0.00033 (5)0.00450 (5)
O110.0208 (3)0.0138 (2)0.0135 (2)0.0025 (2)0.0070 (2)0.00308 (19)
O120.0152 (3)0.0175 (3)0.0248 (3)0.0023 (2)0.0067 (2)0.0058 (2)
O210.0285 (3)0.0206 (3)0.0109 (2)0.0130 (2)0.0072 (2)0.0044 (2)
O220.0179 (3)0.0175 (3)0.0127 (2)0.0062 (2)0.0062 (2)0.0076 (2)
O310.0156 (2)0.0135 (2)0.0100 (2)0.00381 (19)0.00318 (18)0.00456 (18)
O320.0143 (2)0.0096 (2)0.0126 (2)0.00357 (18)0.00414 (18)0.00347 (18)
O410.0140 (3)0.0227 (3)0.0254 (3)0.0016 (2)0.0068 (2)0.0133 (2)
O420.0148 (3)0.0155 (3)0.0269 (3)0.0064 (2)0.0065 (2)0.0106 (2)
N10.0094 (2)0.0118 (2)0.0102 (2)0.00195 (19)0.00275 (19)0.0041 (2)
N20.0098 (2)0.0090 (2)0.0097 (2)0.00305 (19)0.00310 (19)0.00259 (19)
C10.0124 (3)0.0105 (3)0.0106 (3)0.0024 (2)0.0024 (2)0.0022 (2)
C20.0119 (3)0.0135 (3)0.0096 (3)0.0041 (2)0.0035 (2)0.0017 (2)
C110.0107 (3)0.0114 (3)0.0172 (3)0.0040 (2)0.0060 (2)0.0039 (2)
C120.0100 (3)0.0172 (3)0.0127 (3)0.0001 (2)0.0014 (2)0.0044 (3)
C210.0099 (3)0.0130 (3)0.0101 (3)0.0018 (2)0.0017 (2)0.0033 (2)
C220.0145 (3)0.0143 (3)0.0103 (3)0.0042 (2)0.0047 (2)0.0051 (2)
C310.0078 (3)0.0094 (3)0.0102 (3)0.0005 (2)0.0020 (2)0.0018 (2)
C320.0170 (3)0.0088 (3)0.0107 (3)0.0029 (2)0.0046 (2)0.0033 (2)
C410.0134 (3)0.0122 (3)0.0116 (3)0.0025 (2)0.0031 (2)0.0043 (2)
C420.0093 (3)0.0117 (3)0.0140 (3)0.0021 (2)0.0021 (2)0.0044 (2)
O2W0.0332 (4)0.0168 (3)0.0177 (3)0.0035 (2)0.0100 (3)0.0022 (2)
O3W0.0313 (4)0.0185 (3)0.0212 (3)0.0066 (3)0.0059 (3)0.0026 (2)
Geometric parameters (Å, º) top
K1—O212.6637 (9)O41—C411.2499 (10)
K1—O32i2.6767 (11)O42—C411.2512 (10)
K1—O322.6962 (11)N1—C221.4694 (10)
K1—O112.7077 (11)N1—C121.4696 (11)
K1—O41ii2.7351 (12)N1—C11.4741 (11)
K1—O42i3.0873 (12)N2—C321.4894 (10)
K1—N13.1769 (13)N2—C421.4937 (11)
K1—K1i3.6881 (18)N2—C21.4987 (11)
K1—K2i4.0729 (13)N2—H20.9300
K2—O42i2.6156 (10)C1—C21.5131 (12)
K2—O22iii2.6767 (10)C1—H1A0.9900
K2—O312.7182 (11)C1—H1B0.9900
K2—O2W2.7386 (15)C2—H2A0.9900
K2—O322.8625 (10)C2—H2B0.9900
K2—O21i2.9180 (14)C11—C121.5354 (11)
K2—K3iv4.0096 (15)C12—H12A0.9900
K2—K3i4.1238 (16)C12—H12B0.9900
K3—O31i2.7363 (14)C21—C221.5350 (11)
K3—O41ii2.7781 (10)C22—H22A0.9900
K3—O22v2.7814 (14)C22—H22B0.9900
K3—O3W2.8185 (10)C31—C321.5270 (11)
K3—O12vi2.8447 (11)C32—H32A0.9900
K3—O2Wiv3.0512 (12)C32—H32B0.9900
K3—O213.0836 (12)C41—C421.5333 (11)
O11—C111.2508 (11)C42—H42A0.9900
O12—C111.2585 (11)C42—H42B0.9900
O21—C211.2471 (10)O2W—H21W0.8547
O22—C211.2636 (9)O2W—H22W0.8577
O31—C311.2496 (9)O3W—H31W0.8609
O32—C311.2579 (9)O3W—H32W0.8589
O21—K1—O32i80.71 (4)O22v—K3—O2Wiv82.01 (4)
O21—K1—O32130.07 (3)O3W—K3—O2Wiv148.18 (2)
O32i—K1—O3293.30 (4)O12vi—K3—O2Wiv53.69 (3)
O21—K1—O11105.46 (4)O31i—K3—O2181.94 (4)
O32i—K1—O11171.021 (19)O41ii—K3—O2164.60 (3)
O32—K1—O1177.74 (4)O22v—K3—O21108.05 (4)
O21—K1—O41ii71.18 (3)O3W—K3—O2171.32 (3)
O32i—K1—O41ii87.59 (4)O12vi—K3—O21157.09 (2)
O32—K1—O41ii158.60 (2)O2Wiv—K3—O21140.42 (2)
O11—K1—O41ii100.50 (4)K1—O21—K2i93.61 (4)
O21—K1—O42i143.15 (2)K1—O21—K396.82 (3)
O32i—K1—O42i68.87 (3)K2i—O21—K386.76 (3)
O32—K1—O42i73.68 (3)K2vii—O22—K3v94.53 (3)
O11—K1—O42i107.42 (3)K2—O31—K3i98.23 (4)
O41ii—K1—O42i86.81 (4)K1i—O32—K186.70 (4)
O21—K1—N157.41 (3)K1i—O32—K294.60 (3)
O32i—K1—N1124.19 (3)K1—O32—K297.95 (3)
O32—K1—N188.57 (4)K1viii—O41—K3viii102.76 (3)
O11—K1—N156.99 (3)K2i—O42—K1i94.35 (3)
O41ii—K1—N1108.56 (4)C22—N1—C12109.34 (6)
O42i—K1—N1159.182 (19)C22—N1—C1110.20 (6)
O42i—K2—O22iii89.86 (3)C12—N1—C1107.16 (6)
O42i—K2—O31125.88 (3)C22—N1—K1108.47 (5)
O22iii—K2—O31143.60 (2)C12—N1—K188.75 (5)
O42i—K2—O2W82.71 (4)C1—N1—K1129.66 (5)
O22iii—K2—O2W90.08 (4)C32—N2—C42112.28 (6)
O31—K2—O2W88.23 (4)C32—N2—C2114.23 (6)
O42i—K2—O3278.78 (3)C42—N2—C2110.77 (6)
O22iii—K2—O32168.208 (18)N1—C1—C2112.98 (7)
O31—K2—O3247.26 (2)N2—C2—C1111.15 (7)
O2W—K2—O3285.38 (4)O11—C11—O12126.46 (8)
O42i—K2—O21i82.54 (3)O11—C11—C12118.57 (7)
O22iii—K2—O21i108.46 (4)O12—C11—C12114.83 (7)
O31—K2—O21i85.40 (3)N1—C12—C11114.75 (6)
O2W—K2—O21i156.19 (2)O21—C21—O22125.11 (7)
O32—K2—O21i73.48 (4)O21—C21—C22120.74 (7)
O31i—K3—O41ii104.20 (3)O22—C21—C22114.11 (7)
O31i—K3—O22v165.409 (19)N1—C22—C21116.01 (6)
O41ii—K3—O22v89.89 (3)O31—C31—O32126.68 (7)
O31i—K3—O3W88.59 (4)O31—C31—C32116.41 (6)
O41ii—K3—O3W131.33 (3)O32—C31—C32116.91 (6)
O22v—K3—O3W84.80 (4)N2—C32—C31109.49 (6)
O31i—K3—O12vi77.61 (4)O41—C41—O42128.32 (7)
O41ii—K3—O12vi130.68 (3)O41—C41—C42116.12 (7)
O22v—K3—O12vi90.39 (4)O42—C41—C42115.53 (7)
O3W—K3—O12vi97.77 (3)N2—C42—C41109.40 (6)
O31i—K3—O2Wiv97.12 (4)K2—O2W—K3iv87.49 (4)
O41ii—K3—O2Wiv77.58 (3)H31W—O3W—H32W105.3
N1—C1—C2—N258.12 (8)C42—N2—C32—C3175.56 (8)
C22—N1—C12—C11169.06 (6)C2—N2—C32—C31157.23 (6)
C1—N1—C12—C1171.51 (8)O31—C31—C32—N2160.49 (6)
O11—C11—C12—N131.84 (10)O32—C31—C32—N220.36 (9)
O12—C11—C12—N1152.21 (7)C32—N2—C42—C41146.30 (6)
C12—N1—C22—C2173.87 (9)C2—N2—C42—C4184.66 (7)
C1—N1—C22—C21168.59 (6)O41—C41—C42—N2157.85 (7)
O21—C21—C22—N113.17 (10)O42—C41—C42—N223.95 (9)
O22—C21—C22—N1169.15 (6)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y, z; (iii) x, y, z+1; (iv) x, y+2, z+1; (v) x, y+2, z; (vi) x, y+1, z; (vii) x, y, z1; (viii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O420.932.122.6364 (11)114
N2—H2···N10.932.502.9505 (15)110
O2W—H21W···O12ix0.851.862.6690 (12)157
O2W—H22W···O110.861.962.7933 (12)162
O3W—H31W···O220.861.922.7786 (12)175
O3W—H32W···O41x0.862.513.2101 (16)139
O3W—H32W···O21v0.862.553.2417 (17)138
C1—H1B···O31xi0.992.343.3040 (13)164
C2—H2A···O12viii0.992.583.4313 (15)144
C32—H32B···O31xi0.992.443.3870 (18)161
C42—H42A···O11viii0.992.533.4338 (15)152
Symmetry codes: (v) x, y+2, z; (viii) x+1, y, z; (ix) x, y+1, z+1; (x) x+1, y+2, z; (xi) x+1, y+1, z+1.
(III) tetrapotassium 2,2',2'',2'''-(ethane-1,2-diyldinitrilo)tetraacetate 3.92-hydrate top
Crystal data top
4K+·C10H12N2O84·3.92H2OZ = 16
Mr = 515.21F(000) = 4242.2
Monoclinic, C2/cDx = 1.636 Mg m3
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 30.033 (9) ÅCell parameters from 29729 reflections
b = 9.700 (3) ŵ = 0.91 mm1
c = 31.513 (9) ÅT = 90 K
β = 114.27 (3)°Block, colourless
V = 8369 (5) Å30.21 × 0.15 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur PX KM-4-CCD
diffractometer
18115 independent reflections
Radiation source: fine-focus sealed tube13121 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 35.1°, θmin = 2.6°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
h = 4748
Tmin = 0.831, Tmax = 0.931k = 1215
64671 measured reflectionsl = 5046
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0205P)2]
where P = (Fo2 + 2Fc2)/3
18115 reflections(Δ/σ)max = 0.004
549 parametersΔρmax = 0.50 e Å3
3 restraintsΔρmin = 0.33 e Å3
Crystal data top
4K+·C10H12N2O84·3.92H2OV = 8369 (5) Å3
Mr = 515.21Z = 16
Monoclinic, C2/cMo Kα radiation
a = 30.033 (9) ŵ = 0.91 mm1
b = 9.700 (3) ÅT = 90 K
c = 31.513 (9) Å0.21 × 0.15 × 0.10 mm
β = 114.27 (3)°
Data collection top
Oxford Diffraction Xcalibur PX KM-4-CCD
diffractometer
18115 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
13121 reflections with I > 2σ(I)
Tmin = 0.831, Tmax = 0.931Rint = 0.035
64671 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0273 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 1.02Δρmax = 0.50 e Å3
18115 reflectionsΔρmin = 0.33 e Å3
549 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
K10.325416 (7)0.32720 (2)0.513644 (7)0.01090 (4)
K20.336461 (7)0.31143 (2)0.811023 (7)0.01318 (4)
K30.432897 (7)0.47625 (2)0.952110 (7)0.01352 (4)
K40.207494 (7)0.65498 (2)0.518244 (8)0.01452 (4)
K50.245709 (7)0.19666 (2)0.691611 (8)0.01520 (4)
K60.283592 (8)0.17065 (2)0.642237 (7)0.01367 (4)
K80.369299 (7)0.09504 (2)0.430265 (7)0.01313 (4)
K70.50603 (3)0.82119 (9)0.56904 (5)0.01472 (18)0.947 (8)
K710.5125 (6)0.8038 (17)0.5793 (8)0.028 (3)*0.053 (8)
O11A0.27134 (2)0.24397 (7)0.56576 (2)0.01476 (14)
O12A0.26410 (2)0.10075 (7)0.61857 (2)0.01443 (14)
O21A0.35747 (2)0.05963 (7)0.51404 (2)0.01306 (13)
O22A0.41743 (3)0.09025 (7)0.55134 (3)0.01853 (15)
O31A0.30195 (2)0.75921 (7)0.57208 (3)0.01524 (14)
O32A0.30518 (3)0.59163 (7)0.52508 (2)0.01516 (14)
O41A0.48191 (2)0.55071 (7)0.54930 (3)0.01534 (14)
O42A0.42462 (3)0.38654 (7)0.53134 (3)0.01611 (14)
N1A0.37208 (3)0.18150 (8)0.60024 (3)0.01031 (14)
N2A0.39066 (3)0.48783 (8)0.59501 (3)0.01042 (15)
C1A0.39195 (3)0.27498 (10)0.64046 (3)0.01209 (18)
H1A10.41380.22180.66790.015*
H1A20.36460.31040.64720.015*
C2A0.42017 (3)0.39689 (10)0.63351 (3)0.01197 (17)
H2A10.43370.45150.66260.014*
H2A20.44800.36160.62760.014*
C11A0.28732 (3)0.15150 (10)0.59625 (3)0.01108 (17)
C12A0.33734 (3)0.08717 (9)0.60690 (3)0.01149 (17)
H12A0.35150.05450.63950.014*
H12B0.33280.00580.58660.014*
C21A0.39313 (3)0.01840 (10)0.54937 (3)0.01160 (17)
C22A0.41104 (3)0.10296 (10)0.59446 (3)0.01346 (18)
H22A0.42610.03980.62130.016*
H22B0.43660.16780.59470.016*
C31A0.31911 (3)0.64746 (10)0.56436 (3)0.01180 (17)
C32A0.35803 (3)0.57615 (10)0.60696 (3)0.01298 (18)
H32A0.37770.64730.62940.016*
H32B0.34160.51970.62250.016*
C41A0.44518 (3)0.49473 (10)0.55224 (3)0.01170 (17)
C42A0.42297 (3)0.57182 (10)0.58119 (3)0.01244 (18)
H42A0.44980.60800.60960.015*
H42B0.40430.65180.56300.015*
O11B0.31725 (3)0.37620 (7)0.71316 (3)0.01880 (15)
O12B0.28479 (3)0.58161 (7)0.68393 (2)0.01703 (15)
O21B0.34486 (3)0.58281 (7)0.83792 (3)0.01810 (15)
O22B0.40704 (3)0.71089 (8)0.88539 (3)0.02460 (18)
O31B0.35994 (13)0.08711 (13)0.71908 (5)0.0237 (6)0.793 (11)
O32B0.32612 (7)0.0400 (3)0.75727 (7)0.0177 (4)0.793 (11)
C31B0.36049 (11)0.0121 (2)0.74467 (6)0.0135 (4)0.793 (11)
O31C0.3447 (3)0.0805 (6)0.7226 (2)0.0212 (14)*0.207 (11)
O32C0.3213 (2)0.0700 (8)0.7639 (3)0.0146 (13)*0.207 (11)
C31C0.3498 (3)0.0241 (8)0.7484 (3)0.0090 (15)*0.207 (11)
O41B0.45066 (3)0.07456 (7)0.92229 (2)0.01589 (14)
O42B0.42302 (3)0.27803 (7)0.88782 (2)0.01538 (14)
N1B0.39593 (3)0.49706 (8)0.78624 (3)0.01083 (15)
N2B0.41635 (3)0.18598 (8)0.80185 (3)0.01113 (15)
C1B0.43060 (3)0.41780 (10)0.77379 (3)0.01328 (18)
H1B10.45740.47960.77520.016*
H1B20.41360.38490.74130.016*
C2B0.45250 (3)0.29387 (10)0.80558 (4)0.01342 (18)
H2B10.47840.25300.79780.016*
H2B20.46800.32630.83820.016*
C11B0.31870 (3)0.50403 (10)0.71240 (3)0.01312 (18)
C12B0.36341 (3)0.58134 (10)0.74702 (3)0.01345 (18)
H12C0.38240.61770.73010.016*
H12D0.35200.66110.75950.016*
C21B0.38757 (4)0.63040 (10)0.85129 (3)0.01412 (19)
C22B0.42053 (3)0.58340 (10)0.82740 (3)0.01270 (18)
H22C0.43380.66600.81820.015*
H22D0.44850.53140.85020.015*
C32B0.40331 (4)0.10777 (11)0.75865 (4)0.0173 (2)
H32C0.43170.05040.76150.021*
H32D0.39730.17390.73290.021*
C41B0.43636 (3)0.15612 (10)0.88734 (3)0.01240 (18)
C42B0.43528 (3)0.09380 (10)0.84225 (3)0.01318 (18)
H42C0.46890.06590.84760.016*
H42D0.41490.00950.83490.016*
O1W0.33361 (3)0.37898 (7)0.42378 (3)0.01882 (15)
H11W0.30290.37650.41200.028*
H12W0.34140.37700.40100.028*
O2W0.26245 (3)0.19725 (8)0.72921 (3)0.01893 (15)
H21W0.27120.26510.71780.028*
H22W0.28390.13540.73600.028*
O3W0.39938 (3)0.20579 (8)0.96874 (3)0.02086 (16)
H31W0.41720.17160.95680.031*
H32W0.40360.16080.99290.031*
O4W0.23142 (2)0.47149 (7)0.59016 (2)0.01698 (15)
H41W0.24250.39930.58350.025*
H42W0.24930.49410.61760.025*
O5W0.46427 (3)0.17971 (8)0.50076 (3)0.01940 (15)
H51W0.45350.24720.51050.029*
H52W0.48820.14830.52370.029*
O6W0.18583 (3)0.17786 (8)0.59388 (3)0.0307 (2)
H61W0.18030.09470.58620.046*
H62W0.16030.22110.57740.046*
O7W0.31110 (7)0.0333 (4)0.33717 (4)0.0284 (6)0.892 (10)
H71W0.28910.02330.33340.043*0.892
H72W0.31880.00780.31570.043*0.892
O71W0.3206 (4)0.0231 (16)0.3416 (3)0.012 (2)*0.108 (10)
O8W0.48227 (10)0.8297 (3)0.65078 (11)0.0241 (9)0.267 (2)
H81W0.45660.84440.62680.036*0.267 (2)
H82W0.46920.83440.67000.036*0.267 (2)
O9W0.4517 (2)0.7920 (9)0.7236 (4)0.0444 (19)0.282 (14)
H91W0.42410.82230.71990.067*0.282 (14)
H92W0.47370.81500.74940.067*0.282 (14)
O91W0.44705 (18)0.8398 (13)0.7038 (5)0.053 (3)0.298 (14)
H93W0.45980.79570.72890.080*0.298 (14)
H94W0.41740.85510.69710.080*0.298 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.01167 (8)0.01053 (9)0.01021 (9)0.00043 (7)0.00421 (7)0.00002 (7)
K20.01040 (8)0.01374 (9)0.01420 (10)0.00041 (7)0.00383 (7)0.00052 (8)
K30.01345 (9)0.01559 (10)0.01247 (10)0.00198 (8)0.00630 (8)0.00206 (8)
K40.01353 (9)0.01424 (10)0.01457 (10)0.00235 (8)0.00454 (8)0.00157 (8)
K50.01299 (9)0.01951 (11)0.01329 (10)0.00413 (8)0.00558 (8)0.00445 (8)
K60.01728 (9)0.01218 (9)0.01244 (10)0.00076 (8)0.00701 (8)0.00000 (8)
K80.01249 (9)0.01444 (10)0.01240 (10)0.00017 (7)0.00504 (8)0.00062 (8)
K70.01196 (19)0.01283 (19)0.0206 (3)0.00144 (12)0.0079 (2)0.00307 (18)
O11A0.0140 (3)0.0158 (3)0.0152 (4)0.0025 (3)0.0067 (3)0.0046 (3)
O12A0.0142 (3)0.0157 (3)0.0166 (4)0.0002 (3)0.0096 (3)0.0016 (3)
O21A0.0133 (3)0.0134 (3)0.0118 (3)0.0000 (3)0.0045 (3)0.0012 (3)
O22A0.0198 (4)0.0144 (3)0.0220 (4)0.0059 (3)0.0092 (3)0.0004 (3)
O31A0.0172 (3)0.0116 (3)0.0187 (4)0.0019 (3)0.0091 (3)0.0016 (3)
O32A0.0167 (3)0.0133 (3)0.0132 (3)0.0026 (3)0.0038 (3)0.0010 (3)
O41A0.0120 (3)0.0183 (3)0.0184 (4)0.0016 (3)0.0090 (3)0.0006 (3)
O42A0.0166 (3)0.0161 (3)0.0180 (4)0.0029 (3)0.0095 (3)0.0042 (3)
N1A0.0092 (3)0.0117 (4)0.0113 (4)0.0009 (3)0.0055 (3)0.0013 (3)
N2A0.0096 (3)0.0120 (4)0.0109 (4)0.0010 (3)0.0054 (3)0.0017 (3)
C1A0.0129 (4)0.0146 (4)0.0088 (4)0.0000 (3)0.0045 (3)0.0006 (3)
C2A0.0101 (4)0.0145 (4)0.0099 (4)0.0010 (3)0.0027 (3)0.0003 (4)
C11A0.0113 (4)0.0107 (4)0.0114 (4)0.0014 (3)0.0049 (3)0.0031 (3)
C12A0.0117 (4)0.0105 (4)0.0135 (5)0.0011 (3)0.0064 (4)0.0020 (3)
C21A0.0108 (4)0.0113 (4)0.0154 (5)0.0011 (3)0.0081 (4)0.0012 (4)
C22A0.0095 (4)0.0189 (5)0.0118 (4)0.0030 (4)0.0042 (3)0.0003 (4)
C31A0.0104 (4)0.0117 (4)0.0149 (5)0.0016 (3)0.0068 (4)0.0001 (4)
C32A0.0124 (4)0.0154 (5)0.0121 (5)0.0011 (3)0.0060 (4)0.0016 (4)
C41A0.0104 (4)0.0144 (4)0.0099 (4)0.0017 (3)0.0039 (3)0.0025 (4)
C42A0.0124 (4)0.0120 (4)0.0144 (5)0.0018 (3)0.0070 (4)0.0006 (4)
O11B0.0178 (3)0.0138 (3)0.0193 (4)0.0033 (3)0.0021 (3)0.0006 (3)
O12B0.0157 (3)0.0170 (4)0.0132 (4)0.0014 (3)0.0007 (3)0.0017 (3)
O21B0.0164 (3)0.0167 (4)0.0249 (4)0.0004 (3)0.0122 (3)0.0020 (3)
O22B0.0200 (4)0.0307 (4)0.0172 (4)0.0070 (3)0.0017 (3)0.0113 (3)
O31B0.0328 (11)0.0153 (5)0.0195 (6)0.0069 (5)0.0072 (6)0.0069 (4)
O32B0.0168 (6)0.0187 (8)0.0161 (6)0.0041 (5)0.0053 (5)0.0011 (6)
C31B0.0167 (9)0.0138 (7)0.0083 (7)0.0019 (6)0.0035 (6)0.0023 (5)
O41B0.0189 (3)0.0143 (3)0.0117 (3)0.0023 (3)0.0035 (3)0.0020 (3)
O42B0.0200 (3)0.0123 (3)0.0128 (3)0.0029 (3)0.0058 (3)0.0008 (3)
N1B0.0102 (3)0.0123 (4)0.0087 (4)0.0002 (3)0.0026 (3)0.0008 (3)
N2B0.0122 (3)0.0111 (4)0.0097 (4)0.0020 (3)0.0042 (3)0.0016 (3)
C1B0.0137 (4)0.0137 (4)0.0141 (5)0.0022 (3)0.0074 (4)0.0017 (4)
C2B0.0102 (4)0.0139 (4)0.0167 (5)0.0010 (3)0.0060 (4)0.0021 (4)
C11B0.0129 (4)0.0163 (5)0.0100 (4)0.0023 (4)0.0046 (4)0.0001 (4)
C12B0.0144 (4)0.0121 (4)0.0110 (4)0.0022 (3)0.0023 (4)0.0010 (4)
C21B0.0149 (4)0.0143 (4)0.0116 (5)0.0055 (4)0.0039 (4)0.0023 (4)
C22B0.0097 (4)0.0151 (4)0.0112 (4)0.0006 (3)0.0021 (3)0.0021 (4)
C32B0.0239 (5)0.0168 (5)0.0132 (5)0.0040 (4)0.0095 (4)0.0046 (4)
C41B0.0102 (4)0.0131 (4)0.0116 (4)0.0004 (3)0.0022 (3)0.0013 (4)
C42B0.0144 (4)0.0116 (4)0.0126 (5)0.0011 (3)0.0046 (4)0.0008 (4)
O1W0.0135 (3)0.0247 (4)0.0178 (4)0.0005 (3)0.0060 (3)0.0007 (3)
O2W0.0143 (3)0.0243 (4)0.0184 (4)0.0016 (3)0.0070 (3)0.0008 (3)
O3W0.0241 (4)0.0219 (4)0.0202 (4)0.0044 (3)0.0127 (3)0.0056 (3)
O4W0.0165 (3)0.0186 (4)0.0135 (4)0.0035 (3)0.0038 (3)0.0010 (3)
O5W0.0185 (3)0.0229 (4)0.0149 (4)0.0045 (3)0.0049 (3)0.0033 (3)
O6W0.0175 (4)0.0175 (4)0.0493 (6)0.0017 (3)0.0057 (4)0.0015 (4)
O7W0.0246 (6)0.0450 (15)0.0164 (5)0.0150 (8)0.0092 (4)0.0047 (6)
O8W0.0213 (15)0.0220 (16)0.0272 (18)0.0008 (12)0.0080 (13)0.0015 (13)
O9W0.050 (3)0.047 (3)0.037 (4)0.012 (2)0.019 (3)0.001 (3)
O91W0.035 (2)0.069 (5)0.057 (5)0.007 (2)0.020 (2)0.011 (4)
Geometric parameters (Å, º) top
K1—O32A2.6942 (10)O32A—K4vii2.7610 (10)
K1—O21A2.7664 (10)O41A—C41A1.2665 (11)
K1—O42A2.8555 (11)O41A—K3iv2.6766 (10)
K1—O11A2.8597 (10)O41A—K3xi2.8124 (13)
K1—N1A2.8748 (12)O42A—C41A1.2579 (12)
K1—N2A2.9515 (13)O42A—K3xi2.9286 (10)
K1—O1W2.9840 (11)N1A—C12A1.4662 (12)
K1—O11Ai3.0339 (15)N1A—C22A1.4688 (12)
K1—K84.0693 (9)N1A—C1A1.4707 (13)
K2—O32C2.709 (9)N2A—C32A1.4625 (12)
K2—O2Wii2.7098 (13)N2A—C42A1.4637 (12)
K2—O21B2.7452 (11)N2A—C2A1.4668 (13)
K2—O42B2.7474 (14)C1A—C2A1.5225 (13)
K2—N2B2.8092 (10)C1A—H1A10.9900
K2—N1B2.8616 (10)C2A—H2A10.9900
K2—O11B2.9625 (12)C11A—C12A1.5313 (13)
K2—O71Wiii3.057 (15)C12A—H12A0.9900
K2—O32B3.076 (4)C21A—C22A1.5339 (14)
K2—O6Wii3.3299 (13)C22A—H22A0.9900
K3—O41Aiv2.6766 (10)C31A—C32A1.5353 (15)
K3—O42B2.7194 (9)C32A—H32A0.9900
K3—O41Av2.8124 (13)C41A—C42A1.5285 (14)
K3—O42Av2.9286 (10)C42A—H42A0.9900
K3—O3W2.9332 (11)O11B—C11B1.2413 (12)
K3—O22B2.9769 (11)O12B—C11B1.2874 (12)
K3—O1Wv3.0778 (12)O12B—K6viii2.7320 (10)
K3—K71iv3.886 (15)O21B—C21B1.2615 (12)
K3—K3vi3.9455 (18)O21B—K5ii2.7210 (11)
K3—K7iv4.0012 (12)O22B—C21B1.2607 (13)
K4—O4W2.7353 (10)O22B—K71iv2.38 (2)
K4—O21Ai2.7465 (10)O22B—K7iv2.6348 (18)
K4—O32Avii2.7610 (10)O22B—K8v2.8541 (10)
K4—O31A2.8269 (13)O31B—O31C0.516 (7)
K4—O31Avii2.8655 (11)O31B—C31B1.251 (2)
K4—O32A2.9176 (11)O31B—C31C1.530 (7)
K4—O6Wviii3.1637 (12)O32B—C31C0.879 (8)
K4—K4vii3.6949 (9)O32B—C31B1.278 (2)
K4—K6viii4.0013 (14)C31B—O31C1.116 (6)
K5—O11B2.6290 (10)C31B—C32B1.498 (2)
K5—O21Bix2.7210 (11)C31B—O32C1.630 (6)
K5—O12A2.7412 (10)O31C—C31C1.271 (8)
K5—O32C2.757 (7)O32C—C31C1.232 (7)
K5—O2Wii2.8014 (10)O41B—C41B1.2784 (12)
K5—O32B2.883 (2)O41B—K7xv2.7414 (11)
K5—O7Wi3.053 (4)O41B—K71xv2.858 (14)
K5—K64.2267 (10)O41B—K8iii3.0405 (10)
K5—K8i4.4563 (17)O42B—C41B1.2507 (12)
K5—K2ix4.4600 (11)N1B—C22B1.4634 (13)
K6—O31Ax2.5802 (10)N1B—C12B1.4688 (13)
K6—O31C2.592 (6)N1B—C1B1.4714 (12)
K6—O31B2.686 (2)N2B—C32B1.4642 (13)
K6—O6W2.6962 (14)N2B—C42B1.4658 (13)
K6—O12Bx2.7320 (10)N2B—C2B1.4773 (12)
K6—O12A2.7332 (11)C1B—C2B1.5295 (14)
K6—O2W3.0679 (11)C1B—H1B10.9900
K6—K4x4.0013 (14)C11B—C12B1.5333 (14)
K8—O7W2.7937 (15)C12B—H12C0.9900
K8—O71W2.812 (8)C21B—C22B1.5386 (14)
K8—O21A2.8258 (11)C22B—H22C0.9900
K8—O22Bxi2.8541 (10)C32B—H32C0.9900
K8—O4Wi2.8949 (12)C41B—C42B1.5324 (14)
K8—O5W2.9217 (14)C42B—H42C0.9900
K8—O1W2.9320 (11)O1W—K3xi3.0778 (12)
K8—O41Bxii3.0405 (10)O1W—H11W0.8413
K8—O3Wxii3.1465 (12)O1W—H12W0.8419
K8—K71xiii3.812 (11)O2W—K2ix2.7098 (13)
K8—K7xiii3.8228 (12)O2W—K5ix2.8014 (10)
K7—O22Aviii2.6283 (13)O2W—H21W0.8410
K7—O22Biv2.6348 (17)O2W—H22W0.8419
K7—O5Wxiii2.6922 (15)O3W—K8iii3.1465 (12)
K7—O41A2.7248 (12)O3W—H31W0.8408
K7—O41Bxiv2.7414 (12)O3W—H32W0.8420
K7—O8W2.943 (3)O4W—K8i2.8949 (12)
K7—K8xiii3.8228 (12)O4W—H41W0.8378
K7—K3iv4.0012 (12)O4W—H42W0.8389
K7—K3xi4.4803 (15)O5W—K7xiii2.6922 (15)
K71—O22Biv2.38 (2)O5W—K71xiii2.886 (16)
K71—O41A2.656 (12)O5W—H51W0.8425
K71—O8W2.764 (14)O5W—H52W0.8398
K71—O22Aviii2.814 (19)O6W—K4x3.1637 (12)
K71—O41Bxiv2.858 (14)O6W—K2ix3.3299 (13)
K71—O5Wxiii2.886 (16)O6W—H61W0.8395
K71—K8xiii3.812 (11)O6W—H62W0.8404
K71—K3iv3.886 (14)O7W—O71W0.607 (13)
O11A—C11A1.2566 (12)O7W—K5i3.053 (4)
O11A—K1i3.0339 (15)O7W—H71W0.8297
O12A—C11A1.2752 (11)O7W—H72W0.8373
O21A—C21A1.2516 (12)O71W—K2xii3.057 (15)
O21A—K4i2.7465 (10)O71W—H71W0.8741
O22A—C21A1.2689 (12)O71W—H72W0.8482
O22A—K7x2.6283 (13)O8W—H81W0.8406
O22A—K71x2.814 (19)O8W—H82W0.8483
O31A—C31A1.2660 (12)O9W—H91W0.8403
O31A—K6viii2.5802 (10)O9W—H92W0.8401
O31A—K4vii2.8655 (11)O91W—H93W0.8402
O32A—C31A1.2548 (12)O91W—H94W0.8403
O32A—K1—O21A171.81 (2)O5Wxiii—K7—O8W174.99 (7)
O32A—K1—O42A93.24 (2)O41A—K7—O8W95.13 (7)
O21A—K1—O42A81.66 (2)O41Bxiv—K7—O8W99.41 (6)
O32A—K1—O11A88.82 (2)O22Biv—K71—O41A87.3 (6)
O21A—K1—O11A90.64 (2)O22Biv—K71—O8W105.3 (9)
O42A—K1—O11A137.56 (3)O41A—K71—O8W101.1 (5)
O32A—K1—N1A112.94 (3)O22Biv—K71—O22Aviii171.2 (8)
O21A—K1—N1A60.10 (2)O41A—K71—O22Aviii93.9 (4)
O42A—K1—N1A81.45 (4)O8W—K71—O22Aviii65.9 (3)
O11A—K1—N1A59.10 (3)O22Biv—K71—O41Bxiv91.8 (4)
O32A—K1—N2A59.13 (3)O41A—K71—O41Bxiv157.3 (7)
O21A—K1—N2A112.70 (3)O8W—K71—O41Bxiv101.0 (4)
O42A—K1—N2A57.12 (3)O22Aviii—K71—O41Bxiv90.5 (6)
O11A—K1—N2A88.92 (3)O22Biv—K71—O5Wxiii82.3 (3)
N1A—K1—N2A62.89 (3)O41A—K71—O5Wxiii85.0 (4)
O32A—K1—O1W94.46 (2)O8W—K71—O5Wxiii170.3 (9)
O21A—K1—O1W89.88 (2)O22Aviii—K71—O5Wxiii106.5 (8)
O42A—K1—O1W70.42 (4)O41Bxiv—K71—O5Wxiii72.5 (4)
O11A—K1—O1W151.67 (2)C11A—O11A—K1120.81 (6)
N1A—K1—O1W141.76 (2)C11A—O11A—K1i113.79 (6)
N2A—K1—O1W116.83 (3)K1—O11A—K1i99.68 (3)
O32A—K1—O11Ai97.74 (2)C11A—O12A—K6114.71 (6)
O21A—K1—O11Ai90.22 (2)C11A—O12A—K5132.58 (6)
O42A—K1—O11Ai140.87 (3)K6—O12A—K5101.08 (3)
O11A—K1—O11Ai80.32 (3)C21A—O21A—K4i107.77 (6)
N1A—K1—O11Ai126.80 (3)C21A—O21A—K1118.21 (6)
N2A—K1—O11Ai154.88 (2)K4i—O21A—K1121.10 (3)
O1W—K1—O11Ai71.36 (3)C21A—O21A—K8118.66 (6)
O32C—K2—O2Wii79.13 (15)K4i—O21A—K895.11 (3)
O32C—K2—O21B166.29 (14)K1—O21A—K893.38 (2)
O2Wii—K2—O21B96.79 (2)C21A—O22A—K7x142.53 (6)
O32C—K2—O42B105.43 (14)C21A—O22A—K71x143.9 (2)
O2Wii—K2—O42B150.10 (3)C31A—O31A—K6viii129.61 (6)
O21B—K2—O42B84.69 (2)C31A—O31A—K488.04 (6)
O32C—K2—N2B61.83 (15)K6viii—O31A—K495.36 (3)
O2Wii—K2—N2B139.19 (3)C31A—O31A—K4vii86.55 (6)
O21B—K2—N2B118.24 (3)K6viii—O31A—K4vii143.69 (3)
O42B—K2—N2B60.04 (3)K4—O31A—K4vii80.94 (3)
O32C—K2—N1B112.20 (15)C31A—O32A—K1122.73 (6)
O2Wii—K2—N1B125.38 (3)C31A—O32A—K4vii91.49 (6)
O21B—K2—N1B59.50 (3)K1—O32A—K4vii140.74 (3)
O42B—K2—N1B81.02 (3)C31A—O32A—K484.22 (6)
N2B—K2—N1B65.74 (3)K1—O32A—K4117.77 (3)
O32C—K2—O11B72.30 (14)K4vii—O32A—K481.14 (2)
O2Wii—K2—O11B79.20 (4)C41A—O41A—K71123.7 (2)
O21B—K2—O11B94.12 (3)C41A—O41A—K3iv138.83 (6)
O42B—K2—O11B130.61 (3)K71—O41A—K3iv93.5 (3)
N2B—K2—O11B78.10 (3)C41A—O41A—K7123.64 (6)
N1B—K2—O11B57.23 (3)K3iv—O41A—K795.59 (3)
O32C—K2—O71Wiii50.9 (2)C41A—O41A—K3xi87.60 (6)
O2Wii—K2—O71Wiii80.59 (17)K71—O41A—K3xi115.1 (5)
O21B—K2—O71Wiii141.8 (2)K3iv—O41A—K3xi91.88 (4)
O42B—K2—O71Wiii80.1 (2)K7—O41A—K3xi108.01 (4)
N2B—K2—O71Wiii83.46 (15)C41A—O42A—K1121.24 (6)
N1B—K2—O71Wiii148.94 (15)C41A—O42A—K3xi82.64 (6)
O11B—K2—O71Wiii122.2 (2)K1—O42A—K3xi111.87 (4)
O32C—K2—O32B3.97 (15)C12A—N1A—C22A110.12 (8)
O2Wii—K2—O32B82.68 (5)C12A—N1A—C1A108.77 (7)
O21B—K2—O32B165.08 (3)C22A—N1A—C1A111.41 (8)
O42B—K2—O32B103.24 (4)C12A—N1A—K1110.16 (6)
N2B—K2—O32B57.99 (5)C22A—N1A—K1103.87 (6)
N1B—K2—O32B108.74 (4)C1A—N1A—K1112.45 (6)
O11B—K2—O32B71.09 (3)C32A—N2A—C42A110.29 (8)
O71Wiii—K2—O32B52.9 (2)C32A—N2A—C2A112.36 (8)
O32C—K2—O6Wii117.98 (15)C42A—N2A—C2A109.37 (8)
O2Wii—K2—O6Wii80.49 (4)C32A—N2A—K1104.90 (6)
O21B—K2—O6Wii73.69 (2)C42A—N2A—K1108.66 (6)
O42B—K2—O6Wii71.24 (3)C2A—N2A—K1111.14 (6)
N2B—K2—O6Wii127.04 (3)N1A—C1A—C2A114.04 (8)
N1B—K2—O6Wii127.22 (3)N2A—C2A—C1A113.78 (8)
O11B—K2—O6Wii154.83 (2)O11A—C11A—O12A125.03 (9)
O71Wiii—K2—O6Wii68.32 (19)O11A—C11A—C12A119.36 (8)
O32B—K2—O6Wii120.67 (4)O12A—C11A—C12A115.55 (8)
O41Aiv—K3—O42B89.47 (3)N1A—C12A—C11A113.96 (8)
O41Aiv—K3—O41Av88.12 (4)O21A—C21A—O22A125.00 (9)
O42B—K3—O41Av126.41 (3)O21A—C21A—C22A119.94 (8)
O41Aiv—K3—O42Av107.95 (3)O22A—C21A—C22A115.04 (9)
O42B—K3—O42Av159.22 (2)N1A—C22A—C21A113.48 (8)
O41Av—K3—O42Av45.87 (2)O32A—C31A—O31A124.20 (9)
O41Aiv—K3—O3W130.16 (2)O32A—C31A—C32A119.56 (9)
O42B—K3—O3W63.92 (3)O31A—C31A—C32A116.20 (9)
O41Av—K3—O3W77.68 (3)N2A—C32A—C31A112.87 (8)
O42Av—K3—O3W95.66 (3)O42A—C41A—O41A125.04 (9)
O41Aiv—K3—O22B75.85 (3)O42A—C41A—C42A118.69 (8)
O42B—K3—O22B95.59 (3)O41A—C41A—C42A116.15 (9)
O41Av—K3—O22B135.08 (2)N2A—C42A—C41A114.24 (8)
O42Av—K3—O22B99.54 (3)C11B—O11B—K5133.49 (6)
O3W—K3—O22B143.22 (3)C11B—O11B—K2103.80 (6)
O41Aiv—K3—O1Wv133.70 (3)K5—O11B—K285.25 (3)
O42B—K3—O1Wv108.09 (3)C11B—O12B—K6viii134.39 (6)
O41Av—K3—O1Wv111.67 (3)C21B—O21B—K5ii134.58 (6)
O42Av—K3—O1Wv68.18 (3)C21B—O21B—K2113.94 (6)
O3W—K3—O1Wv95.58 (3)K5ii—O21B—K2109.36 (3)
O22B—K3—O1Wv60.39 (3)C21B—O22B—K71iv131.2 (5)
O4W—K4—O21Ai73.65 (4)C21B—O22B—K7iv136.43 (7)
O4W—K4—O32Avii157.65 (2)C21B—O22B—K8v133.73 (7)
O21Ai—K4—O32Avii123.99 (3)K71iv—O22B—K8v93.0 (4)
O4W—K4—O31A83.02 (3)K7iv—O22B—K8v88.19 (4)
O21Ai—K4—O31A151.43 (2)C21B—O22B—K391.34 (7)
O32Avii—K4—O31A83.04 (3)K71iv—O22B—K392.3 (3)
O4W—K4—O31Avii153.77 (2)K7iv—O22B—K390.75 (4)
O21Ai—K4—O31Avii94.99 (3)K8v—O22B—K3101.29 (3)
O32Avii—K4—O31Avii46.60 (2)O31C—O31B—C31B63.0 (7)
O31A—K4—O31Avii99.06 (3)O31C—O31B—C31C51.1 (7)
O4W—K4—O32A83.57 (3)O31C—O31B—K674.1 (7)
O21Ai—K4—O32A114.04 (3)C31B—O31B—K6126.39 (14)
O32Avii—K4—O32A98.86 (2)C31C—O31B—K6116.7 (3)
O31A—K4—O32A45.60 (3)C31C—O32B—K5114.4 (5)
O31Avii—K4—O32A79.66 (4)C31B—O32B—K5115.72 (12)
O4W—K4—O6Wviii76.97 (3)C31C—O32B—K2114.4 (5)
O21Ai—K4—O6Wviii109.44 (3)C31B—O32B—K2116.16 (11)
O32Avii—K4—O6Wviii83.51 (3)K5—O32B—K279.02 (8)
O31A—K4—O6Wviii80.27 (3)O31C—C31B—O32B100.1 (4)
O31Avii—K4—O6Wviii129.23 (3)O31B—C31B—O32B124.40 (17)
O32A—K4—O6Wviii124.35 (3)O31C—C31B—C32B140.8 (4)
O11B—K5—O21Bix162.40 (2)O31B—C31B—C32B116.64 (17)
O11B—K5—O12A90.93 (3)O32B—C31B—C32B118.86 (14)
O21Bix—K5—O12A95.35 (3)O31C—C31B—O32C108.9 (4)
O11B—K5—O32C76.95 (14)O31B—C31B—O32C133.2 (3)
O21Bix—K5—O32C117.99 (13)C32B—C31B—O32C110.0 (2)
O12A—K5—O32C99.28 (19)O31B—O31C—C31B92.7 (8)
O11B—K5—O2Wii83.57 (3)O31B—O31C—C31C110.5 (9)
O21Bix—K5—O2Wii90.72 (3)O31B—O31C—K694.9 (8)
O12A—K5—O2Wii173.82 (2)C31B—O31C—K6146.0 (4)
O32C—K5—O2Wii76.78 (19)C31C—O31C—K6138.2 (5)
O11B—K5—O32B79.00 (4)C31C—O32C—K2122.8 (5)
O21Bix—K5—O32B117.15 (4)C31B—O32C—K2121.1 (3)
O12A—K5—O32B91.45 (7)C31C—O32C—K5107.7 (5)
O32C—K5—O32B8.10 (15)C31B—O32C—K5108.7 (3)
O2Wii—K5—O32B84.75 (8)K2—O32C—K587.9 (2)
O11B—K5—O7Wi78.82 (4)O32B—C31C—O31C116.3 (7)
O21Bix—K5—O7Wi83.60 (3)O32C—C31C—O31C128.5 (6)
O12A—K5—O7Wi108.82 (3)O32B—C31C—O31B134.7 (7)
O32C—K5—O7Wi142.90 (18)O32C—C31C—O31B146.9 (7)
O2Wii—K5—O7Wi72.94 (3)O32B—C31C—C32B132.7 (6)
O32B—K5—O7Wi150.01 (6)O32C—C31C—C32B120.5 (6)
O31Ax—K6—O31C127.6 (2)O31C—C31C—C32B110.9 (5)
O31Ax—K6—O31B116.63 (9)O31B—C31C—C32B92.6 (4)
O31C—K6—O31B11.03 (17)C41B—O41B—K7xv128.19 (7)
O31Ax—K6—O6W94.33 (4)C41B—O41B—K71xv123.3 (4)
O31C—K6—O6W136.9 (2)C41B—O41B—K8iii114.16 (6)
O31B—K6—O6W147.69 (9)K7xv—O41B—K8iii82.60 (3)
O31Ax—K6—O12Bx102.41 (3)K71xv—O41B—K8iii80.5 (3)
O31C—K6—O12Bx87.88 (13)C41B—O42B—K3137.74 (7)
O31B—K6—O12Bx89.66 (4)C41B—O42B—K2107.02 (6)
O6W—K6—O12Bx92.58 (3)K3—O42B—K2110.30 (3)
O31Ax—K6—O12A96.74 (3)C22B—N1B—C12B110.24 (8)
O31C—K6—O12A85.87 (13)C22B—N1B—C1B112.37 (8)
O31B—K6—O12A87.89 (4)C12B—N1B—C1B111.42 (8)
O6W—K6—O12A79.01 (2)C22B—N1B—K2105.22 (6)
O12Bx—K6—O12A159.63 (2)C12B—N1B—K2107.82 (6)
O31Ax—K6—O2W159.87 (2)C1B—N1B—K2109.48 (6)
O31C—K6—O2W58.6 (2)C32B—N2B—C42B110.58 (8)
O31B—K6—O2W68.49 (8)C32B—N2B—C2B110.38 (8)
O6W—K6—O2W85.73 (4)C42B—N2B—C2B110.67 (8)
O12Bx—K6—O2W57.52 (2)C32B—N2B—K2113.99 (6)
O12A—K6—O2W103.01 (2)C42B—N2B—K2102.57 (6)
O7W—K8—O71W12.4 (3)C2B—N2B—K2108.40 (6)
O7W—K8—O21A133.66 (3)N1B—C1B—C2B113.38 (8)
O71W—K8—O21A131.74 (19)N2B—C2B—C1B113.61 (8)
O7W—K8—O22Bxi79.95 (5)O11B—C11B—O12B124.98 (9)
O71W—K8—O22Bxi85.8 (2)O11B—C11B—C12B120.15 (9)
O21A—K8—O22Bxi140.46 (3)O12B—C11B—C12B114.87 (9)
O7W—K8—O4Wi64.73 (4)N1B—C12B—C11B114.30 (8)
O71W—K8—O4Wi67.63 (18)O22B—C21B—O21B124.26 (10)
O21A—K8—O4Wi70.09 (4)O22B—C21B—C22B115.75 (9)
O22Bxi—K8—O4Wi128.93 (3)O21B—C21B—C22B119.89 (9)
O7W—K8—O5W148.49 (3)N1B—C22B—C21B114.30 (8)
O71W—K8—O5W144.7 (2)N2B—C32B—C31B117.63 (14)
O21A—K8—O5W77.42 (3)N2B—C32B—C31C107.1 (3)
O22Bxi—K8—O5W74.27 (3)O42B—C41B—O41B124.79 (9)
O4Wi—K8—O5W146.72 (3)O42B—C41B—C42B119.96 (9)
O7W—K8—O1W94.31 (8)O41B—C41B—C42B115.24 (8)
O71W—K8—O1W106.7 (3)N2B—C42B—C41B114.69 (8)
O21A—K8—O1W89.80 (2)K8—O1W—K186.91 (2)
O22Bxi—K8—O1W63.52 (3)K8—O1W—K3xi97.21 (3)
O4Wi—K8—O1W82.83 (2)K1—O1W—K3xi104.45 (4)
O5W—K8—O1W90.21 (3)H11W—O1W—H12W105.1
O7W—K8—O41Bxii88.53 (7)K2ix—O2W—K5ix87.00 (4)
O71W—K8—O41Bxii78.7 (3)K2ix—O2W—K699.73 (4)
O21A—K8—O41Bxii115.18 (3)K5ix—O2W—K6162.29 (3)
O22Bxi—K8—O41Bxii79.61 (3)H21W—O2W—H22W109.1
O4Wi—K8—O41Bxii131.51 (3)K3—O3W—K8iii145.68 (3)
O5W—K8—O41Bxii69.42 (3)H31W—O3W—H32W108.5
O1W—K8—O41Bxii141.79 (2)K4—O4W—K8i93.79 (3)
O7W—K8—O3Wxii99.35 (8)H41W—O4W—H42W108.9
O71W—K8—O3Wxii87.4 (3)K7xiii—O5W—K885.73 (4)
O21A—K8—O3Wxii69.74 (2)K71xiii—O5W—K882.0 (3)
O22Bxi—K8—O3Wxii133.87 (3)H51W—O5W—H52W106.7
O4Wi—K8—O3Wxii89.27 (3)K6—O6W—K4x85.74 (3)
O5W—K8—O3Wxii86.09 (3)K6—O6W—K2ix93.86 (4)
O1W—K8—O3Wxii159.53 (2)K4x—O6W—K2ix147.32 (3)
O41Bxii—K8—O3Wxii54.33 (2)H61W—O6W—H62W106.2
O22Aviii—K7—O22Biv159.78 (7)O71W—O7W—K885.5 (8)
O22Aviii—K7—O5Wxiii118.30 (7)O71W—O7W—K5i174.5 (9)
O22Biv—K7—O5Wxiii81.78 (4)K8—O7W—K5i99.22 (9)
O22Aviii—K7—O41A96.62 (3)H71W—O7W—H72W99.1
O22Biv—K7—O41A81.04 (4)O7W—O71W—K882.1 (9)
O5Wxiii—K7—O41A87.51 (3)O7W—O71W—K2xii150.8 (10)
O22Aviii—K7—O41Bxiv97.22 (4)K8—O71W—K2xii127.0 (5)
O22Biv—K7—O41Bxiv89.22 (4)H71W—O71W—H72W94.8
O5Wxiii—K7—O41Bxiv77.37 (4)H81W—O8W—H82W96.4
O41A—K7—O41Bxiv163.08 (3)H91W—O9W—H92W112.2
O22Aviii—K7—O8W65.68 (7)H93W—O91W—H94W110.8
O22Biv—K7—O8W94.41 (8)
C12A—N1A—C1A—C2A167.85 (8)C31B—O32C—C31C—O31C161 (14)
C22A—N1A—C1A—C2A70.58 (10)C31B—O32C—C31C—O31B161 (15)
C32A—N2A—C2A—C1A75.84 (10)C31B—O32C—C31C—C32B22 (13)
C42A—N2A—C2A—C1A161.34 (8)O31B—O31C—C31C—O32B176.7 (10)
N1A—C1A—C2A—N2A61.45 (11)C31B—O31C—C31C—O32B175 (2)
C22A—N1A—C12A—C11A159.60 (8)O31B—O31C—C31C—O32C179.3 (10)
C1A—N1A—C12A—C11A78.05 (10)C31B—O31C—C31C—O32C177 (2)
O11A—C11A—C12A—N1A30.89 (12)C31B—O31C—C31C—O31B2.1 (16)
O12A—C11A—C12A—N1A151.88 (8)O31B—O31C—C31C—C32B3.6 (11)
C12A—N1A—C22A—C21A66.94 (10)C31B—O31C—C31C—C32B5.8 (9)
C1A—N1A—C22A—C21A172.28 (8)O31C—O31B—C31C—O32B4.1 (12)
O21A—C21A—C22A—N1A30.00 (12)C31B—O31B—C31C—O32B173 (3)
O22A—C21A—C22A—N1A151.11 (8)O31C—O31B—C31C—O32C1.0 (14)
C42A—N2A—C32A—C31A70.67 (10)C31B—O31B—C31C—O32C176 (3)
C2A—N2A—C32A—C31A167.02 (8)C31B—O31B—C31C—O31C177 (2)
O32A—C31A—C32A—N2A27.39 (12)O31C—O31B—C31C—C32B176.6 (10)
O31A—C31A—C32A—N2A154.80 (8)C31B—O31B—C31C—C32B6.2 (14)
C32A—N2A—C42A—C41A159.43 (8)C22B—N1B—C12B—C11B150.39 (8)
C2A—N2A—C42A—C41A76.53 (10)C1B—N1B—C12B—C11B84.13 (10)
O42A—C41A—C42A—N2A20.68 (12)O11B—C11B—C12B—N1B14.70 (13)
O41A—C41A—C42A—N2A163.13 (8)O12B—C11B—C12B—N1B165.53 (8)
C31C—O31B—C31B—O31C2.5 (18)C12B—N1B—C22B—C21B74.08 (10)
O31C—O31B—C31B—O32B1.6 (8)C1B—N1B—C22B—C21B160.98 (8)
C31C—O31B—C31B—O32B4.1 (16)O22B—C21B—C22B—N1B176.39 (9)
O31C—O31B—C31B—C32B174.5 (8)O21B—C21B—C22B—N1B7.18 (13)
C31C—O31B—C31B—C32B172.1 (18)C42B—N2B—C32B—C31B68.35 (15)
O31C—O31B—C31B—O32C0.3 (9)N1B—C1B—C2B—N2B65.79 (11)
C31C—O31B—C31B—O32C2.1 (16)C2B—N2B—C32B—C31B168.85 (13)
C31C—O32B—C31B—O31C136 (15)C42B—N2B—C32B—C31C75.1 (3)
C31C—O32B—C31B—O31B137 (15)C2B—N2B—C32B—C31C162.1 (3)
C31C—O32B—C31B—C32B40 (14)O31C—C31B—C32B—N2B158.5 (5)
C31C—O32B—C31B—O32C34 (15)O31B—C31B—C32B—N2B154.94 (13)
C31C—O31B—O31C—C31B0.7 (5)O32B—C31B—C32B—N2B28.7 (2)
C31B—O31B—O31C—C31C0.7 (5)O32C—C31B—C32B—N2B29.5 (3)
O32B—C31B—O31C—O31B178.6 (7)O31C—C31B—C32B—C31C169.5 (17)
C32B—C31B—O31C—O31B7.7 (11)O31B—C31B—C32B—C31C173.1 (15)
O32C—C31B—O31C—O31B179.8 (7)O32B—C31B—C32B—C31C3.3 (14)
O31B—C31B—O31C—C31C178.0 (15)O32C—C31B—C32B—C31C2.4 (14)
O32B—C31B—O31C—C31C3.4 (13)O32B—C31C—C32B—N2B23.6 (10)
C32B—C31B—O31C—C31C170.3 (16)O32C—C31C—C32B—N2B25.9 (7)
O32C—C31B—O31C—C31C1.8 (13)O31C—C31C—C32B—N2B156.8 (5)
O31C—C31B—O32C—C31C18 (13)O31B—C31C—C32B—N2B155.7 (2)
O31B—C31B—O32C—C31C17 (13)O32B—C31C—C32B—C31B174 (2)
O32B—C31B—O32C—C31C28 (13)O32C—C31C—C32B—C31B176 (2)
C32B—C31B—O32C—C31C157 (14)O31C—C31C—C32B—C31B6.2 (10)
C31B—O32B—C31C—O32C147 (14)O31B—C31C—C32B—C31B5.0 (11)
C31B—O32B—C31C—O31C42 (14)C32B—N2B—C42B—C41B163.45 (8)
C31B—O32B—C31C—O31B41 (14)C2B—N2B—C42B—C41B73.92 (10)
C31B—O32B—C31C—C32B138 (15)O42B—C41B—C42B—N2B1.98 (13)
C31B—O32C—C31C—O32B150 (14)O41B—C41B—C42B—N2B176.88 (8)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z+3/2; (iii) x, y, z+1/2; (iv) x+1, y, z+3/2; (v) x, y+1, z+1/2; (vi) x+1, y+1, z+2; (vii) x+1/2, y+3/2, z+1; (viii) x, y+1, z; (ix) x+1/2, y1/2, z+3/2; (x) x, y1, z; (xi) x, y+1, z1/2; (xii) x, y, z1/2; (xiii) x+1, y+1, z+1; (xiv) x+1, y+1, z+3/2; (xv) x+1, y1, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O12Ai0.841.852.6855 (14)170
O1W—H12W···O21Bxi0.842.072.8854 (13)163
O1W—H12W···O22Bxi0.842.383.0465 (14)137
O2W—H21W···O12Bx0.841.972.8061 (12)173
O2W—H22W···O32B0.842.062.889 (2)167
O2W—H22W···O31C0.842.112.803 (10)140
O2W—H22W···O32C0.842.283.073 (7)158
O2W—H22W···O31B0.842.593.253 (4)136
O3W—H31W···O41B0.841.992.8261 (12)171
O3W—H31W···O42B0.842.472.9975 (13)121
O3W—H32W···O22Aiii0.841.842.6769 (13)170
O4W—H41W···O11A0.841.932.7673 (11)175
O4W—H42W···O12B0.842.102.9237 (14)169
O5W—H51W···O42A0.841.862.7045 (11)175
O5W—H52W···O41Biv0.842.052.8905 (15)176
O6W—H61W···O1Wi0.842.132.9645 (14)172
O6W—H62W···O3Wix0.841.922.7506 (15)170
O7W—H71W···O12Bi0.832.132.8991 (15)153.7
O7W—H72W···O32Cxii0.841.832.647 (7)165.9
O7W—H72W···O32Bxii0.842.002.825 (3)170.1
O71W—H71W···O12Bi0.872.132.984 (9)164.6
O71W—H72W···O32Cxii0.851.832.496 (11)134.6
O71W—H72W···O32Bxii0.852.002.733 (9)144.6
O8W—H82W···O9W0.852.012.824 (11)162
O8W—H81W···O22Aviii0.842.273.033 (3)152
O9W—H91W···O31Bviii0.842.112.944 (7)172
O9W—H92W···O9Wiv0.842.062.686 (16)131
O9W—H92W···O91Wiv0.842.242.996 (15)150
O91W—H94W···O31Bviii0.842.182.936 (7)149
O91W—H93W···O9Wiv0.842.462.996 (15)123
C12A—H12B···O31Ax0.992.543.3905 (15)144
C22A—H22A···O8Wx0.992.563.410 (3)144
C42A—H42A···O8W0.992.493.321 (3)141
C42A—H42B···O22Aviii0.992.583.3954 (15)139
C2B—H2B2···O42B0.992.493.0675 (15)117
Symmetry codes: (i) x+1/2, y+1/2, z+1; (iii) x, y, z+1/2; (iv) x+1, y, z+3/2; (viii) x, y+1, z; (ix) x+1/2, y1/2, z+3/2; (x) x, y1, z; (xi) x, y+1, z1/2; (xii) x, y, z1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formula2K+·C10H14N2O82·2H2O3K+·C10H13N2O83·2H2O4K+·C10H12N2O84·3.92H2O
Mr404.46442.56515.21
Crystal system, space groupMonoclinic, P21/nTriclinic, P1Monoclinic, C2/c
Temperature (K)11011090
a, b, c (Å)8.869 (3), 18.653 (5), 9.613 (3)8.074 (3), 9.987 (3), 11.045 (3)30.033 (9), 9.700 (3), 31.513 (9)
α, β, γ (°)90, 94.56 (3), 90101.68 (3), 102.19 (3), 96.85 (3)90, 114.27 (3), 90
V3)1585.3 (8)840.2 (5)8369 (5)
Z4216
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.650.870.91
Crystal size (mm)0.31 × 0.12 × 0.080.27 × 0.19 × 0.190.21 × 0.15 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur PX KM-4-CCD
diffractometer
Oxford Diffraction Xcalibur PX KM-4-CCD
diffractometer
Oxford Diffraction Xcalibur PX KM-4-CCD
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2008)
Analytical
(CrysAlis RED; Oxford Diffraction, 2008)
Analytical
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.879, 0.9590.808, 0.8860.831, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
30091, 8782, 6388 24301, 9029, 7083 64671, 18115, 13121
Rint0.0340.0220.035
(sin θ/λ)max1)0.8770.8760.808
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.072, 1.02 0.024, 0.065, 1.01 0.027, 0.054, 1.02
No. of reflections8782902918115
No. of parameters217226549
No. of restraints003
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.430.44, 0.340.50, 0.33

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), XP in SHELXTL (Bruker, 1997), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O320.932.012.8029 (12)142.3
N1—H1···O210.932.192.6869 (11)112.4
N2—H2···O210.932.042.8617 (12)147.2
N2—H2···O320.932.322.7425 (11)107.4
N2—H2···O420.932.382.7004 (13)100.0
O1W—H12W···O420.861.902.7384 (13)166.1
O1W—H11W···O41i0.861.882.7226 (12)167.3
O2W—H21W···O1Wi0.862.062.8588 (14)153.9
O2W—H22W···O31ii0.861.902.7350 (11)163.8
C1—H1A···O31iii0.992.353.2480 (15)149.7
C2—H2A···O1Wiv0.992.603.5644 (16)165.0
C1—H1B···O12v0.992.503.0316 (12)113.6
C22—H22A···O41vi0.992.283.2205 (14)159.3
C32—H32A···O12vii0.992.333.2703 (14)157.9
C32—H32B···O11v0.992.483.3647 (12)147.9
C42—H42A···O2W0.992.393.2365 (14)142.6
C42—H42B···O2Wviii0.992.363.3349 (15)166.3
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1/2, y1/2, z+3/2; (iii) x1/2, y+3/2, z1/2; (iv) x1, y, z; (v) x1/2, y+3/2, z+1/2; (vi) x, y, z1; (vii) x, y, z+1; (viii) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O420.932.122.6364 (11)113.8
N2—H2···N10.932.502.9505 (15)110.1
O2W—H21W···O12i0.851.862.6690 (12)156.5
O2W—H22W···O110.861.962.7933 (12)162.1
O3W—H31W···O220.861.922.7786 (12)174.8
O3W—H32W···O41ii0.862.513.2101 (16)139.2
O3W—H32W···O21iii0.862.553.2417 (17)138.1
C1—H1B···O31iv0.992.343.3040 (13)164.3
C2—H2A···O12v0.992.583.4313 (15)144.4
C32—H32B···O31iv0.992.443.3870 (18)160.5
C42—H42A···O11v0.992.533.4338 (15)151.9
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z; (iii) x, y+2, z; (iv) x+1, y+1, z+1; (v) x+1, y, z.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O12Ai0.841.852.6855 (14)170.3
O1W—H12W···O21Bii0.842.072.8854 (13)162.9
O1W—H12W···O22Bii0.842.383.0465 (14)136.9
O2W—H21W···O12Biii0.841.972.8061 (12)173.0
O2W—H22W···O32B0.842.062.889 (2)167.3
O2W—H22W···O31C0.842.112.803 (10)139.9
O2W—H22W···O32C0.842.283.073 (7)157.9
O2W—H22W···O31B0.842.593.253 (4)136.3
O3W—H31W···O41B0.841.992.8261 (12)171.4
O3W—H31W···O42B0.842.472.9975 (13)121.2
O3W—H32W···O22Aiv0.841.842.6769 (13)170.0
O4W—H41W···O11A0.841.932.7673 (11)174.6
O4W—H42W···O12B0.842.102.9237 (14)169.1
O5W—H51W···O42A0.841.862.7045 (11)174.6
O5W—H52W···O41Bv0.842.052.8905 (15)176.4
O6W—H61W···O1Wi0.842.132.9645 (14)171.8
O6W—H62W···O3Wvi0.841.922.7506 (15)169.5
O7W—H71W···O12Bi0.832.132.8991 (15)153.7
O7W—H72W···O32Cvii0.841.832.647 (7)165.9
O7W—H72W···O32Bvii0.842.002.825 (3)170.1
O71W—H71W···O12Bi0.872.132.984 (9)164.6
O71W—H72W···O32Cvii0.851.832.496 (11)134.6
O71W—H72W···O32Bvii0.852.002.733 (9)144.6
O8W—H82W···O9W0.852.012.824 (11)161.6
O8W—H81W···O22Aviii0.842.273.033 (3)151.5
O9W—H91W···O31Bviii0.842.112.944 (7)172.2
O9W—H92W···O9Wv0.842.062.686 (16)131.2
O9W—H92W···O91Wv0.842.242.996 (15)149.9
O91W—H94W···O31Bviii0.842.182.936 (7)149.4
O91W—H93W···O9Wv0.842.462.996 (15)122.9
C12A—H12B···O31Aiii0.992.543.3905 (15)144.2
C22A—H22A···O8Wiii0.992.563.410 (3)143.5
C42A—H42A···O8W0.992.493.321 (3)140.8
C42A—H42B···O22Aviii0.992.583.3954 (15)139.3
C2B—H2B2···O42B0.992.493.0675 (15)116.6
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y+1, z1/2; (iii) x, y1, z; (iv) x, y, z+1/2; (v) x+1, y, z+3/2; (vi) x+1/2, y1/2, z+3/2; (vii) x, y, z1/2; (viii) x, y+1, z.
Experimental data for three potassium edta salts top
K2[H2edta].2H2O (I)K3[Hedta].2H2O (II)K4[edta].3.92H2O (III)
Crystal data
Empirical formulaC10H18K2N2O10C10H17K3N2O10C10H19.74K4N2O11.92
Formula weight (gmol-1)404.46442.56515.21
Crystal systemMonoclinicTriclinicMonoclinic
Space groupP21/nP1C2/c
a (Å)8.869 (3)8.074 (3)30.033 (9)
b (Å)18.653 (5)9.987 (3)9.700 (3)
c (Å)9.613 (3)11.045 (3)31.513 (9)
α (°)101.68 (3)
β (°)94.56 (3)102.19 (3)114.27 (3)
γ (°)96.85 (3)
V-3)1585.3 (8)840.2 (5)8369 (5)
Z4216
Dcalc (gcm-3)1.6951.7491.636
µ (mm-1)0.650.870.91
F(000)8404564242
Crystal size (mm)0.31x0.12x 0.080.27x0.19x0.190.23x0.22x0.17
Crystal colourcolourlesscolourlesscolourless
Crystal formblockblockblock
Data collection
DiffractometerXcalibur PX KM4CCDXcalibur PX KM4CCDXcalibur PX KM4CCD
MonochromatorGraphiteGraphiteGraphite
Radiation typeMoKαMoKαMoKα
wavelength, λ(Å)0.710730.710730.71073
T (K)110 (2)110 (2)90 (2)
θ range (°)4.25-38.554.58-38.522.61-35.07
h,k,l range-14h15-12h14-47h48
-32k32-17k17-12k15
-12l16-19l19-50l46
Absorption correctionAnalyticalAnalyticalAnalytical
TminTmax0.879/0.9590.808/0.8860.818/0.861
Measured reflections300912430164671
Independent refl.8782902918115
Observed refl.6388708313121
(I2σ(I))
Rint0.03350.02210.0348
R0.03030.02420.0268
wR20.07150.06440.0537
Refinement
Goof=S1.0191.0091.016
Δρmaxρmin(-3)0.55/-0.430.44/-0.340.50/-0.33
Selected interatomic distances (Å), valence and torsion angles (°) for three potassium edta salts top
(I)(II)(IIIa)(IIIb)
C1—C21.5163 (11)1.5131 (12)1.5225 (13)1.5295 (14)
C11—C121.5326 (12)1.5354 (11)1.5313 (13)1.5333 (14)
C21—C221.5316 (12)1.5350 (11)1.5339 (14)1.5386 (14)
C31—C321.5252 (12)1.5270 (11)1.5353 (15)1.498 (2)
C41—C421.5256 (13)1.5333 (11)1.5285 (14)1.5324 (14)
C1—N11.5038 (11)1.4741 (11)1.4707 (13)1.4714 (12)
C2—N21.5035 (11)1.4987 (11)1.4668 (13)1.4773 (12)
C12—N11.4959 (10)1.4696 (11)1.4662 (12)1.4688 (13)
C22—N11.5010 (11)1.4694 (10)1.4688 (12)1.4634 (13)
C32—N21.4978 (11)1.4894 (10)1.4625 (12)1.4642 (13)
C42—N21.5001 (10)1.4937 (11)1.4637 (12)1.4658 (13)
C11—O111.2560 (10)1.2508 (11)1.2566 (12)1.2413 (12)
C11—O121.2505 (10)1.2585 (11)1.2752 (11)1.2874 (12)
C21—O211.2652 (10)1.2471 (10)1.2516 (12)1.2615 (12)
C21—O221.2498 (10)1.2636 (9)1.2689 (12)1.2607 (13)
C31—O311.2580 (10)1.2496 (9)1.2660 (12)1.251 (2)
C31—O321.2579 (10)1.2579 (9)1.2548 (12)1.278 (2)
C41—O411.2588 (11)1.2499 (10)1.2665 (11)1.2784 (12)
C41—O421.2457 (12)1.2512 (10)1.2579 (12)1.2507 (12)
N1—C1—C2114.78 (7)112.98 (7)114.04 (8)113.38 (8)
N2—C2—C1115.54 (7)111.15 (7)113.78 (8)113.61 (8)
C12—N1—C1109.65 (6)107.16 (6)108.77 (7)111.42 (8)
C22—N1—C1113.01 (6)110.20 (6)111.41 (8)112.37 (8)
C12—N1—C22112.17 (6)109.34 (6)110.12 (8)110.24 (8)
C32—N2—C2112.83 (6)114.23 (6)112.36 (8)110.38 (8)
C42—N2—C2108.90 (6)110.77 (6)109.37 (8)110.67 (8)
C32—N2—C42110.61 (6)112.28 (6)110.29 (8)110.58 (8)
N1—C12—C11111.52 (7)114.75 (6)113.96 (8)114.30 (8)
N1—C22—C21112.00 (6)116.01 (6)113.48 (8)114.30 (8)
N2—C32—C31113.24 (7)109.49 (6)112.87 (8)117.63 (14)
N2—C42—C41111.53 (7)109.40 (6)114.24 (8)114.69 (8)
N1—C1—C2—N266.78 (9)58.12 (8)61.45 (11)65.79 (11)
O11—C11—C12—N1-11.14 (10)31.84 (10)30.89 (12)-14.70 (13)
O12—C11—C12—N1170.42 (7)-152.21 (7)-151.88 (8)165.53 (8)
O21—C21—C22—N1-2.74 (10)13.17 (10)30.00 (12)7.18 (13)
O22—C21—C22—N1177.84 (7)-169.15 (6)-151.11 (8)-176.39 (9)
O31—C31—C32—N2174.33 (7)-160.49 (6)-154.80 (8)-154.94 (13)
O32—C31—C32—N2-6.78 (10)20.36 (9)27.39 (12)28.7 (2)
O41—C41—C42—N2165.31 (7)-157.85 (7)-163.13 (8)176.88 (8)
O42—C41—C42—N2-16.05 (11)23.95 (9)20.68 (12)-1.98 (13)
Notes: (I) K2[C10H14N2O8].2H2O; (II) K3[C10H13N2O8].2H2O; (III) K4[C10H12N2O8].3.92H2O; The values of geometric parameters are shown only for atoms with high-occupancy positions.
Coordinates spheres of potassium cations in (I)-(III) with K-O, K-N and the shortest K···K distances (Å) top
K2[C10H14N2O8].2H2O (I)
K1–O112.6746 (11)K1–O1W2.7350 (11)K2–O41v2.8218 (12)
K1–O212.9255 (9)K2–O212.7836 (9)K2–O42v2.8675 (12)
K1–O322.8129 (10)K2–O222.9641 (12)K2–O2W2.8502 (12)
K1–O12i2.7447 (9)K2–O11ii2.7138 (9)K1···K24.6515 (11)
K1–O22ii2.7650 (9)K2–O31iv2.9309 (9)K1···K2ii3.6987 (10)
K1–O31iii3.1269 (12)
K3[C10H13N2O8].2H2O (II)
K1–O112.7077 (11)K2–O322.8625 (10)K3–O31vi2.7363 (14)
K1–O212.6637 (9)K2–O21vi2.9180 (14)K3–O41vii2.7781 (10)
K1–O322.6962 (11)K2–O22viii2.6767 (10)K3–O3W2.8185 (10)
K1–N13.1769 (13)K2–O42vi2.6156 (10)K3–O2Wix3.0512 (12)
K1–O32vi2.6767 (11)K2–O2W2.7386 (15)K1···K1vi3.6881 (18)
K1–O41vii2.7351 (12)K3–O213.0836 (12)K1···K2vi4.0729 (13)
K1–O42vi3.0873 (12)K3–O12x2.8447 (11)K2···K3vi4.1238 (16)
K2–O312.7182 (11)K3–O22xi2.7814 (14)K2···K3ix4.0096 (15)
K4[C10H12N2O8].3.92H2O (III)
K1–O11A2.8597 (10)K3–O22B2.9769 (11)K5–O11B2.6290 (10)
K1–O21A2.7664 (10)K3–O42B2.7194 (9)K5–O32B2.883 (2)
K1–O32A2.6942 (10)K3–O41Axv2.6766 (10)K5–O32C2.757 (7)
K1–O42A2.8555 (11)K3–O41Axvi2.8124 (13)K5–O21Biv2.7210 (11)
K1–N1A2.8748 (12)K3–O42Axvi2.9286 (10)K5–O2Wxiii2.8014 (10)
K1–N2A2.9515 (13)K3–O3W2.9332 (11)K5–O7Wxii3.053 (4)
K1–O11Axii3.0339 (15)K3–O1Wxvi3.0778 (12)K1···K84.0693 (9)
K2–O11B2.9625 (12)K4–O31A2.8269 (13)K3···K71xv3.886 (15)
K2–O21B2.7452 (11)K4–O32A2.9176 (11)K3···K3v3.9455 (18)
K2–O32B3.076 (4)K4–O21Axii2.7465 (10)K3···K7xv4.0012 (12)
K2–O32C2.709 (9)K4–O31Axvii2.8655 (11)K4···K4xvii3.6949 (9)
K2–O42B2.7474 (14)K4–O32Axvii2.7610 (10)K4···K6xviii4.0013 (14)
K2–N1B2.8616 (10)K4–O4W2.7353 (10)K5···K64.2267 (10)
K2–N2B2.8092 (10)K4–O6Wxviii3.1637 (12)K5···K2iv4.4600 (11)
K2–O2Wxiii2.7098 (13)K5–O12A2.7412 (10)K5···K8xii4.4563 (17)
K2–O6Wxiii3.3299 (13)
Notes: Symmetry codes: (i) x+1/2, -y+3/2, z+1/2; (ii) -x+1, -y+1, -z+1; (iii) x+1/2, -y+3/2, z-1/2; (iv) -x+1/2, y-1/2, -z+3/2; (v) -x+1, -y+1, -z+2; (vi) -x+1, -y+2, -z+1; (vii) x-1, y, z; (viii) x, y,z+1; (ix) -x, -y+2, -z+1; (x) x, y+1, z; (xi) -x, -y+2, -z; (xii) -x+1/2, -y+1/2,-z+1; (xiii) -x+1/2, y+1/2, -z+3/2; (xiv) x, -y, z+1/2; (xv) -x+1, y, -z+3/2; (xvi) x, -y+1, z+1/2; (xvii) -x+1/2, -y+3/2, -z+1; (xviii) -x+1/2, y+1/2, -z+3/2;
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds