Download citation
Download citation
link to html
Crystallization of 2,4,5,7-tetra­nitro-9-(di­cyano­methyl­ene)­fluor­ene [DTeF; systematic name: 2-(2,4,5,7-tetra­nitro­fluorene-9-yl­idene)­propane­di­nitrile] and 2,4,5,7-tetra­nitrofluoren-9-one (TeNF) from chloro­benzene in the presence of π-donor compounds yielded the chloro­benzene solvate, C16H4N6O8·C6H5Cl, and the bis­(chloro­benzene) solvate, C13H4N4O9·2C6H5Cl, respectively. Both structures comprise mixed stacks of twisted fluorene moieties interspersed with nearly parallel chloro­benzene mol­ecules. Solvent-free crystals of DTeF and TeNF were obtained from pure chloro­benzene.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101011556/gg1068sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101011556/gg1068Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101011556/gg1068IIsup3.hkl
Contains datablock II

CCDC references: 175080; 175081

Comment top

2,4,5,7-Tetranitro-9-dicyanomethylenefluorene (DTeF) and 2,4,5,7-tetranitrofluoren-9-one (TeNF) are strong electron acceptors with potentially useful photoelectronic properties (Pravednikov et al., 1978). They readily form charge-transfer (CT) complexes with donor molecules (Brown et al., 1974; Grigg et al., 1978; Baldwin & Baughman, 1993; Shah & Baughman, 1994), particularly with tetrathiafulvalene (TTF) and its derivatives (Soriano-García et al., 1989; Perepichka et al., 1998, 2000; Bryce, Moore et al., 1999; Batsanov et al., 2001). CT complexes of DTeF and TeNF with bis(ethylenedioxy)tetrathiafulvalene (BEDO-TTF) have interesting electric properties: (TeNF)(BEDO-TTF) is a semiconductor, while (DTeF)(BEDO-TTF)2 shows metallic conductivity (Horiuchi et al., 1996).

In search of new CT complexes, we attempted to co-crystallize DTeF with the π-donor compounds 4-iodo-4',5,5'-trimethyltetrathiafulvalene, (III) (John et al., 1998), or 8,9-bis(methylsulfanyl)acenaphtho[1,2-b][1,4]dithiine, (IV) (Bryce, Lay et al., 1999), and TeNF with N,N-dimethylaminoferrocene, (V), from chlorobenzene solutions. Unexpectedly, we obtained instead the chlorobenzene solvates, DTeF·PhCl, (I), and TeNF·2PhCl, (II), respectively. Even more surprisingly, crystallization of the same acceptor compounds from pure chlorobenzene gave only the previously known solvent-free phases of DTeF (Silverman et al., 1974) or TeNF (Chetkina et al., 1987; Baughman, 1987). Thus, the presence of compounds (III)-(V) in solution affects the composition of the growing crystal without these compounds themselves being incorporated into the structure. Although at present we have no evidence of how general this effect is, or of its possible mechanism, it certainly deserves attention. A plausible explanation (which, of course, requires much more experimental data to be proven) is that complexes between the electron donor (DTeF, TeNF) and acceptor [(III)-(V)] molecules exist in solution and, due to CT, are solvated more strongly than the isolated acceptor molecules. However, the CT complex itself is highly soluble and is not precipitated under these conditions. On cooling or on slow evaporation, the acceptor component of the CT complex starts to crystallize first, but due to the strong association between this component and the chlorobenzene solvent, desolvation does not occur and the mixed stack of acceptor molecules and solvent is formed. Obviously, this effect can not be observed if the CT complex has low solubility and crystallizes first. \sch

Complexes (I) and (II) do not exhibit CT bands in their UV-visible spectra and can be described as host–guest complexes of neutral molecules, in agreement with the structural data (see below). The DTeF molecule in (I) (Fig. 1) has essentially the same geometry as in the solvent-free phase studied at room temperature, apart from the usual systematic errors caused by thermal libration in the latter (i.e. a shortening of most bonds by 0.01–0.02 Å).

In (I), the longest bonds in the benzene rings are the fused ones, C10—C11 and C12—C13, while the opposing bonds C2—C3 and C6—C7 are the shortest [average 1.418 (2) versus 1.382 (2) Å)], as seen in Table 1. A similar relation was observed in pure TeNF [1.41 (1) versus 1.36 (1) Å], although the effect was somewhat exaggerated by thermal motion. Aromatic π delocalization is largely confined to the benzene rings. The C11—C12 bond linking the rings remains essentially single at 1.482 (2) Å, compared with the standard single Carene—Carene bond of 1.490 Å (Allen et al., 1987). The exocyclic C9C14 bond of 1.357 (2) Å is longer than the standard double bond of 1.331 Å (Allen et al., 1987), due to π conjugation with the cyano groups, while the C9—C10 and C9—C13 bond distances [average 1.481 (2) Å] reveal the absence of conjugation between C9C14 and the benzene rings. Note that the accumulation of negative charge on DTeF should result in the five-membered ring acquiring aromatic character.

The fluorene system of (I) has a twisted conformation, caused by steric crowding between the nitro groups in the 4- and 5-positions. These groups tilt out of the fluorene plane in opposite directions, dragging with them the adjacent parts of the fluorene moiety, especially atoms C4 and C5. Thus, atoms C1, C2, C7, C8, C9, C10, C12, C13, C14, C16 and N16 lie in one plane (plane A) to within ±0.03 Å. The deviations of other atoms from this plane are: C3 0.22, C4 0.32, C5 - 0.26, C6 - 1/5, C11 0.10, C15 - 0.11 and N15 - 0.21 Å. The torsion angles around the C4—N4 and C5—N5 bonds [22.6 (1) and 28.3 (1)°] are larger than those around the C2—N2 and C7—N7 bonds [15.1 (1) and 7.4 (1)°], and the C4—N4 and C5—N5 bonds are tilted out of the sp2 planes of C4 and C5 by 4.4 (1) and 8.1 (1)°, respectively, which also reveals the steric strain.

The DTeF and chlorobenzene molecules in (I) form an infinite mixed stack (Fig. 3), wherein the planes of the benzene ring and the fluorene plane A are parallel to within 1°, with uniform interplanar separations of ca 3.36 Å. The Cl atom is situated over the centre of the five-membered fluorene ring and the resulting Cl···C distances range from 3.464 (3) to 3.623 (3) Å. The stacks pack in a herringbone motif, stabilized by interstack nonvalent interactions; Cl···O7(x, 1/2 - y, 1/2 + z) 3.077 (2) Å and O2···N5 (x, -1/2 - y, 1/2 + z) 2.912 (2) Å, cf. the standard van der Waals contacts Cl···O 3.33 and O···N 3.28 Å (Rowland & Taylor, 1996).

In structure (II) (Fig. 2), the bond geometry of the TeNF molecule is in good agreement with the results of the two independent room-temperature studies of pure TeNF (Chetkina et al., 1987; Baughman, 1987). The five-membered ring of TeNF displays even less π conjugation than in DTeF, with essentially single bonds at C11—C12 [1.502 (9) Å], and C9—C10 and C9—C13 [average 1.51 (1) Å]. The twist of the fluorene moiety is similar to that in DTeF: in (II), the average deviation of the 13 fluorene C atoms from their mean plane is 0.110 Å, and the maximum deviations are 0.17 (C4) and -0.22 Å (C5), compared with 0.115, 0.23 and -0.20 Å, respectively, in (I). Unlike DTeF, TeNF contains no extensive planar fragment. The torsion angles around the C2—N2, C4—N4, C5—N5 and C7—N7 bonds, 9.2 (2), 29.8 (2), 35.6 (2) and 3.1 (2)°, respectively, reflect steric crowding between the 4- and 5-nitro groups and the absence of strain elsewhere.

The structure of (II) also comprises infinite mixed stacks, parallel to the a axis, wherein TeNF molecules are interspersed with pairs of chlorobenzene molecules (Fig. 4). The latter are inclined by 17.2 (2) and 8.5 (1)° to the mean fluorene plane and by 17.6 (2)° to each other. Hence the interplanar separations are wider than in (II) [surely in (I)?] by ca 0.1 Å. Unlike (I), in (II) the molecular planes in adjacent stacks are nearly parallel. The interstack contacts Cl1···O9(x - 1, -1/2 - y, 1/2 + z) [3.198 (7) Å] and Cl2···O3 (1 - x, 1 - y, -z) [3.118 (8) Å] are shorter than the normal van der Waals contact of 3.33 Å (Rowland & Taylor, 1996).

Related literature top

For related literature, see: Allen et al. (1987); Baldwin & Baughman (1993); Batsanov et al. (2001); Baughman (1987); Brown et al. (1974); Bryce, Lay, Chesney, Batsanov, Howard, Buser, Gerson & Merstetter (1999); Bryce, Moore, Batsanov, Howard, Robertson & Perepichka (1999); Chetkina et al. (1987); Grigg et al. (1978); Horiuchi et al. (1996); John et al. (1998); Perepichka et al. (1998, 2000); Pravednikov et al. (1978); Rowland & Taylor (1996); Shah & Baughman (1994); Silverman et al. (1974); Soriano-García, Toscano, Robles Martínez, Salmerón & Lezama (1989).

Experimental top

For the preparation of (I), DTeF (5.6 mg, 0.014 mmol) was dissolved in hot chlorobenzene (3.0 ml), compound (III) (10.4 mg, 0.028 mmol) was added and the solution was left to cool slowly to room temperature, affording fine yellow crystals of solvate (I). Repeating the procedure, scaled up fivefold, gave identical crystals. Analysis calculated for C22H9ClN6O8: C 50.74, H 1.74, Cl 6.81, N 16.14%; found: C 50.42, H 1.85, Cl 6.95, N 16.07%. In a different route, using an alternative π-donor compound, DTeF (7.0 mg, 0.017 mmol) was dissolved in hot chlorobenzene (7.0 ml), compound (IV) (5.9 mg, 0.018 mmol) was added, and the solution was allowed to cool to room temperature and left to evaporate slowly for several days, yielding crystals of (I). For the preparation of (II), TeNF (10.0 mg, 0.028 mmol) was dissolved in hot chlorobenzene (8.0 ml), compound (V) (20.0 mg, 0.082 mmol) was added and the solution was left at room temperature to evaporate slowly for two weeks, whereupon crystals of solvate (II) were formed, but only in small amounts and insufficient for elemental analysis. Control experiments were carried out as follows. DTeF (6.0 mg) was dissolved in hot chlorobenzene (2.5, 3.5 and 5.0 ml were used in three runs) and crystallized by slow evaporation. X-ray determination of the unit cell identified the crystals as solvent-free DTeF (Silverman et al., 1974). The same procedure was repeated with TeNF.

Refinement top

All H atoms in (I) were refined independently in an isotropic approximation [C—H bonds 0.94 (2) to 0.97 (2) Å]. In (II), the H atoms were treated as riding, with C—H = 0.95 Å and Uiso(H) fixed to 1.2Ueq of the parent C atom. The reflections from (II) were generally weak [average I/σ(I) ratio of 6.0] and surrounded with very anisotropic peaks of diffuse scattering, hence the high Rint, final R and S. Although the crystal faces were indexed, an absorption correction by numerical integration (Tmax = 0.993, Tmin = 0.847) resulted in no overall improvement.

Computing details top

For both compounds, data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1995); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), viewed as a parallel projection on the fluorene mean plane. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The asymmetric unit of (II), viewed as a parallel projection on the fluorene mean plane. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. The crystal packing of (I), showing short intermolecular contacts.
[Figure 4] Fig. 4. The crystal packing of (II), showing short intermolecular contacts.
(I) 2-(2,4,5,7-tetranitrofluorene-9-ylidene)propanedinitrile chlorobenzene solvate top
Crystal data top
C16H4N6O8·C6H5ClF(000) = 1056
Mr = 520.80Dx = 1.600 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.823 (2) ÅCell parameters from 512 reflections
b = 8.360 (6) Åθ = 12–20°
c = 17.461 (3) ŵ = 0.24 mm1
β = 118.33 (1)°T = 150 K
V = 2161.6 (16) Å3Prism, yellow
Z = 40.28 × 0.22 × 0.18 mm
Data collection top
Siemens SMART 1K CCD area-detector
diffractometer
4169 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 27.5°, θmin = 1.4°
Detector resolution: 8 pixels mm-1h = 2120
ω scansk = 1010
22991 measured reflectionsl = 2222
4962 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: difference Fourier map
wR(F2) = 0.092All H-atom parameters refined
S = 1.10 w = 1/[σ2(Fo2) + (0.0297P)2 + 1.4795P]
where P = (Fo2 + 2Fc2)/3
4962 reflections(Δ/σ)max < 0.001
370 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
C16H4N6O8·C6H5ClV = 2161.6 (16) Å3
Mr = 520.80Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.823 (2) ŵ = 0.24 mm1
b = 8.360 (6) ÅT = 150 K
c = 17.461 (3) Å0.28 × 0.22 × 0.18 mm
β = 118.33 (1)°
Data collection top
Siemens SMART 1K CCD area-detector
diffractometer
4169 reflections with I > 2σ(I)
22991 measured reflectionsRint = 0.034
4962 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.092All H-atom parameters refined
S = 1.10Δρmax = 0.30 e Å3
4962 reflectionsΔρmin = 0.54 e Å3
370 parameters
Special details top

