In the title compound, 2C
10H
14N
4·3C
6HF
5O, one of the pentafluorophenol molecules resides on a mirror plane bisecting the O
F axis. The components aggregate by N—H
N, N—H
O and O—H
N hydrogen bonds involving equal disordering of the H atoms into molecular ensembles based on a 2:1 pyrazole–phenol cyclic pattern [O
N = 2.7768 (16) Å and N
N = 2.859 (2) Å], crosslinked into one-dimensional columns
via hydrogen bonding between the outer pyrazole groups and additional pentafluorophenol molecules. The latter yields a 1:1 pyrazole–phenol catemer with alternating strong O—H
N [2.5975 (16) Å] and weaker N—H
O [2.8719 (17) Å] hydrogen bonds. This is the first reported molecular adduct of a pentafluorinated phenol and a nitrogen base, and suggests the utility of highly acidic phenols and pyrazoles for developing hydrogen-bonded cocrystals.
Supporting information
CCDC reference: 692667
Me4bpz was synthesized according to the method reported by Mosby
(1957).
Large colorless crystals of the molecular complex 2(Me4bpz):3(C6F5OH)
were prepared by slow evaporation of a solution of Me4bpz (0.190 g, 1 mmol)
and pentafluorophenol (0.184 g, 1 mmol) in 5 ml of methanol.
Methyl H atoms were treated as riding in geometrically idealized positions, with
C—H distances of 0.97 Å and Uiso(H) values of
1.5Ueq(c), with equal idealized disordering of the H atoms
bonded to atoms C4, C9 and C10. H atoms bonded to N and O atoms were located
in difference maps and then their coordinates were fixed [with
Uiso(H) = 1.5Ueq(O,N)], giving O—H distances of 0.90 and
0.92 Å and a range of N—H distances of 0.85–0.90 Å. H atoms bonded to
atoms O2, N3 and N4 were included with partial occupancy factors of 0.5,
considering a disordering scheme for hydrogen bonding within the cyclic
pyrazole/phenol pattern.
Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-NT (Bruker, 1999); data reduction: SAINT-NT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Version 1.700.00; Farrugia, 1999).
3,3',5,5'-Tetramethyl-4,4'-bipyrazole–pentafluorophenol (2/3)
top
Crystal data top
2C10H14N4·3C6HF5O | Dx = 1.583 Mg m−3 |
Mr = 932.71 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pnma | Cell parameters from 13762 reflections |
a = 6.9565 (7) Å | θ = 2.9–27.1° |
b = 41.727 (4) Å | µ = 0.15 mm−1 |
c = 13.4827 (15) Å | T = 213 K |
V = 3913.6 (7) Å3 | Prism, colourless |
Z = 4 | 0.27 × 0.20 × 0.20 mm |
F(000) = 1896 | |
Data collection top
Siemens SMART CCD area-detector diffractometer | 4321 independent reflections |
Radiation source: fine-focus sealed tube | 3634 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
ω scans | θmax = 27.1°, θmin = 2.9° |
Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 1996) | h = −8→8 |
Tmin = 0.950, Tmax = 0.980 | k = −52→52 |
13762 measured reflections | l = −11→17 |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.106 | w = 1/[σ2(Fo2) + (0.05P)2 + 1.4524P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.003 |
4321 reflections | Δρmax = 0.23 e Å−3 |
297 parameters | Δρmin = −0.20 e Å−3 |
0 restraints | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0075 (5) |
Crystal data top
2C10H14N4·3C6HF5O | V = 3913.6 (7) Å3 |
Mr = 932.71 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 6.9565 (7) Å | µ = 0.15 mm−1 |
b = 41.727 (4) Å | T = 213 K |
c = 13.4827 (15) Å | 0.27 × 0.20 × 0.20 mm |
Data collection top
Siemens SMART CCD area-detector diffractometer | 4321 independent reflections |
Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 1996) | 3634 reflections with I > 2σ(I) |
Tmin = 0.950, Tmax = 0.980 | Rint = 0.021 |
13762 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.23 e Å−3 |
4321 reflections | Δρmin = −0.20 e Å−3 |
297 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
O1 | 0.68836 (18) | 0.54889 (2) | 0.20901 (8) | 0.0415 (3) | |
H1O | 0.6652 | 0.5603 | 0.2644 | 0.062* | |
O2 | 0.7368 (3) | 0.7500 | 0.74202 (11) | 0.0479 (4) | |
H2O | 0.7389 | 0.7691 | 0.7077 | 0.072* | 0.50 |
F1 | 0.60871 (17) | 0.51829 (2) | 0.38835 (7) | 0.0497 (3) | |
F2 | 0.54018 (18) | 0.45460 (2) | 0.39266 (8) | 0.0576 (3) | |
F3 | 0.53489 (19) | 0.42018 (2) | 0.22198 (9) | 0.0642 (3) | |
F4 | 0.6130 (2) | 0.44968 (3) | 0.04682 (9) | 0.0668 (3) | |
F5 | 0.68483 (18) | 0.51374 (3) | 0.04262 (7) | 0.0564 (3) | |
F6 | 0.6845 (2) | 0.69375 (3) | 0.84399 (9) | 0.0699 (4) | |
F7 | 0.5884 (2) | 0.69377 (3) | 1.03717 (8) | 0.0681 (3) | |
F8 | 0.5383 (3) | 0.7500 | 1.13590 (10) | 0.0698 (5) | |
N1 | 0.6118 (2) | 0.58828 (3) | 0.35288 (9) | 0.0381 (3) | |
N2 | 0.4511 (2) | 0.58589 (3) | 0.40882 (9) | 0.0393 (3) | |
H2N | 0.3682 | 0.5696 | 0.3985 | 0.059* | |
N3 | 0.6310 (2) | 0.71574 (3) | 0.52143 (9) | 0.0361 (3) | |
H3N | 0.6271 | 0.7361 | 0.5241 | 0.054* | 0.50 |
N4 | 0.67858 (19) | 0.70069 (3) | 0.60702 (9) | 0.0360 (3) | |
H4N | 0.7029 | 0.7130 | 0.6596 | 0.054* | 0.50 |
C1 | 0.6902 (2) | 0.61636 (3) | 0.37706 (10) | 0.0349 (3) | |
C2 | 0.5769 (2) | 0.63196 (3) | 0.44871 (10) | 0.0331 (3) | |
C3 | 0.4244 (2) | 0.61152 (3) | 0.46714 (11) | 0.0367 (3) | |
C4 | 0.2582 (3) | 0.61434 (4) | 0.53581 (14) | 0.0506 (4) | |
H4A | 0.1777 | 0.5954 | 0.5299 | 0.076* | 0.50 |
H4B | 0.1838 | 0.6332 | 0.5189 | 0.076* | 0.50 |
H4C | 0.3045 | 0.6162 | 0.6034 | 0.076* | 0.50 |
H4D | 0.2663 | 0.6345 | 0.5716 | 0.076* | 0.50 |
H4E | 0.2602 | 0.5967 | 0.5825 | 0.076* | 0.50 |
H4F | 0.1395 | 0.6137 | 0.4981 | 0.076* | 0.50 |
C5 | 0.8707 (3) | 0.62766 (4) | 0.32933 (14) | 0.0515 (4) | |
H5A | 0.9650 | 0.6105 | 0.3300 | 0.077* | |
H5B | 0.9205 | 0.6460 | 0.3655 | 0.077* | |
H5C | 0.8442 | 0.6339 | 0.2613 | 0.077* | |
C6 | 0.6683 (2) | 0.66895 (3) | 0.59286 (10) | 0.0331 (3) | |
C7 | 0.6111 (2) | 0.66332 (3) | 0.49555 (10) | 0.0316 (3) | |
C8 | 0.5910 (2) | 0.69363 (3) | 0.45311 (11) | 0.0344 (3) | |
C9 | 0.5364 (3) | 0.70241 (4) | 0.34947 (12) | 0.0545 (5) | |
H9A | 0.5348 | 0.7256 | 0.3428 | 0.082* | 0.50 |
H9B | 0.4098 | 0.6939 | 0.3347 | 0.082* | 0.50 |
H9C | 0.6294 | 0.6934 | 0.3036 | 0.082* | 0.50 |
H9D | 0.5145 | 0.6831 | 0.3112 | 0.082* | 0.50 |
H9E | 0.6395 | 0.7147 | 0.3194 | 0.082* | 0.50 |
H9F | 0.4199 | 0.7152 | 0.3505 | 0.082* | 0.50 |
C10 | 0.7201 (3) | 0.64515 (4) | 0.67077 (12) | 0.0493 (4) | |
H10A | 0.7541 | 0.6563 | 0.7314 | 0.074* | 0.50 |
H10B | 0.8286 | 0.6325 | 0.6485 | 0.074* | 0.50 |
H10C | 0.6112 | 0.6312 | 0.6832 | 0.074* | 0.50 |
H10D | 0.7085 | 0.6237 | 0.6440 | 0.074* | 0.50 |
H10E | 0.6340 | 0.6475 | 0.7269 | 0.074* | 0.50 |
H10F | 0.8514 | 0.6488 | 0.6922 | 0.074* | 0.50 |
C11 | 0.6453 (2) | 0.49932 (4) | 0.12909 (12) | 0.0380 (3) | |
C12 | 0.6089 (2) | 0.46679 (4) | 0.13083 (13) | 0.0439 (4) | |
C13 | 0.5732 (2) | 0.45183 (3) | 0.21943 (14) | 0.0430 (4) | |
C14 | 0.5749 (2) | 0.46915 (4) | 0.30596 (12) | 0.0392 (3) | |
C15 | 0.6113 (2) | 0.50164 (3) | 0.30351 (11) | 0.0345 (3) | |
C16 | 0.6468 (2) | 0.51763 (3) | 0.21530 (11) | 0.0327 (3) | |
C17 | 0.6874 (3) | 0.7500 | 0.83805 (15) | 0.0401 (5) | |
C18 | 0.6626 (3) | 0.72189 (4) | 0.89067 (12) | 0.0432 (4) | |
C19 | 0.6133 (3) | 0.72169 (4) | 0.98965 (12) | 0.0434 (4) | |
C20 | 0.5883 (4) | 0.7500 | 1.03941 (16) | 0.0433 (5) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
O1 | 0.0617 (7) | 0.0250 (5) | 0.0377 (5) | −0.0100 (5) | 0.0092 (5) | −0.0053 (4) |
O2 | 0.0620 (11) | 0.0527 (9) | 0.0289 (7) | 0.000 | 0.0033 (7) | 0.000 |
F1 | 0.0805 (7) | 0.0339 (5) | 0.0346 (5) | 0.0031 (5) | −0.0011 (5) | −0.0022 (4) |
F2 | 0.0764 (8) | 0.0371 (5) | 0.0592 (6) | 0.0010 (5) | −0.0015 (5) | 0.0181 (5) |
F3 | 0.0750 (8) | 0.0230 (4) | 0.0946 (9) | −0.0055 (5) | −0.0080 (7) | −0.0046 (5) |
F4 | 0.0869 (9) | 0.0485 (6) | 0.0652 (7) | −0.0067 (6) | 0.0000 (6) | −0.0311 (5) |
F5 | 0.0793 (8) | 0.0510 (6) | 0.0389 (5) | −0.0126 (5) | 0.0131 (5) | −0.0078 (4) |
F6 | 0.1007 (10) | 0.0530 (7) | 0.0560 (6) | 0.0101 (6) | −0.0023 (6) | −0.0183 (5) |
F7 | 0.0996 (9) | 0.0483 (6) | 0.0565 (6) | −0.0067 (6) | 0.0015 (6) | 0.0144 (5) |
F8 | 0.1011 (14) | 0.0750 (11) | 0.0331 (7) | 0.000 | 0.0164 (8) | 0.000 |
N1 | 0.0547 (8) | 0.0236 (6) | 0.0361 (6) | −0.0025 (5) | −0.0006 (6) | −0.0035 (5) |
N2 | 0.0546 (8) | 0.0229 (6) | 0.0405 (7) | −0.0082 (5) | −0.0001 (6) | −0.0024 (5) |
N3 | 0.0504 (8) | 0.0204 (5) | 0.0376 (6) | −0.0013 (5) | −0.0008 (6) | −0.0027 (5) |
N4 | 0.0462 (7) | 0.0239 (6) | 0.0379 (6) | 0.0001 (5) | −0.0003 (5) | −0.0014 (5) |
C1 | 0.0500 (9) | 0.0222 (6) | 0.0325 (7) | −0.0005 (6) | −0.0029 (6) | −0.0027 (5) |
C2 | 0.0472 (8) | 0.0215 (6) | 0.0307 (7) | −0.0011 (6) | −0.0026 (6) | −0.0001 (5) |
C3 | 0.0511 (9) | 0.0231 (6) | 0.0360 (7) | −0.0027 (6) | −0.0009 (7) | 0.0013 (5) |
C4 | 0.0585 (11) | 0.0363 (8) | 0.0570 (10) | −0.0063 (8) | 0.0117 (8) | −0.0009 (7) |
C5 | 0.0597 (11) | 0.0413 (9) | 0.0535 (10) | −0.0074 (8) | 0.0134 (9) | −0.0126 (8) |
C6 | 0.0418 (8) | 0.0239 (6) | 0.0337 (7) | 0.0004 (6) | 0.0021 (6) | −0.0014 (5) |
C7 | 0.0404 (8) | 0.0215 (6) | 0.0331 (7) | −0.0011 (5) | 0.0019 (6) | −0.0013 (5) |
C8 | 0.0462 (8) | 0.0241 (7) | 0.0329 (7) | −0.0015 (6) | −0.0007 (6) | −0.0011 (5) |
C9 | 0.0931 (15) | 0.0324 (8) | 0.0380 (8) | −0.0014 (9) | −0.0117 (9) | 0.0027 (6) |
C10 | 0.0791 (13) | 0.0297 (8) | 0.0391 (8) | 0.0057 (8) | −0.0070 (8) | 0.0020 (6) |
C11 | 0.0402 (8) | 0.0352 (8) | 0.0388 (8) | −0.0049 (6) | 0.0047 (6) | −0.0052 (6) |
C12 | 0.0437 (9) | 0.0338 (8) | 0.0542 (9) | −0.0024 (7) | −0.0006 (8) | −0.0186 (7) |
C13 | 0.0389 (8) | 0.0225 (6) | 0.0678 (11) | −0.0003 (6) | −0.0042 (8) | −0.0036 (7) |
C14 | 0.0374 (8) | 0.0288 (7) | 0.0514 (9) | 0.0028 (6) | −0.0014 (7) | 0.0073 (6) |
C15 | 0.0391 (8) | 0.0261 (7) | 0.0384 (8) | 0.0039 (6) | −0.0016 (6) | −0.0031 (6) |
C16 | 0.0320 (7) | 0.0260 (7) | 0.0402 (8) | −0.0020 (5) | 0.0020 (6) | −0.0042 (6) |
C17 | 0.0326 (11) | 0.0582 (14) | 0.0296 (10) | 0.000 | −0.0037 (9) | 0.000 |
C18 | 0.0457 (9) | 0.0468 (9) | 0.0372 (8) | 0.0028 (7) | −0.0051 (7) | −0.0081 (7) |
C19 | 0.0494 (10) | 0.0429 (9) | 0.0380 (8) | −0.0025 (7) | −0.0028 (7) | 0.0077 (7) |
C20 | 0.0496 (13) | 0.0514 (14) | 0.0288 (10) | 0.000 | 0.0017 (9) | 0.000 |
Geometric parameters (Å, º) top
O1—C16 | 1.3385 (17) | C4—H4F | 0.9700 |
O1—H1O | 0.9005 | C5—H5A | 0.9700 |
O2—C17 | 1.340 (3) | C5—H5B | 0.9700 |
O2—H2O | 0.9230 | C5—H5C | 0.9700 |
F1—C15 | 1.3384 (17) | C6—C7 | 1.391 (2) |
F2—C14 | 1.3393 (18) | C6—C10 | 1.490 (2) |
F3—C13 | 1.3476 (17) | C7—C8 | 1.3954 (19) |
F4—C12 | 1.3391 (18) | C8—C9 | 1.494 (2) |
F5—C11 | 1.3403 (19) | C9—H9A | 0.9700 |
F6—C18 | 1.3407 (19) | C9—H9B | 0.9700 |
F7—C19 | 1.3411 (19) | C9—H9C | 0.9700 |
F8—C20 | 1.347 (3) | C9—H9D | 0.9700 |
N1—C1 | 1.3331 (18) | C9—H9E | 0.9700 |
N1—N2 | 1.353 (2) | C9—H9F | 0.9700 |
N2—C3 | 1.3405 (19) | C10—H10A | 0.9700 |
N2—H2N | 0.9028 | C10—H10B | 0.9700 |
N3—C8 | 1.3328 (18) | C10—H10C | 0.9700 |
N3—N4 | 1.3548 (18) | C10—H10D | 0.9700 |
N3—H3N | 0.8510 | C10—H10E | 0.9700 |
N4—C6 | 1.3398 (18) | C10—H10F | 0.9700 |
N4—H4N | 0.8916 | C11—C12 | 1.381 (2) |
C1—C2 | 1.406 (2) | C11—C16 | 1.391 (2) |
C1—C5 | 1.487 (2) | C12—C13 | 1.371 (3) |
C2—C3 | 1.384 (2) | C13—C14 | 1.373 (2) |
C2—C7 | 1.4721 (18) | C14—C15 | 1.379 (2) |
C3—C4 | 1.486 (2) | C15—C16 | 1.386 (2) |
C4—H4A | 0.9700 | C17—C18 | 1.382 (2) |
C4—H4B | 0.9700 | C17—C18i | 1.382 (2) |
C4—H4C | 0.9700 | C18—C19 | 1.378 (2) |
C4—H4D | 0.9700 | C19—C20 | 1.369 (2) |
C4—H4E | 0.9700 | C20—C19i | 1.369 (2) |
| | | |
C16—O1—H1O | 115.1 | C8—C9—H9C | 109.5 |
C17—O2—H2O | 119.2 | H9A—C9—H9C | 109.5 |
C1—N1—N2 | 105.46 (12) | H9B—C9—H9C | 109.5 |
C3—N2—N1 | 112.50 (12) | C8—C9—H9D | 109.5 |
C3—N2—H2N | 127.1 | C8—C9—H9E | 109.5 |
N1—N2—H2N | 119.9 | H9D—C9—H9E | 109.5 |
C8—N3—N4 | 108.61 (11) | C8—C9—H9F | 109.5 |
C8—N3—H3N | 135.5 | H9D—C9—H9F | 109.5 |
N4—N3—H3N | 115.8 | H9E—C9—H9F | 109.5 |
C6—N4—N3 | 108.88 (12) | C6—C10—H10A | 109.5 |
C6—N4—H4N | 133.9 | C6—C10—H10B | 109.5 |
N3—N4—H4N | 117.2 | H10A—C10—H10B | 109.5 |
N1—C1—C2 | 110.23 (14) | C6—C10—H10C | 109.5 |
N1—C1—C5 | 121.20 (14) | H10A—C10—H10C | 109.5 |
C2—C1—C5 | 128.57 (13) | H10B—C10—H10C | 109.5 |
C3—C2—C1 | 105.53 (13) | C6—C10—H10D | 109.5 |
C3—C2—C7 | 126.47 (14) | C6—C10—H10E | 109.5 |
C1—C2—C7 | 128.00 (14) | H10D—C10—H10E | 109.5 |
N2—C3—C2 | 106.29 (14) | C6—C10—H10F | 109.5 |
N2—C3—C4 | 122.42 (14) | H10D—C10—H10F | 109.5 |
C2—C3—C4 | 131.29 (14) | H10E—C10—H10F | 109.5 |
C3—C4—H4A | 109.5 | F5—C11—C12 | 119.58 (14) |
C3—C4—H4B | 109.5 | F5—C11—C16 | 118.60 (13) |
H4A—C4—H4B | 109.5 | C12—C11—C16 | 121.80 (15) |
C3—C4—H4C | 109.5 | F4—C12—C13 | 119.89 (14) |
H4A—C4—H4C | 109.5 | F4—C12—C11 | 120.37 (16) |
H4B—C4—H4C | 109.5 | C13—C12—C11 | 119.72 (15) |
C3—C4—H4D | 109.5 | F3—C13—C12 | 120.29 (15) |
C3—C4—H4E | 109.5 | F3—C13—C14 | 119.75 (16) |
H4D—C4—H4E | 109.5 | C12—C13—C14 | 119.96 (14) |
C3—C4—H4F | 109.5 | F2—C14—C13 | 120.10 (14) |
H4D—C4—H4F | 109.5 | F2—C14—C15 | 119.97 (14) |
H4E—C4—H4F | 109.5 | C13—C14—C15 | 119.92 (15) |
C1—C5—H5A | 109.5 | F1—C15—C14 | 119.15 (14) |
C1—C5—H5B | 109.5 | F1—C15—C16 | 119.06 (12) |
H5A—C5—H5B | 109.5 | C14—C15—C16 | 121.77 (14) |
C1—C5—H5C | 109.5 | O1—C16—C15 | 124.20 (13) |
H5A—C5—H5C | 109.5 | O1—C16—C11 | 118.94 (13) |
H5B—C5—H5C | 109.5 | C15—C16—C11 | 116.82 (13) |
N4—C6—C7 | 108.47 (12) | O2—C17—C18 | 121.89 (10) |
N4—C6—C10 | 123.07 (13) | O2—C17—C18i | 121.89 (10) |
C7—C6—C10 | 128.42 (13) | C18—C17—C18i | 116.2 (2) |
C6—C7—C8 | 105.20 (12) | F6—C18—C19 | 118.54 (16) |
C6—C7—C2 | 126.95 (12) | F6—C18—C17 | 119.22 (15) |
C8—C7—C2 | 127.85 (13) | C19—C18—C17 | 122.23 (16) |
N3—C8—C7 | 108.84 (13) | F7—C19—C20 | 119.94 (15) |
N3—C8—C9 | 122.01 (13) | F7—C19—C18 | 119.99 (15) |
C7—C8—C9 | 129.15 (13) | C20—C19—C18 | 120.07 (16) |
C8—C9—H9A | 109.5 | F8—C20—C19 | 120.40 (10) |
C8—C9—H9B | 109.5 | F8—C20—C19i | 120.40 (10) |
H9A—C9—H9B | 109.5 | C19—C20—C19i | 119.2 (2) |
| | | |
C1—N1—N2—C3 | 0.31 (17) | C16—C11—C12—C13 | 0.0 (3) |
C8—N3—N4—C6 | −0.07 (18) | F4—C12—C13—F3 | −2.5 (3) |
N2—N1—C1—C2 | −0.33 (17) | C11—C12—C13—F3 | 179.10 (15) |
N2—N1—C1—C5 | −179.38 (14) | F4—C12—C13—C14 | 177.95 (16) |
N1—C1—C2—C3 | 0.24 (17) | C11—C12—C13—C14 | −0.5 (3) |
C5—C1—C2—C3 | 179.21 (16) | F3—C13—C14—F2 | 0.5 (2) |
N1—C1—C2—C7 | 179.98 (14) | C12—C13—C14—F2 | −179.95 (15) |
C5—C1—C2—C7 | −1.1 (3) | F3—C13—C14—C15 | −179.07 (15) |
N1—N2—C3—C2 | −0.16 (18) | C12—C13—C14—C15 | 0.5 (3) |
N1—N2—C3—C4 | −179.62 (15) | F2—C14—C15—F1 | −0.9 (2) |
C1—C2—C3—N2 | −0.05 (17) | C13—C14—C15—F1 | 178.67 (14) |
C7—C2—C3—N2 | −179.79 (14) | F2—C14—C15—C16 | −179.59 (14) |
C1—C2—C3—C4 | 179.34 (17) | C13—C14—C15—C16 | 0.0 (2) |
C7—C2—C3—C4 | −0.4 (3) | F1—C15—C16—O1 | 3.3 (2) |
N3—N4—C6—C7 | −0.47 (18) | C14—C15—C16—O1 | −177.95 (15) |
N3—N4—C6—C10 | 177.19 (15) | F1—C15—C16—C11 | −179.15 (14) |
N4—C6—C7—C8 | 0.80 (17) | C14—C15—C16—C11 | −0.4 (2) |
C10—C6—C7—C8 | −176.70 (17) | F5—C11—C16—O1 | −0.3 (2) |
N4—C6—C7—C2 | −178.44 (15) | C12—C11—C16—O1 | 178.13 (15) |
C10—C6—C7—C2 | 4.1 (3) | F5—C11—C16—C15 | −177.98 (14) |
C3—C2—C7—C6 | 71.6 (2) | C12—C11—C16—C15 | 0.5 (2) |
C1—C2—C7—C6 | −108.09 (19) | O2—C17—C18—F6 | −1.5 (3) |
C3—C2—C7—C8 | −107.48 (19) | C18i—C17—C18—F6 | 179.96 (12) |
C1—C2—C7—C8 | 72.8 (2) | O2—C17—C18—C19 | 179.46 (19) |
N4—N3—C8—C7 | 0.59 (18) | C18i—C17—C18—C19 | 0.9 (3) |
N4—N3—C8—C9 | −178.90 (16) | F6—C18—C19—F7 | 0.0 (3) |
C6—C7—C8—N3 | −0.85 (18) | C17—C18—C19—F7 | 179.11 (18) |
C2—C7—C8—N3 | 178.38 (15) | F6—C18—C19—C20 | −179.47 (19) |
C6—C7—C8—C9 | 178.59 (19) | C17—C18—C19—C20 | −0.4 (3) |
C2—C7—C8—C9 | −2.2 (3) | F7—C19—C20—F8 | −0.1 (3) |
F5—C11—C12—F4 | 0.0 (2) | C18—C19—C20—F8 | 179.4 (2) |
C16—C11—C12—F4 | −178.44 (15) | F7—C19—C20—C19i | −179.66 (14) |
F5—C11—C12—C13 | 178.40 (15) | C18—C19—C20—C19i | −0.2 (4) |
Symmetry code: (i) x, −y+3/2, z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···N1 | 0.90 | 1.71 | 2.5975 (16) | 168 |
O2—H2O···N4i | 0.92 | 1.90 | 2.7768 (16) | 158 |
N2—H2N···O1ii | 0.90 | 2.10 | 2.8719 (17) | 143 |
N3—H3N···N3i | 0.85 | 2.01 | 2.859 (2) | 176 |
N4—H4N···O2 | 0.89 | 1.92 | 2.7768 (16) | 161 |
Symmetry codes: (i) x, −y+3/2, z; (ii) x−1/2, y, −z+1/2. |
Experimental details
Crystal data |
Chemical formula | 2C10H14N4·3C6HF5O |
Mr | 932.71 |
Crystal system, space group | Orthorhombic, Pnma |
Temperature (K) | 213 |
a, b, c (Å) | 6.9565 (7), 41.727 (4), 13.4827 (15) |
V (Å3) | 3913.6 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.15 |
Crystal size (mm) | 0.27 × 0.20 × 0.20 |
|
Data collection |
Diffractometer | Siemens SMART CCD area-detector diffractometer |
Absorption correction | Empirical (using intensity measurements) (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.950, 0.980 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13762, 4321, 3634 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.641 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.106, 1.03 |
No. of reflections | 4321 |
No. of parameters | 297 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.20 |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···N1 | 0.90 | 1.71 | 2.5975 (16) | 168 |
O2—H2O···N4i | 0.92 | 1.90 | 2.7768 (16) | 158 |
N2—H2N···O1ii | 0.90 | 2.10 | 2.8719 (17) | 143 |
N3—H3N···N3i | 0.85 | 2.01 | 2.859 (2) | 176 |
N4—H4N···O2 | 0.89 | 1.92 | 2.7768 (16) | 161 |
Symmetry codes: (i) x, −y+3/2, z; (ii) x−1/2, y, −z+1/2. |
Representative hydrogen-bonded structures of Me4bpz, involving ordering or
disordering of the pyrazole NH atoms. topCompound | Motif | C-N(H)-N (°) | C-N-N(H) (°) | Proton position |
α-Me4bpza | pz catemer | 113.0 (2) | 104.1 (2) | ordered |
β-Me4bpza | pz catemer | 109.9 (2) and 108.0 (2) | | disordered |
γ-Me4bpzb | pz trimer | 111.2 (2) | 106.7 (2) | ordered |
(Me4bpz)(m-C6H4(OH)2)c | NH···π | 112.85 (15) | 104.31 (15) | ordered |
| catemer [(pz)(OH)] | 112.76 (17) | 104.80 (17) | ordered |
(Me4bpz)2(C6F5OH)3d | cycle [(pz)2(OH)] | 108.61 (11) and 108.88 (12) | | disordered |
| catemer [(pz)(OH)] | 112.50 (12) | 105.46 (12) | ordered |
Notes:
(a) Boldog et al. (2001);
(b) Boldog et al. (2003);
(c) Boldog et al. (2004);
(d) this paper. |
N-unsubstituted pyrazoles provide rich and versatile possibilities for engineering of hydrogen-bonded solids (Desiraju, 1989), since the molecular frame combines bond donor (NH) and acceptor (N) sites for self-association (Foces-Foces et al., 2000) or for exploitation of characteristic interactions in multicomponent systems. Thus, the hydrogen-bonding functionalities of pyrazoles and phenols complement each other, and these species commonly cocrystallize forming binary adducts in which the components are rationally integrated by NH···O and OH···N bonding (Boldog et al., 2004). Such incorporation of a strong OH bond-donor unit within the pyrazole catemer is interesting in view of the solid-state tautomerism of pyrazoles [e.g. N—H···N to N···H—N; Aguilar-Parrilla et al., 1992] as a tool for enhancing the strength of partial bonding contributions (Steiner, 2002) and the promotion of the proton dynamics leading to a long-range fast proton transfer. Therefore, it is of interest to explore whether the highly acidic phenols are applicable for the design of molecular adducts with pyrazoles and if the catemeric motif dominates the structure over the formation of different cyclic patterns. In this context we examined 3,3',5,5'-tetramethyl-4,4'-bipyrazole (Me4bpz), the only pyrazole exhibiting catemer/trimer supramolecular isomerism (Boldog et al., 2003), and pentafluorophenol, where the acidity is comparable to that of carbonic acids (pKa = 5.50 versus pKa = 9.95 for phenol).
Compound (I) is the first structurally examined genuine molecular adduct formed by pentafluorophenol and a nitrogen base, unlike the ionic pentafluorophenolate of highly basic 1,8-bis(dimethylamino)naphthalene (Odiaga et al., 1992). The asymmetric unit of (I) includes molecular components lying in general positions and a molecule of pentafluorophenol, with the O2—F8 axis located on a mirror plane (Fig. 1). The primary interaction of the pyrazole and phenol functions occurs by means of NH···N, NH···O and OH···N hydrogen bonding that yields a combination of two distinct supramolecular motifs.
Firstly, two pyrazole and one phenol groups form a rare cyclic pattern, which is related to characteristic pyrazole trimers (Foces-Foces et al., 2000) from the substitution of one pyrazole unit for phenol. A similar hydrogen-bonded cycle incorporating a water molecule was observed for a series of isostructural adducts (Me4bpz)3(H2O)(L) (L is acetone, ethylacetate and tetrahydrofuran) (Boldog et al., 2001). Since two bipyrazole molecules of the (Me4bpz)2(C6F5OH) cyclic unit are related by a mirror plane [symmetry code: (i) x, -y + 3/2, z], the donor and acceptor sites of the hydrogen bond are not distinguishable and the H atoms are equally disordered over two positions (Fig. 1). Accordingly, both N···O separations are equivalent by symmetry [N4···O2 = 2.7768 (16) Å] and they are intermediate between the values for NH···O (2.92 Å) and OH···N (2.70 Å) bonds in a 1:1 adduct of 3,5-dimethylpyrazole and phenol (Boldog et al., 2004). The C6F5OH unit is oriented at 30.69 (5)° to the plane of two pyrazole rings, while the bipyrazole molecule has a twisted conformation with a dihedral angle between the two pyrazole groups of 72.16 (6)° [torsion angle C1—C2—C7—C8 72.8 (2)°].
Secondly, the hydrogen bonding between the outer pyrazole groups and second pentafluorophenol molecule yields the infinite alterating motif –A(BA)n–, which may be viewed as a typical pyrazole catemer expanded by inclusion of a second component. Successive aggregates of (Me4bpz)2(C6F5OH) are related by a 21 axis [symmetry code: (iii) x + 1/2, -y + 3/2, -z + 1/2] and the phenol linkers provide integration of the units into columns along the x-axis direction (Figs. 2 and 3). There is a clear differentiation in the N···O separations, suggesting two distinct types of hydrogen bonding and ordering of the H atoms. The first indicates a strong interaction [O1H···N1 = 2.5975 (16) Å], while for the bond involving the pyrazole NH donor the N and O atoms are much more distal [N2H···O1ii = 2.8719 (17) Å; symmetry code: (ii) x - 1/2, y, -z + 1/2]. The only precedent for an OH···N interaction of fluorinated phenols is a 2.64 Å intermolecular bond in 4'-(4-hydroxy-2,3,5,6-tetrafluorophenyl)-2,2':6',2''-terpyridine (Constable et al., 2003).
Ordering of the H atoms in the catemer is supported by the internal angles involving the N atoms [C1—N1—N2 = 105.46 (12)° and N1—N2—C3 = 112.50 (12)°], which are most sensitive to the tautomerism of pyrazole (Alkorta et al., 1999). Such differentiation agrees with the C—N—N(H) and C—N(H)—N angles (104.0–106.7° and 111.1–113.0°, respectively) for hydrogen-bonded Me4bpz structures (Table 2), while convergence of these parameters is a positive sign for the disordering of the H atoms, as occurs for the cyclic pattern in (Me4bpz)2(C6F5OH).
Several types of weaker interactions are also relevant in the crystal packing. Along the catemer, the pentafluorophenol molecules are situated almost parallel to each other [symmetry code: (iv) x + 1/2, y, -z + 1/2; Fig. 2] and afford a weak slipped π–π stack with an intercentroid distance of 3.588 (2) Å and an interplanar angle of 12.13 (4)°. Interdigitation of the columns (Fig. 3) leads to close contacts between the C6–C8/N3/N4 pyrazole ring and atom F7v [symmetry code: (v) x + 1/2, y, -z + 3/2], situated almost exactly above the ring centroid [π···Fv = 3.287 (2) Å, with the F···π axis making an angle to the aromatic plane of 85.2°]. Such stacking commonly occurs for N-heterocycles and negatively polarized atoms, and is especially characteristic for the most electron-deficient azines and counter-anions (Schottel et al., 2008). The short C10···F3vi separations [3.288 (2) Å; symmetry code: (vi) -x + 3/2, -y + 1, z + 1/2] may be attributed to very weak CH···F bonding (H···F3vi = 2.59 Å and C10H···F3vi = 129°) (Desiraju & Steiner, 1999).
In conclusion, (I) suggests the utility of pyrazoles and highly acidic fluorinated phenols as complementary components for developing of hydrogen-bonded cocrystals. The efficient hydorgen-bond donor properties of C6F5OH allow its integration within either cyclic or infinite supramolecular pyrazole motifs. The (pz)2(C6F5OH) cycle displays disordering of the NH and OH H atoms, while along the two-component catemer the H atoms are ordered and immobile.