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 5 sets of ω scans; each set at different ϕ and/or 2θ angles and each scan (10 s exposure) covered 0.3° in ω. The crystal to detector distance was 4.5 cm. Crystal decay was monitored by repeating 50 initial frames at the end of data collection and comparing 263 duplicate reflections.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.23854 (11)0.19503 (19)0.34253 (10)0.0212 (3)
H10.1855 (13)0.230 (2)0.3425 (12)0.024 (5)*
C20.32228 (11)0.24500 (19)0.40781 (10)0.0221 (3)
C30.40327 (11)0.18737 (19)0.41742 (10)0.0219 (3)
H30.4602 (13)0.218 (2)0.4659 (12)0.024 (5)*
C40.40084 (10)0.07805 (18)0.35642 (9)0.0196 (3)
C50.34500 (10)0.11195 (18)0.16181 (10)0.0182 (3)
C60.30495 (11)0.20857 (18)0.08858 (10)0.0195 (3)
H60.3387 (12)0.248 (2)0.0629 (12)0.023 (5)*
C70.21337 (11)0.23966 (18)0.05338 (9)0.0202 (3)
C80.15945 (11)0.17234 (19)0.08505 (10)0.0204 (3)
H80.0965 (13)0.193 (2)0.0568 (12)0.023 (5)*
C90.16176 (10)0.01653 (18)0.20435 (9)0.0187 (3)
C100.23862 (10)0.09306 (18)0.27946 (10)0.0190 (3)
C110.32020 (10)0.03994 (17)0.28250 (9)0.0179 (3)
C120.29654 (10)0.05363 (17)0.20241 (9)0.0174 (3)
C130.20180 (10)0.07749 (18)0.15932 (10)0.0184 (3)
C140.07282 (11)0.03101 (19)0.18105 (10)0.0220 (3)
C150.03905 (11)0.1325 (2)0.22607 (11)0.0273 (4)
C160.00240 (11)0.0503 (2)0.10676 (11)0.0240 (3)
N20.32456 (11)0.35946 (17)0.47329 (9)0.0282 (3)
N40.48503 (9)0.01231 (17)0.38111 (8)0.0229 (3)
N50.43829 (9)0.06086 (16)0.18837 (8)0.0196 (3)
N70.17001 (9)0.34439 (17)0.02414 (8)0.0244 (3)
N150.00956 (11)0.2142 (2)0.25905 (11)0.0405 (4)
N160.05422 (10)0.1107 (2)0.04664 (10)0.0330 (3)
O10.25449 (10)0.38247 (17)0.47685 (9)0.0404 (3)
O20.39689 (9)0.42598 (17)0.51972 (9)0.0421 (3)
O30.55675 (8)0.04650 (15)0.43572 (8)0.0301 (3)
O40.47786 (8)0.14739 (14)0.35047 (8)0.0297 (3)
O50.46121 (8)0.07217 (14)0.22242 (8)0.0263 (3)
O60.48590 (7)0.14971 (14)0.17174 (7)0.0256 (3)
O70.21897 (9)0.41470 (16)0.04710 (8)0.0321 (3)
O80.08731 (8)0.35537 (18)0.06039 (8)0.0380 (3)
Cl0.24376 (4)0.32680 (6)0.33292 (3)0.04034 (13)
C210.23139 (12)0.4516 (2)0.24742 (11)0.0272 (4)
C220.30763 (12)0.4980 (2)0.24204 (11)0.0272 (4)
H220.3672 (14)0.463 (3)0.2850 (13)0.035 (5)*
C230.29692 (12)0.5967 (2)0.17370 (12)0.0286 (4)
H230.3485 (14)0.631 (3)0.1685 (13)0.037 (6)*
C240.21124 (13)0.6465 (2)0.11179 (12)0.0297 (4)
H240.2054 (15)0.714 (3)0.0660 (15)0.044 (6)*
C250.13567 (12)0.5974 (2)0.11843 (12)0.0309 (4)
H250.0760 (15)0.629 (3)0.0760 (14)0.039 (6)*
C260.14494 (12)0.4998 (2)0.18646 (12)0.0302 (4)
H260.0942 (14)0.468 (3)0.1921 (13)0.036 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0255 (8)0.0198 (7)0.0222 (7)0.0001 (6)0.0146 (7)0.0014 (6)
C20.0326 (9)0.0182 (7)0.0170 (7)0.0019 (6)0.0130 (7)0.0000 (6)
C30.0262 (8)0.0195 (7)0.0171 (7)0.0033 (6)0.0079 (6)0.0021 (6)
C40.0208 (7)0.0192 (7)0.0182 (7)0.0009 (6)0.0088 (6)0.0037 (6)
C50.0183 (7)0.0164 (7)0.0198 (7)0.0004 (6)0.0089 (6)0.0031 (6)
C60.0224 (8)0.0180 (7)0.0198 (7)0.0022 (6)0.0114 (6)0.0014 (6)
C70.0248 (8)0.0184 (7)0.0154 (7)0.0012 (6)0.0079 (6)0.0000 (6)
C80.0192 (8)0.0203 (7)0.0196 (7)0.0010 (6)0.0076 (6)0.0013 (6)
C90.0215 (8)0.0165 (7)0.0189 (7)0.0017 (6)0.0102 (6)0.0009 (6)
C100.0214 (7)0.0171 (7)0.0191 (7)0.0021 (6)0.0101 (6)0.0023 (6)
C110.0218 (8)0.0152 (7)0.0170 (7)0.0023 (6)0.0094 (6)0.0024 (5)
C120.0197 (7)0.0151 (7)0.0170 (7)0.0001 (6)0.0084 (6)0.0031 (5)
C130.0196 (7)0.0171 (7)0.0194 (7)0.0008 (6)0.0100 (6)0.0019 (6)
C140.0222 (8)0.0239 (8)0.0222 (7)0.0008 (6)0.0123 (6)0.0018 (6)
C150.0207 (8)0.0341 (9)0.0278 (8)0.0016 (7)0.0121 (7)0.0012 (7)
C160.0200 (8)0.0282 (8)0.0273 (8)0.0002 (7)0.0141 (7)0.0017 (7)
N20.0400 (9)0.0235 (7)0.0214 (7)0.0015 (6)0.0149 (6)0.0022 (6)
N40.0219 (7)0.0250 (7)0.0193 (6)0.0006 (5)0.0078 (5)0.0056 (5)
N50.0188 (6)0.0211 (6)0.0185 (6)0.0005 (5)0.0086 (5)0.0026 (5)
N70.0272 (7)0.0253 (7)0.0193 (6)0.0025 (6)0.0098 (6)0.0028 (5)
N150.0294 (8)0.0530 (11)0.0433 (9)0.0012 (8)0.0208 (8)0.0118 (8)
N160.0235 (7)0.0416 (9)0.0314 (8)0.0052 (7)0.0110 (6)0.0041 (7)
O10.0506 (8)0.0397 (8)0.0462 (8)0.0086 (7)0.0355 (7)0.0155 (6)
O20.0388 (8)0.0428 (8)0.0315 (7)0.0016 (6)0.0060 (6)0.0177 (6)
O30.0196 (6)0.0343 (7)0.0264 (6)0.0038 (5)0.0028 (5)0.0046 (5)
O40.0301 (6)0.0249 (6)0.0291 (6)0.0057 (5)0.0101 (5)0.0011 (5)
O50.0276 (6)0.0224 (6)0.0316 (6)0.0072 (5)0.0164 (5)0.0056 (5)
O60.0207 (6)0.0271 (6)0.0299 (6)0.0045 (5)0.0128 (5)0.0006 (5)
O70.0359 (7)0.0346 (7)0.0297 (6)0.0012 (6)0.0188 (6)0.0104 (5)
O80.0254 (7)0.0503 (8)0.0308 (7)0.0065 (6)0.0072 (5)0.0146 (6)
Cl0.0638 (3)0.0312 (2)0.0334 (2)0.0042 (2)0.0291 (2)0.00185 (19)
C210.0376 (10)0.0209 (8)0.0265 (8)0.0018 (7)0.0180 (7)0.0042 (6)
C220.0250 (9)0.0242 (8)0.0298 (9)0.0002 (7)0.0108 (7)0.0061 (7)
C230.0284 (9)0.0263 (9)0.0363 (9)0.0027 (7)0.0197 (8)0.0041 (7)
C240.0352 (10)0.0239 (8)0.0309 (9)0.0022 (7)0.0165 (8)0.0012 (7)
C250.0249 (9)0.0292 (9)0.0353 (9)0.0046 (7)0.0116 (8)0.0049 (8)
C260.0286 (9)0.0281 (9)0.0399 (10)0.0043 (7)0.0211 (8)0.0084 (8)
Geometric parameters (Å, º) top
C1—C21.391 (2)C14—C151.444 (2)
C1—C101.393 (2)C14—C161.446 (2)
C1—H10.940 (19)C15—N151.147 (2)
C2—C31.378 (2)C16—N161.147 (2)
C2—N21.477 (2)N2—O11.225 (2)
C3—C41.389 (2)N2—O21.229 (2)
C3—H30.964 (19)N4—O41.231 (2)
C4—N41.478 (2)N4—O31.2307 (17)
C4—C111.395 (2)N5—O61.2241 (17)
C5—C61.387 (2)N5—O51.2334 (19)
C5—C121.398 (2)N7—O71.2240 (18)
C5—N51.4730 (19)N7—O81.2284 (18)
C6—C71.386 (2)Cl—C211.7508 (18)
C6—H60.935 (19)C21—C221.385 (2)
C7—N71.481 (2)C21—C261.394 (3)
C7—C81.386 (2)C22—C231.390 (3)
C8—C131.393 (2)C22—H220.97 (2)
C8—H80.949 (19)C23—C241.393 (3)
C9—C101.480 (2)C23—H230.96 (2)
C9—C131.481 (2)C24—C251.392 (3)
C9—C141.357 (2)C24—H240.94 (2)
C10—C111.419 (2)C25—C261.387 (3)
C11—C121.482 (2)C25—H250.96 (2)
C12—C131.417 (2)C26—H260.94 (2)
C2—C1—C10116.82 (15)C8—C13—C9129.48 (14)
C2—C1—H1119.9 (11)C12—C13—C9108.89 (13)
C10—C1—H1123.3 (11)C9—C14—C15123.50 (15)
C3—C2—C1123.58 (15)C9—C14—C16123.00 (15)
C3—C2—N2118.10 (14)C15—C14—C16113.47 (14)
C1—C2—N2118.24 (15)N15—C15—C14177.56 (19)
C2—C3—C4117.97 (15)N16—C16—C14178.05 (19)
C2—C3—H3121.7 (11)O1—N2—O2124.80 (15)
C4—C3—H3120.3 (11)O1—N2—C2117.96 (14)
C3—C4—N4115.93 (14)O2—N2—C2117.24 (15)
C11—C4—N4122.00 (14)O4—N4—O3124.14 (14)
C3—C4—C11121.43 (15)O4—N4—C4117.36 (13)
C6—C5—N5115.98 (13)O3—N4—C4118.25 (14)
C12—C5—N5122.00 (13)O6—N5—O5124.85 (13)
C6—C5—C12121.71 (14)O6—N5—C5117.94 (13)
C7—C6—C5118.01 (14)O5—N5—C5117.12 (13)
C7—C6—H6121.5 (11)O7—N7—O8124.68 (14)
C5—C6—H6120.5 (11)O7—N7—C7117.85 (13)
C6—C7—C8123.18 (14)O8—N7—C7117.46 (14)
C6—C7—N7118.55 (14)C22—C21—C26122.09 (16)
C8—C7—N7118.22 (14)C22—C21—Cl119.06 (14)
C7—C8—C13117.39 (14)C26—C21—Cl118.85 (14)
C7—C8—H8119.9 (11)C21—C22—C23118.53 (16)
C13—C8—H8122.7 (11)C21—C22—H22120.9 (12)
C14—C9—C10127.04 (14)C23—C22—H22120.6 (12)
C14—C9—C13127.07 (14)C22—C23—C24120.55 (17)
C10—C9—C13105.88 (13)C22—C23—H23120.3 (13)
C1—C10—C11121.70 (14)C24—C23—H23119.2 (13)
C1—C10—C9129.54 (14)C25—C24—C23119.78 (17)
C11—C10—C9108.69 (13)C25—C24—H24120.9 (13)
C4—C11—C10117.50 (14)C23—C24—H24119.3 (13)
C4—C11—C12134.53 (14)C26—C25—C24120.58 (17)
C10—C11—C12107.93 (13)C26—C25—H25118.4 (13)
C5—C12—C13117.48 (13)C24—C25—H25121.1 (13)
C5—C12—C11134.62 (14)C25—C26—C21118.47 (17)
C13—C12—C11107.82 (13)C25—C26—H26121.1 (13)
C8—C13—C12121.59 (14)C21—C26—H26120.4 (13)
(II) 2,4,5,7-tetranitrofluoren-9-one bis(chlorobenzene) solvate top
Crystal data top
C13H4N4O9·2C6H5ClDx = 1.589 Mg m3
Mr = 585.30Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 266 reflections
a = 6.984 (1) Åθ = 10–18°
b = 15.088 (2) ŵ = 0.33 mm1
c = 23.217 (2) ÅT = 150 K
V = 2446.5 (5) Å3Needle, pale yellow
Z = 40.52 × 0.03 × 0.02 mm
F(000) = 1192
Data collection top
Siemens SMART 1K CCD area-detector
diffractometer
2896 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.138
Graphite monochromatorθmax = 25.0°, θmin = 1.6°
Detector resolution: 8 pixels mm-1h = 88
ω scansk = 1714
14660 measured reflectionsl = 2727
4312 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.076H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.0001P)2 + 6.6293P]
where P = (Fo2 + 2Fc2)/3
S = 1.26(Δ/σ)max < 0.001
4312 reflectionsΔρmax = 0.38 e Å3
361 parametersΔρmin = 0.39 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (14)
Crystal data top
C13H4N4O9·2C6H5ClV = 2446.5 (5) Å3
Mr = 585.30Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.984 (1) ŵ = 0.33 mm1
b = 15.088 (2) ÅT = 150 K
c = 23.217 (2) Å0.52 × 0.03 × 0.02 mm
Data collection top
Siemens SMART 1K CCD area-detector
diffractometer
2896 reflections with I > 2σ(I)
14660 measured reflectionsRint = 0.138
4312 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.076H-atom parameters constrained
wR(F2) = 0.150Δρmax = 0.38 e Å3
S = 1.26Δρmin = 0.39 e Å3
4312 reflectionsAbsolute structure: Flack (1983)
361 parametersAbsolute structure parameter: 0.04 (14)
0 restraints
Special details top

Experimental. The data collection nominally covered over a hemisphere of reciprocal space, by a combination of 4 sets of ω scans; each set at different ϕ and/or 2θ angles and each scan (30 s exposure) covered 0.3° in ω. The crystal to detector distance was 4.5 cm. Crystal decay was monitored by repeating 50 initial frames at the end of data collection and comparing 92 duplicate reflections.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. Excluding Friedel equivalents: 2485 independent reflections, 1780 observed.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7506 (11)0.2251 (5)0.3300 (3)0.0258 (18)
H10.72880.16490.33970.031*
C20.7577 (10)0.2529 (5)0.2732 (3)0.0215 (16)
C30.7972 (11)0.3404 (4)0.2578 (3)0.0242 (17)
H30.80440.35720.21840.029*
C40.8250 (10)0.4025 (5)0.3019 (3)0.0224 (17)
C50.8149 (10)0.5156 (5)0.4324 (3)0.0201 (16)
C60.8476 (10)0.5404 (5)0.4892 (3)0.0238 (17)
H60.85090.60110.50000.029*
C70.8718 (10)0.4752 (5)0.5301 (3)0.0233 (18)
C80.8553 (10)0.3858 (5)0.5172 (3)0.0251 (18)
H80.86290.34160.54620.030*
C90.7924 (12)0.2740 (5)0.4362 (3)0.0268 (19)
C100.7765 (10)0.2879 (5)0.3715 (3)0.0206 (16)
C110.8039 (10)0.3789 (4)0.3598 (3)0.0175 (16)
C120.8165 (10)0.4269 (5)0.4164 (3)0.0190 (16)
C130.8273 (10)0.3647 (5)0.4606 (3)0.0206 (17)
O10.6679 (8)0.1145 (3)0.2402 (2)0.0342 (14)
O20.7580 (9)0.2121 (4)0.1769 (2)0.0402 (15)
O30.8291 (9)0.5189 (3)0.2371 (2)0.0440 (16)
O41.0009 (8)0.5295 (3)0.3156 (2)0.0338 (14)
O50.6383 (7)0.5686 (3)0.3554 (2)0.0260 (12)
O60.8301 (8)0.6611 (3)0.3997 (2)0.0348 (13)
O70.9267 (8)0.5818 (4)0.6005 (2)0.0393 (15)
O80.9506 (8)0.4433 (4)0.6251 (2)0.0357 (14)
O90.7786 (9)0.2042 (3)0.4615 (2)0.0376 (15)
N20.7257 (9)0.1883 (4)0.2263 (3)0.0269 (15)
N40.8889 (9)0.4909 (4)0.2837 (3)0.0276 (15)
N50.7576 (9)0.5869 (4)0.3922 (2)0.0237 (15)
N70.9196 (9)0.5024 (5)0.5893 (3)0.0293 (15)
Cl10.2935 (3)0.32668 (13)0.40230 (7)0.0308 (5)
C150.2965 (10)0.3233 (5)0.3260 (3)0.0222 (16)
C160.2576 (10)0.2436 (4)0.2996 (3)0.0219 (17)
H160.23270.19180.32160.026*
C170.2578 (10)0.2407 (5)0.2393 (3)0.0243 (18)
H170.22860.18700.21990.029*
C180.2992 (11)0.3166 (5)0.2081 (3)0.0297 (18)
H180.30050.31370.16720.036*
C190.3393 (11)0.3962 (5)0.2353 (3)0.0270 (18)
H190.36950.44760.21350.032*
C200.3359 (11)0.3995 (5)0.2962 (3)0.0283 (19)
H200.36000.45350.31590.034*
Cl20.4537 (3)0.49893 (17)0.62038 (9)0.0469 (6)
C210.4234 (12)0.5614 (6)0.5570 (3)0.034 (2)
C220.3507 (11)0.5185 (6)0.5092 (4)0.038 (2)
H220.31800.45750.51070.046*
C230.3284 (12)0.5672 (6)0.4586 (4)0.044 (2)
H230.27610.53960.42530.053*
C240.3838 (12)0.6560 (6)0.4575 (3)0.041 (2)
H240.36870.68950.42320.049*
C250.4591 (12)0.6956 (5)0.5061 (3)0.037 (2)
H250.49660.75600.50480.044*
C260.4817 (12)0.6483 (6)0.5567 (3)0.038 (2)
H260.53470.67520.59010.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.026 (5)0.026 (4)0.025 (4)0.008 (4)0.002 (3)0.001 (3)
C20.018 (4)0.025 (4)0.022 (4)0.004 (3)0.004 (3)0.004 (3)
C30.028 (4)0.024 (4)0.020 (4)0.003 (4)0.000 (3)0.006 (3)
C40.019 (4)0.028 (4)0.020 (4)0.000 (3)0.003 (3)0.002 (3)
C50.014 (4)0.023 (4)0.023 (4)0.004 (3)0.001 (3)0.003 (3)
C60.020 (4)0.025 (4)0.027 (4)0.001 (3)0.004 (3)0.002 (3)
C70.023 (4)0.033 (5)0.014 (4)0.000 (3)0.006 (3)0.002 (3)
C80.023 (4)0.025 (4)0.027 (4)0.003 (3)0.002 (4)0.012 (4)
C90.028 (5)0.021 (4)0.032 (4)0.003 (4)0.001 (4)0.005 (4)
C100.019 (4)0.024 (4)0.019 (4)0.000 (3)0.003 (3)0.006 (3)
C110.014 (4)0.024 (4)0.015 (3)0.005 (3)0.001 (3)0.001 (3)
C120.016 (4)0.027 (4)0.015 (4)0.004 (3)0.002 (3)0.001 (3)
C130.016 (4)0.024 (4)0.022 (4)0.004 (3)0.002 (3)0.002 (3)
O10.042 (4)0.019 (3)0.041 (3)0.004 (3)0.003 (3)0.011 (3)
O20.054 (4)0.045 (3)0.022 (3)0.007 (3)0.003 (3)0.011 (3)
O30.080 (5)0.033 (3)0.019 (3)0.007 (3)0.007 (3)0.007 (3)
O40.032 (3)0.029 (3)0.040 (3)0.007 (3)0.011 (3)0.009 (3)
O50.029 (3)0.028 (3)0.021 (3)0.005 (2)0.003 (2)0.000 (2)
O60.049 (4)0.022 (3)0.033 (3)0.003 (3)0.003 (3)0.001 (3)
O70.056 (4)0.033 (4)0.029 (3)0.003 (3)0.014 (3)0.010 (3)
O80.041 (4)0.043 (4)0.023 (3)0.002 (3)0.010 (3)0.002 (3)
O90.064 (4)0.023 (3)0.027 (3)0.005 (3)0.002 (3)0.003 (2)
N20.019 (4)0.034 (4)0.027 (4)0.010 (3)0.006 (3)0.012 (3)
N40.032 (4)0.019 (4)0.032 (4)0.001 (3)0.013 (3)0.006 (3)
N50.029 (4)0.020 (4)0.023 (3)0.000 (3)0.008 (3)0.002 (3)
N70.026 (4)0.035 (4)0.027 (4)0.001 (3)0.005 (3)0.006 (4)
Cl10.0340 (12)0.0398 (11)0.0187 (9)0.0041 (9)0.0005 (9)0.0012 (9)
C150.014 (4)0.035 (4)0.017 (3)0.011 (4)0.004 (3)0.004 (3)
C160.027 (5)0.013 (4)0.025 (4)0.004 (3)0.003 (3)0.003 (3)
C170.018 (4)0.023 (4)0.032 (4)0.006 (3)0.003 (3)0.001 (4)
C180.025 (4)0.038 (5)0.027 (4)0.003 (4)0.002 (3)0.001 (4)
C190.020 (4)0.035 (5)0.026 (4)0.000 (4)0.000 (3)0.005 (4)
C200.025 (5)0.026 (4)0.033 (4)0.003 (4)0.004 (4)0.004 (4)
Cl20.0472 (14)0.0548 (15)0.0386 (12)0.0015 (12)0.0068 (11)0.0098 (12)
C210.027 (5)0.045 (6)0.029 (5)0.007 (4)0.009 (4)0.002 (4)
C220.025 (5)0.045 (6)0.043 (5)0.001 (4)0.008 (4)0.003 (5)
C230.025 (5)0.063 (7)0.043 (5)0.007 (5)0.002 (4)0.030 (5)
C240.032 (5)0.063 (7)0.026 (5)0.017 (5)0.006 (4)0.001 (5)
C250.040 (5)0.033 (5)0.037 (5)0.016 (4)0.001 (4)0.008 (4)
C260.040 (6)0.044 (6)0.032 (5)0.009 (5)0.003 (4)0.010 (4)
Geometric parameters (Å, º) top
C1—C101.363 (9)O5—N51.225 (7)
C1—C21.386 (9)O6—N51.242 (7)
C1—H10.9495O7—N71.228 (8)
C2—C31.395 (9)O8—N71.238 (8)
C2—N21.478 (8)Cl1—C151.772 (6)
C3—C41.401 (9)C15—C201.370 (10)
C3—H30.9498C15—C161.377 (9)
C4—C111.400 (9)C16—C171.401 (9)
C4—N41.469 (9)C16—H160.9496
C5—C121.389 (9)C17—C181.385 (9)
C5—C61.392 (9)C17—H170.9497
C5—N51.478 (8)C18—C191.387 (10)
C6—C71.377 (9)C18—H180.9499
C6—H60.9495C19—C201.414 (10)
C7—C81.386 (10)C19—H190.9497
C7—N71.473 (9)C20—H200.9496
C8—C131.367 (10)Cl2—C211.761 (8)
C8—H80.9497C21—C261.372 (11)
C9—O91.209 (8)C21—C221.382 (11)
C9—C131.500 (10)C22—C231.394 (11)
C9—C101.521 (9)C22—H220.9496
C10—C111.412 (9)C23—C241.395 (12)
C11—C121.502 (9)C23—H230.9499
C12—C131.393 (9)C24—C251.379 (11)
O1—N21.228 (8)C24—H240.9498
O2—N21.223 (7)C25—C261.385 (11)
O3—N41.233 (7)C25—H250.9494
O4—N41.224 (7)C26—H260.9500
C10—C1—C2117.3 (7)O3—N4—C4117.4 (6)
C10—C1—H1121.3O5—N5—O6125.3 (6)
C2—C1—H1121.5O5—N5—C5117.4 (6)
C1—C2—C3122.5 (7)O6—N5—C5117.2 (6)
C1—C2—N2119.8 (6)O7—N7—O8123.6 (6)
C3—C2—N2117.8 (6)O7—N7—C7118.6 (6)
C2—C3—C4118.2 (6)O8—N7—C7117.8 (6)
C2—C3—H3120.6C20—C15—C16123.2 (6)
C4—C3—H3121.2C20—C15—Cl1118.9 (6)
C11—C4—C3121.2 (6)C16—C15—Cl1117.9 (5)
C11—C4—N4122.7 (6)C15—C16—C17118.1 (6)
C3—C4—N4116.0 (6)C15—C16—H16121.0
C12—C5—C6120.8 (6)C17—C16—H16120.9
C12—C5—N5122.3 (6)C18—C17—C16119.9 (7)
C6—C5—N5116.6 (6)C18—C17—H17120.2
C7—C6—C5118.8 (6)C16—C17—H17119.9
C7—C6—H6120.4C17—C18—C19121.3 (7)
C5—C6—H6120.8C17—C18—H18119.1
C6—C7—C8122.5 (7)C19—C18—H18119.6
C6—C7—N7118.1 (6)C18—C19—C20118.9 (7)
C8—C7—N7119.4 (7)C18—C19—H19120.6
C13—C8—C7116.5 (7)C20—C19—H19120.5
C13—C8—H8121.8C15—C20—C19118.6 (7)
C7—C8—H8121.7C15—C20—H20120.8
O9—C9—C13128.6 (7)C19—C20—H20120.6
O9—C9—C10126.4 (7)C26—C21—C22123.6 (8)
C13—C9—C10105.0 (6)C26—C21—Cl2118.6 (6)
C1—C10—C11123.9 (6)C22—C21—Cl2117.7 (7)
C1—C10—C9127.7 (7)C21—C22—C23118.1 (8)
C11—C10—C9108.3 (6)C21—C22—H22120.8
C4—C11—C10116.5 (6)C23—C22—H22121.1
C4—C11—C12135.3 (6)C22—C23—C24119.3 (8)
C10—C11—C12108.0 (6)C22—C23—H23119.8
C5—C12—C13116.9 (6)C24—C23—H23120.9
C5—C12—C11134.3 (6)C25—C24—C23120.5 (8)
C13—C12—C11108.7 (6)C25—C24—H24119.8
C8—C13—C12124.0 (7)C23—C24—H24119.7
C8—C13—C9126.8 (7)C24—C25—C26120.9 (8)
C12—C13—C9109.2 (6)C24—C25—H25119.7
O2—N2—O1125.1 (6)C26—C25—H25119.3
O2—N2—C2117.9 (6)C21—C26—C25117.5 (8)
O1—N2—C2117.0 (6)C21—C26—H26121.3
O4—N4—O3125.7 (7)C25—C26—H26121.2
O4—N4—C4116.9 (6)

Experimental details

(I)(II)
Crystal data
Chemical formulaC16H4N6O8·C6H5ClC13H4N4O9·2C6H5Cl
Mr520.80585.30
Crystal system, space groupMonoclinic, P21/cOrthorhombic, P212121
Temperature (K)150150
a, b, c (Å)16.823 (2), 8.360 (6), 17.461 (3)6.984 (1), 15.088 (2), 23.217 (2)
α, β, γ (°)90, 118.33 (1), 9090, 90, 90
V3)2161.6 (16)2446.5 (5)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.240.33
Crystal size (mm)0.28 × 0.22 × 0.180.52 × 0.03 × 0.02
Data collection
DiffractometerSiemens SMART 1K CCD area-detector
diffractometer
Siemens SMART 1K CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
22991, 4962, 4169 14660, 4312, 2896
Rint0.0340.138
(sin θ/λ)max1)0.6500.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.092, 1.10 0.076, 0.150, 1.26
No. of reflections49624312
No. of parameters370361
H-atom treatmentAll H-atom parameters refinedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.540.38, 0.39
Absolute structure?Flack (1983)
Absolute structure parameter?0.04 (14)

Computer programs: SMART (Siemens, 1995), SMART, SAINT (Siemens, 1995), SHELXS86 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1995), SHELXTL.

Selected geometric parameters (Å, º) for (I) top
C1—C21.391 (2)C8—C131.393 (2)
C1—C101.393 (2)C9—C101.480 (2)
C2—C31.378 (2)C9—C131.481 (2)
C2—N21.477 (2)C9—C141.357 (2)
C3—C41.389 (2)C10—C111.419 (2)
C4—N41.478 (2)C11—C121.482 (2)
C4—C111.395 (2)C12—C131.417 (2)
C5—C61.387 (2)C14—C151.444 (2)
C5—C121.398 (2)C14—C161.446 (2)
C5—N51.4730 (19)C15—N151.147 (2)
C6—C71.386 (2)C16—N161.147 (2)
C7—N71.481 (2)Cl—C211.7508 (18)
C7—C81.386 (2)
C3—C4—N4115.93 (14)C12—C5—N5122.00 (13)
C11—C4—N4122.00 (14)C6—C5—C12121.71 (14)
C3—C4—C11121.43 (15)C22—C21—C26122.09 (16)
C6—C5—N5115.98 (13)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds