Download citation
Download citation
link to html
The structure of catena-poly[[{bis­[4-(trimethyl­ammonio)benzene­thiol­ate-κS]mercury(II)}-μ-1,1′-(ethane-1,2-di­yl)bis­(1H-benzimidazole)-κ2N3:N3′] bis­(hexa­fluoridophosphate) 0.25-hydrate], {[Hg(C16H14N4)(C9H13NS)2](PF6)2·0.25H2O}n, contains a one-dimensional zigzag chain. The HgII cation is coordinated by two S atoms of two 4-(trimethyl­ammonio)­benzene­thiol­ate (Tab) ligands and by two N atoms from two different 1,1′-(ethane-1,2-di­yl)bis­(1H-benzimidazole) ligands, forming a distorted seesaw-shaped coordination geometry. The F atoms of the hexa­fluoridophosphate anion inter­act with the H atoms of the Tab ligand, generating a two-dimensional network. Furthermore, this layer is connected to neighbouring layers via H...π inter­actions, thereby forming a three-dimensional hydrogen-bonded structure. In catena-poly[[{[4-(trimethyl­ammonio)­benzene­thiol­ate-κS]mercury(II)}bis­[μ-4-(trimethyl­ammonio)­benzene­thiol­ate-κ2S:S]{[4-(trimethylammonio)­benzene­thiol­ate-κS]mercury(II)}-μ-1,1′-(hexane-1,6-di­yl)bis­(1H-benzimidazole)-κ2N3:N3′] tetra­kis­(hexa­fluor­ido­phosphate)], {[Hg2(C20H22N4)(C9H13NS)4](PF6)4}n, each HgII cation is coordinated by two S atoms of two Tab ligands and one N atom of the 1,1′-(hexane-1,6-di­yl)bis­(1H-benzimidazole) (hbbm) ligand, forming a distorted T-shaped coordination geometry, while longer secondary Hg...S bonds join two such units across a centre of inversion to give the tetravalent cation. Adjacent {[Hg(Tab)2]2(μ-hbbm)}4+ cations are linked through the centrosymmetric hbbm ligands to afford a one-dimensional chain extending along the b axis. Several F atoms inter­act with the H atoms of the Tab and hbbm ligands, while the S atom inter­acts with an aromatic H atom of a different Tab ligand, to afford a complex intra- and inter­molecular hydrogen-bonding arrangement in a three-dimensional structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111021512/gg3258sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111021512/gg3258Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111021512/gg3258IIsup3.hkl
Contains datablock II

CCDC references: 838134; 838135

Comment top

In previous studies (Chen et al., 2006), we employed [Hg(Tab)2](PF6)2 [Tab is 4-(trimethylammonio)benzenethiolate] as a potential model complex for mimicking the reactivity of unsaturated HgS2 sites in the detoxification of mercury by metallothioneins (MTs) (Stillman et al., 1983; Cheesman et al., 1988; Fleischer et al., 2005; Baba et al., 2008; Vig et al., 2003), in DNA binding proteins (Patra & Goldberg, 2002; Henkel & Krebs, 2004), in mercury reductase and organomercury lyase (Bharara et al., 2005, 2006; Chan et al., 2002; Qian et al., 1998), and in metalloregulatory protein (MerR) (Moore et al., 1990; Ralston & O'Halloran, 1990; Gruff & Koch, 1990; Helmann et al., 1990; Govindaswamy et al., 1992). The chemistry of [Hg(Tab)2](PF6)2 was analysed with some donor ligands (e.g. Tab, NCS- and I-), naturally encountered inorganic anions (e.g. Cl-, NO2- and NO3-), organic amines and N-heterocyclic compounds (e.g. 1,2-diaminoethane, pyridine, 1,10-phenanthroline and N-methylimidazole) (Tang et al., 2009), and various carboxylic acids and amino acids (e.g. acetic, salicylic and oxalic acids) (Tang et al., 2011). However, most of these mercury thiolate compounds are monomeric and only a few are coordination polymers. As an extension of this work, we undertook reactions of [Hg(Tab)2](PF6)2 with two bridging ligands, 1,1'-(ethane-1,2-diyl)bis(1H-benzimidazole) (ebbm) and 1,1'-(hexane-1,6-diyl)bis-(1H-benzimidazole) (hbbm), and the two title Hg–Tab coordination polymers, (I) and (II), were isolated therefrom. Here, we report the crystal structures of complexes (I) and (II).

The asymmetric unit of (I) contains an [Hg(Tab)2(ebbm)]2+ dication (Fig. 1), two PF6- anions and a partial-occupancy (0.25) solvent water molecule. The HgII centre in this dication is coordinated by two S atoms from the Tab ligands and two N atoms from two different ebbm ligands, displaying a seesaw-shaped coordination geometry. Each [Hg(Tab)2] unit is linked by a pair of ebbm ligands to form a one-dimensional zigzag chain extending along the c-axis direction (Fig. 2). Relative to the trans configuration of [Hg(Tab)2](PF6)2, the two Tab ligands in (I) are oriented in the same direction, with a dihedral angle between the phenyl groups of 37.9 (3)°. The mean Hg—S bond length [2.3761 (17) Å; Table 1] is comparable with that in [Hg(Tab)2(Ac)](PF6).0.5H2O [2.3752 (19) Å; Tang et al., 2011] but slightly longer than those in [Hg(Tab)2](PF6)2 and [Hg(Tab)2(phen)](PF6)2 [2.331 (3) and 2.344 (3) Å, respectively; Tang et al., 2009]. The average Hg—N bond length [2.543 (6) Å] is longer than those observed in [Hg(L)(SCN)2] [2.421 (2) Å; L is 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene; Mahmoudi et al., 2007] and [HgI2(L).1.5MeOH]n [2.418 (7) Å; L is N,N'-bis(4-pyridyl)-1,4-benzenedicarboxamide; Li et al., 2005]. The S—Hg—S angle in (I) [160.72 (6)°] deviates significantly from the linear S—Hg—S angle of [Hg(Tab)2](PF6)2. The N—Hg—N angle of 94.56 (18)° is comparable with that in [Hg(L)(SCN)2]n [93.76 (10)°; L is 1,4-bis(3-pyridyl)-2,3-diaza-1,3-butadiene; Mahmoudi et al., 2007].

In (I), the F atoms of the PF6- anions in one chain interact with the methyl H atoms of the Tab ligands in another chain to form four intramolecular hydrogen bonds [C8···F12, C9···F9, C17···F9 and C17···F4] and four intermolecular hydrogen bonds [C7···F10(x, -y + 1/2, z + 1/2), C9···F8(x, -y + 1/2, z + 1/2), C16···F2(-x + 2, y - 1/2, -z + 3/2) and C18···F12(-x + 2, y + 1/2, -z + 3/2)], affording a two-dimensional network (Table 2). Furthermore, this layer is connected to neighbouring ones via H···π interactions (H2A···Cg, where Cg is the centroid of the N5/C28/C33/N6/C34 ring), thereby forming a three-dimensional hydrogen-bonded network (Table 2).

The asymmetric unit of (II) comprisess half a {[Hg(Tab)2]2(µ-hbbm)}4+ tetracation and two PF6- anions. In the tetracation, two Hg(Tab)2 units are bridged by one hbbm ligand via two Hg—N bonds (Fig. 3). There is a crystallographic inversion centre at the centre of the Hg1···Hg1i axis [symmetry code (i) -x + 2, -y + 1, -z + 1]. Each HgII cation is coordinated by two S atoms from two Tab ligands and one N atom from the hbbm ligand, displaying a distorted T-shaped coordination. Each tetracation is further connected via a secondary Hg···S interaction between the HgII center and the S atom of the Tab ligand of the adjacent one, forming a one-dimensional chain extending along the b-axis direction (Fig. 4). Therefore, the HgII centre in (II) may be viewed as having a pseudo-four-coordinated pinwheel-shaped geometry. Similar to (I), the two Tab ligands of (II) are also in a cis configuration, with a dihedral angle between the two Tab-ligand phenyl groups of 77.4 (3)°. The mean Hg—S bond length in (II) [2.3813 (16) Å] is slightly longer than that in (I), while the average Hg—N bond length [2.362 (14) Å] is much shorter than that observed in (I). The secondary Hg···S separation [3.1325 (16) Å] is intermediate between that observed in [Hg(Tab)2(N-iPrim)](PF6)2 [2.805 (5) Å; iPrim is? Please define; Tang et al., 2009] and that in [Hg(SCH2COOH)2] [3.379 (3) Å; Bramlett et al., 2004]. The S—Hg—S angle [156.38 (6)°] is smaller than that of (I).

In (II), because the PF6- anions are located between the chains, several F atoms interact with the H atoms of the Tab and hbbm ligands to afford four intramolecular hydrogen bonds [C5···F7, C17···F12, C17···F12 and C17···F2] and three intermolecular hydrogen bonds [C8···F11(-x + 1, -y + 1, -z + 1), C17···F6(-x + 1, -y, -z + 1) and C26···F6(x + 1, y + 1, z + 1)]. In addition, the S atom of the Tab ligand interacts with a Tab-ligand H atom to form an intermolecular hydrogen bond [C3···S2(x + 1, y, z)]. These hydrogen-bonding interactions form a three-dimensional network (Table 3).

Related literature top

For related literature, see: Baba et al. (2008); Bharara et al. (2005, 2006); Bramlett et al. (2004); Chan et al. (2002); Cheesman et al. (1988); Chen et al. (2006); Fleischer et al. (2005); Govindaswamy et al. (1992); Gruff & Koch (1990); Helmann et al. (1990); Henkel & Krebs (2004); Li et al. (2005); Mahmoudi et al. (2007); Moore et al. (1990); Patra & Goldberg (2002); Qian et al. (1998); Ralston & O'Halloran (1990); Stillman et al. (1983); Tang et al. (2009, 2011); Vig et al. (2003).

Experimental top

To a solution of [Hg(Tab)2](PF6)2 (0.082 g, 0.1 mmol) in MeCN (5 ml) was added a solution of ebbm (0.013 g, 0.05 mmol) in MeOH (2 ml). The resulting mixture was stirred for 1 h to form a colourless solution and then filtered. Diethyl ether (20 ml) was layered onto the filtrate to form colourless prisms of [Hg(Tab)2(ebbm)](PF6)2.0.25H2O, (I), after several days. These were collected by filtration, washed with Et2O and dried in vacuo (yield 0.092 g, 85.0% based on Hg). Analysis, found: C 37.32, H 3.70, N 7.58%; calculated for C34H40.5F12HgN6O0.25P2S2: C 37.40, H 3.75, N 7.70%. IR (KBr, ν, cm-1): 1615 (w), 1492 (m), 956 (m), 840 (s).

To a solution of [Hg(Tab)2](PF6)2 (0.082 g, 0.1 mmol) in MeCN (5 ml) was added a solution of hbbm (0.016 g, 0.05 mmol) in MeOH (2 ml). The resulting mixture was stirred for 1 h to form a colourless solution and then filtered. Diethyl ether (20 ml) was layered onto the filtrate to form colourless prisms of {[Hg(Tab)2]2(µ-hbbm)}(PF6)4, (II), after several days. These were collected by filtration, washed with Et2O and dried in vacuo (yield 0.044 g, 89.0% based on Hg). Analysis, found: C 34.45, H 3.72, N 5.43%; calculated for C28H37F12HgN4P2S2: C 34.17, H 3.80, N 5.69%. IR (KBr, ν, cm-1): 1614 (w), 1490 (m), 958 (m), 837 (s).

Refinement top

For (I), the occupancy factor of a partial-occupancy solvent water molecule was fixed at 0.25. The two H atoms of this water molecule were not located. All other H atoms were placed in geometrically idealized positions, with C—H = 0.98 for methyl groups, 0.99 for methylene groups and 0.95 Å for phenyl groups, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for phenyl groups or Uiso(H) = 1.5Ueq(C) for methyl groups. [What was used for methylene groups?]

Computing details top

For both compounds, data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear (Rigaku/MSC, 2001); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. [Symmetry code: (i) x, -y + 3/2, z + 1/2.]
[Figure 2] Fig. 2. A view of a section of the one-dimensional chain of (I), extending along the c-axis direction.
[Figure 3] Fig. 3. The molecular structure of (II), with displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 3, -y + 2, -z + 2.]
[Figure 4] Fig. 4. A view of a section of the one-dimensional chain in (II), extending along the b-axis direction, formed by secondary Hg···S interactions.
(I) catena-poly[[{bis[4-(trimethylammonio)benzenethiolate- κS]mercury(II)}-µ-1,1'-(ethane-1,2-diyl)bis(1H- benzimidazole)-κ2N3:N3'] bis(hexafluoridophosphate) 0.25-hydrate top
Crystal data top
[Hg(C16H14N4)(C9H13NS)2](PF6)2·0.25H2OF(000) = 2154
Mr = 1091.87Dx = 1.797 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 16698 reflections
a = 19.589 (4) Åθ = 3.0–27.5°
b = 12.808 (3) ŵ = 4.09 mm1
c = 16.207 (3) ÅT = 223 K
β = 97.14 (3)°Chunk, colourless
V = 4034.9 (14) Å30.30 × 0.15 × 0.10 mm
Z = 4
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
9195 independent reflections
Radiation source: fine-focus sealed tube7542 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 2425
Tmin = 0.373, Tmax = 0.685k = 1615
22845 measured reflectionsl = 2116
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0437P)2 + 9.2683P]
where P = (Fo2 + 2Fc2)/3
9195 reflections(Δ/σ)max = 0.001
523 parametersΔρmax = 1.65 e Å3
0 restraintsΔρmin = 1.18 e Å3
Crystal data top
[Hg(C16H14N4)(C9H13NS)2](PF6)2·0.25H2OV = 4034.9 (14) Å3
Mr = 1091.87Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.589 (4) ŵ = 4.09 mm1
b = 12.808 (3) ÅT = 223 K
c = 16.207 (3) Å0.30 × 0.15 × 0.10 mm
β = 97.14 (3)°
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
9195 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
7542 reflections with I > 2σ(I)
Tmin = 0.373, Tmax = 0.685Rint = 0.045
22845 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.07Δρmax = 1.65 e Å3
9195 reflectionsΔρmin = 1.18 e Å3
523 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Hg10.571852 (12)0.457200 (17)0.768166 (15)0.03307 (9)
S10.55726 (9)0.27444 (12)0.75133 (10)0.0363 (4)
S20.62578 (8)0.62288 (12)0.79261 (12)0.0398 (4)
N10.8256 (3)0.0435 (4)0.8403 (3)0.0402 (13)
N20.9281 (3)0.5126 (5)0.8394 (4)0.0423 (13)
N30.4916 (3)0.5149 (4)0.6417 (3)0.0373 (12)
N40.4615 (3)0.6324 (4)0.5418 (3)0.0315 (11)
N50.4855 (3)1.0079 (4)0.3706 (3)0.0369 (12)
N60.4324 (3)0.8999 (4)0.4505 (3)0.0309 (11)
P10.90040 (10)0.73258 (15)0.59920 (13)0.0467 (5)
P20.83318 (12)0.22915 (18)0.58846 (13)0.0577 (5)
F10.8599 (4)0.7376 (5)0.6764 (4)0.112 (2)
F20.8978 (3)0.8563 (3)0.5934 (4)0.0816 (16)
F30.9393 (3)0.7289 (5)0.5202 (4)0.111 (2)
F40.9028 (3)0.6097 (4)0.6059 (4)0.0873 (17)
F50.8305 (3)0.7263 (4)0.5393 (4)0.0817 (16)
F60.9708 (3)0.7387 (5)0.6564 (4)0.111 (2)
F70.7715 (4)0.2107 (9)0.6370 (6)0.177 (4)
F80.8943 (4)0.2396 (6)0.5355 (5)0.130 (3)
F90.8802 (5)0.2494 (6)0.6703 (4)0.146 (3)
F100.8208 (5)0.3487 (5)0.5785 (5)0.155 (3)
F110.7843 (4)0.2059 (8)0.5085 (5)0.165 (4)
F120.8510 (4)0.1102 (5)0.5980 (4)0.116 (2)
C10.6381 (3)0.2150 (5)0.7815 (4)0.0302 (13)
C20.6416 (3)0.1079 (5)0.7687 (4)0.0369 (14)
H2A0.60180.07230.74570.044*
C30.7018 (3)0.0523 (4)0.7889 (4)0.0371 (15)
H3A0.70270.02050.78130.044*
C40.7612 (3)0.1062 (5)0.8206 (4)0.0314 (13)
C50.7586 (3)0.2101 (5)0.8348 (4)0.0444 (17)
H5A0.79840.24580.85790.053*
C60.6973 (3)0.2641 (5)0.8154 (5)0.0444 (17)
H6A0.69620.33630.82570.053*
C70.8220 (4)0.0175 (7)0.9184 (5)0.068 (3)
H7A0.81530.02980.96340.102*
H7B0.86450.05590.93240.102*
H7C0.78380.06610.91000.102*
C80.8361 (4)0.0308 (6)0.7710 (5)0.062 (2)
H8A0.83870.00820.72020.093*
H8B0.79790.07930.76270.093*
H8C0.87860.06930.78550.093*
C90.8878 (4)0.1103 (7)0.8537 (6)0.065 (2)
H9A0.89140.15100.80400.098*
H9B0.92820.06670.86570.098*
H9C0.88430.15690.90020.098*
C100.7147 (3)0.5899 (5)0.8021 (4)0.0363 (14)
C110.7417 (3)0.5205 (6)0.7500 (4)0.0406 (16)
H11A0.71240.48920.70660.049*
C120.8111 (3)0.4958 (6)0.7600 (4)0.0411 (16)
H12A0.82850.44670.72510.049*
C130.8535 (3)0.5438 (5)0.8214 (4)0.0342 (14)
C140.8283 (4)0.6151 (7)0.8728 (5)0.059 (2)
H14A0.85800.64800.91490.071*
C150.7593 (4)0.6383 (6)0.8626 (5)0.060 (2)
H15A0.74220.68800.89740.072*
C160.9364 (4)0.4455 (7)0.9151 (5)0.064 (2)
H16A0.90780.38380.90530.096*
H16B0.92260.48420.96170.096*
H16C0.98420.42470.92750.096*
C170.9527 (4)0.4530 (7)0.7687 (5)0.058 (2)
H17A0.92450.39110.75720.087*
H17B1.00030.43250.78390.087*
H17C0.94910.49690.71960.087*
C180.9733 (4)0.6074 (7)0.8550 (6)0.068 (2)
H18A0.95880.64760.90040.103*
H18B0.96960.65010.80520.103*
H18C1.02070.58550.86930.103*
C190.4344 (3)0.4785 (5)0.5907 (4)0.0302 (13)
C200.3982 (3)0.3843 (5)0.5943 (4)0.0394 (15)
H20A0.41050.33470.63630.047*
C210.3438 (4)0.3681 (5)0.5333 (5)0.0472 (17)
H21A0.31920.30500.53260.057*
C220.3243 (4)0.4425 (6)0.4728 (5)0.0524 (19)
H22A0.28620.42850.43310.063*
C230.3584 (4)0.5362 (5)0.4685 (4)0.0413 (16)
H23A0.34480.58640.42740.050*
C240.4144 (3)0.5510 (4)0.5294 (4)0.0294 (12)
C250.5060 (3)0.6046 (5)0.6100 (4)0.0348 (14)
H25A0.54340.64620.63200.042*
C260.4696 (3)0.7231 (4)0.4900 (4)0.0339 (14)
H26A0.46310.70170.43150.041*
H26B0.51660.74970.50270.041*
C270.4193 (3)0.8102 (5)0.5023 (4)0.0370 (15)
H27A0.37200.78540.48720.044*
H27B0.42440.83100.56100.044*
C280.4216 (3)1.0505 (4)0.3836 (4)0.0310 (13)
C290.3893 (4)1.1427 (5)0.3517 (4)0.0416 (16)
H29A0.41111.18850.31800.050*
C300.3251 (4)1.1628 (5)0.3718 (5)0.0479 (18)
H30A0.30211.22360.35130.057*
C310.2927 (4)1.0959 (6)0.4217 (5)0.0482 (18)
H31A0.24831.11300.43380.058*
C320.3229 (4)1.0053 (5)0.4544 (4)0.0425 (16)
H32A0.30060.96090.48880.051*
C330.3881 (3)0.9833 (4)0.4337 (4)0.0311 (13)
C340.4888 (3)0.9195 (5)0.4121 (4)0.0341 (14)
H34A0.52670.87420.41500.041*
O10.9958 (13)0.088 (2)0.9148 (18)0.100 (11)0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.03392 (14)0.02958 (13)0.03602 (14)0.00245 (10)0.00553 (10)0.00140 (10)
S10.0377 (8)0.0305 (8)0.0404 (9)0.0023 (7)0.0032 (7)0.0024 (7)
S20.0315 (8)0.0300 (8)0.0573 (11)0.0016 (7)0.0031 (7)0.0007 (8)
N10.037 (3)0.042 (3)0.042 (3)0.012 (3)0.007 (2)0.003 (3)
N20.030 (3)0.053 (3)0.043 (3)0.004 (3)0.001 (2)0.000 (3)
N30.041 (3)0.032 (3)0.040 (3)0.003 (2)0.007 (2)0.005 (2)
N40.038 (3)0.027 (2)0.029 (3)0.000 (2)0.000 (2)0.005 (2)
N50.039 (3)0.028 (3)0.043 (3)0.002 (2)0.004 (3)0.004 (2)
N60.034 (3)0.028 (2)0.033 (3)0.001 (2)0.010 (2)0.003 (2)
P10.0464 (11)0.0402 (10)0.0524 (11)0.0005 (8)0.0017 (9)0.0041 (9)
P20.0656 (14)0.0647 (13)0.0434 (11)0.0091 (11)0.0094 (10)0.0078 (10)
F10.158 (6)0.107 (5)0.083 (4)0.006 (4)0.061 (4)0.002 (4)
F20.074 (3)0.039 (2)0.128 (5)0.002 (2)0.003 (3)0.007 (3)
F30.115 (5)0.130 (5)0.102 (5)0.035 (4)0.066 (4)0.025 (4)
F40.114 (4)0.044 (3)0.099 (4)0.008 (3)0.004 (4)0.008 (3)
F50.069 (3)0.071 (3)0.097 (4)0.003 (3)0.024 (3)0.005 (3)
F60.078 (4)0.090 (4)0.145 (6)0.004 (3)0.061 (4)0.008 (4)
F70.133 (7)0.266 (11)0.150 (7)0.026 (7)0.096 (6)0.043 (7)
F80.129 (6)0.118 (5)0.163 (7)0.012 (5)0.089 (5)0.005 (5)
F90.207 (8)0.120 (6)0.091 (5)0.045 (6)0.062 (5)0.016 (4)
F100.238 (10)0.084 (5)0.151 (7)0.082 (6)0.053 (7)0.036 (5)
F110.149 (7)0.237 (10)0.092 (5)0.046 (7)0.051 (5)0.041 (6)
F120.147 (6)0.063 (4)0.133 (6)0.003 (4)0.003 (5)0.012 (4)
C10.033 (3)0.034 (3)0.024 (3)0.001 (3)0.006 (2)0.004 (3)
C20.043 (4)0.026 (3)0.042 (4)0.003 (3)0.006 (3)0.005 (3)
C30.046 (4)0.020 (3)0.046 (4)0.004 (3)0.009 (3)0.000 (3)
C40.025 (3)0.036 (3)0.033 (3)0.005 (3)0.001 (2)0.003 (3)
C50.036 (4)0.044 (4)0.051 (4)0.002 (3)0.004 (3)0.016 (3)
C60.042 (4)0.027 (3)0.062 (5)0.005 (3)0.001 (3)0.011 (3)
C70.060 (5)0.085 (6)0.062 (5)0.035 (5)0.016 (4)0.036 (5)
C80.054 (5)0.067 (5)0.065 (5)0.024 (4)0.011 (4)0.020 (4)
C90.042 (4)0.062 (5)0.094 (7)0.006 (4)0.016 (4)0.008 (5)
C100.035 (3)0.034 (3)0.039 (4)0.001 (3)0.004 (3)0.006 (3)
C110.030 (3)0.056 (4)0.034 (3)0.003 (3)0.002 (3)0.010 (3)
C120.038 (4)0.050 (4)0.035 (4)0.004 (3)0.004 (3)0.013 (3)
C130.023 (3)0.042 (4)0.037 (3)0.002 (3)0.002 (2)0.004 (3)
C140.041 (4)0.078 (6)0.053 (5)0.002 (4)0.008 (3)0.036 (4)
C150.039 (4)0.065 (5)0.074 (6)0.010 (4)0.004 (4)0.035 (4)
C160.050 (5)0.091 (7)0.050 (5)0.018 (4)0.001 (4)0.019 (5)
C170.041 (4)0.077 (6)0.057 (5)0.019 (4)0.008 (4)0.009 (4)
C180.038 (4)0.067 (5)0.099 (7)0.014 (4)0.005 (4)0.003 (5)
C190.031 (3)0.032 (3)0.028 (3)0.002 (3)0.006 (2)0.002 (2)
C200.045 (4)0.029 (3)0.047 (4)0.001 (3)0.015 (3)0.005 (3)
C210.051 (4)0.040 (4)0.053 (4)0.015 (3)0.018 (4)0.008 (3)
C220.047 (4)0.063 (5)0.046 (4)0.018 (4)0.003 (3)0.012 (4)
C230.046 (4)0.045 (4)0.032 (3)0.004 (3)0.000 (3)0.005 (3)
C240.032 (3)0.033 (3)0.024 (3)0.001 (3)0.006 (2)0.005 (3)
C250.039 (3)0.030 (3)0.035 (3)0.001 (3)0.005 (3)0.003 (3)
C260.038 (3)0.029 (3)0.036 (3)0.002 (3)0.011 (3)0.010 (3)
C270.041 (4)0.036 (3)0.037 (3)0.004 (3)0.018 (3)0.011 (3)
C280.035 (3)0.024 (3)0.033 (3)0.002 (3)0.001 (3)0.002 (3)
C290.051 (4)0.033 (3)0.040 (4)0.006 (3)0.003 (3)0.006 (3)
C300.055 (4)0.031 (3)0.056 (5)0.013 (3)0.001 (4)0.002 (3)
C310.042 (4)0.049 (4)0.054 (5)0.015 (3)0.010 (3)0.001 (4)
C320.042 (4)0.041 (4)0.046 (4)0.000 (3)0.014 (3)0.004 (3)
C330.035 (3)0.026 (3)0.033 (3)0.000 (3)0.007 (3)0.002 (2)
C340.032 (3)0.032 (3)0.038 (3)0.002 (3)0.006 (3)0.004 (3)
O10.069 (16)0.12 (2)0.13 (2)0.055 (16)0.061 (16)0.098 (19)
Geometric parameters (Å, º) top
Hg1—S12.3698 (16)C8—H8B0.9700
Hg1—S22.3816 (16)C8—H8C0.9700
Hg1—N32.533 (5)C9—H9A0.9700
Hg1—N5i2.554 (6)C9—H9B0.9700
S1—C11.770 (6)C9—H9C0.9700
S2—C101.781 (7)C10—C151.376 (9)
N1—C41.496 (7)C10—C111.376 (9)
N1—C71.496 (9)C11—C121.384 (9)
N1—C81.507 (9)C11—H11A0.9400
N1—C91.482 (9)C12—C131.361 (9)
N2—C131.508 (8)C12—H12A0.9400
N2—C161.491 (9)C13—C141.369 (9)
N2—C171.504 (9)C14—C151.374 (10)
N2—C181.506 (9)C14—H14A0.9400
N3—C191.388 (8)C15—H15A0.9400
N3—C251.304 (8)C16—H16A0.9700
N4—C241.389 (7)C16—H16B0.9700
N4—C251.367 (8)C16—H16C0.9700
N4—C261.454 (7)C17—H17A0.9700
N5—C341.314 (8)C17—H17B0.9700
N5—C281.404 (8)C17—H17C0.9700
N5—Hg1ii2.554 (6)C18—H18A0.9700
N6—C341.357 (8)C18—H18B0.9700
N6—C331.382 (7)C18—H18C0.9700
N6—C271.465 (7)C19—C241.381 (8)
P1—F11.564 (6)C19—C201.405 (8)
P1—F61.565 (5)C20—C211.376 (10)
P1—F31.569 (6)C20—H20A0.9400
P1—F41.578 (5)C21—C221.386 (10)
P1—F51.580 (5)C21—H21A0.9400
P1—F21.587 (5)C22—C231.379 (9)
P2—F71.539 (7)C22—H22A0.9400
P2—F91.540 (6)C23—C241.395 (9)
P2—F111.542 (7)C23—H23A0.9400
P2—F101.556 (7)C25—H25A0.9400
P2—F81.563 (7)C26—C271.518 (8)
P2—F121.566 (6)C26—H26A0.9800
C1—C61.371 (9)C26—H26B0.9800
C1—C21.390 (8)C27—H27A0.9800
C2—C31.381 (9)C27—H27B0.9800
C2—H2A0.9400C28—C331.401 (8)
C3—C41.396 (9)C28—C291.407 (8)
C3—H3A0.9400C29—C301.364 (10)
C4—C51.352 (9)C29—H29A0.9400
C5—C61.389 (9)C30—C311.384 (10)
C5—H5A0.9400C30—H30A0.9400
C6—H6A0.9400C31—C321.379 (10)
C7—H7A0.9700C31—H31A0.9400
C7—H7B0.9700C32—C331.390 (9)
C7—H7C0.9700C32—H32A0.9400
C8—H8A0.9700C34—H34A0.9400
S1—Hg1—S2160.72 (6)H9A—C9—H9B109.5
S1—Hg1—N398.10 (13)N1—C9—H9C109.5
S2—Hg1—N395.32 (13)H9A—C9—H9C109.5
S1—Hg1—N5i99.65 (12)H9B—C9—H9C109.5
S2—Hg1—N5i92.97 (12)C15—C10—C11118.0 (6)
N3—Hg1—N5i94.61 (17)C15—C10—S2118.8 (5)
C1—S1—Hg1107.6 (2)C11—C10—S2123.1 (5)
C10—S2—Hg1102.2 (2)C10—C11—C12121.4 (6)
C9—N1—C4112.1 (5)C10—C11—H11A119.3
C9—N1—C7107.6 (6)C12—C11—H11A119.3
C4—N1—C7109.5 (5)C13—C12—C11119.0 (6)
C9—N1—C8106.7 (6)C13—C12—H12A120.5
C4—N1—C8111.7 (5)C11—C12—H12A120.5
C7—N1—C8109.0 (6)C12—C13—C14120.8 (6)
C16—N2—C17108.7 (6)C12—C13—N2120.7 (6)
C16—N2—C18109.0 (6)C14—C13—N2118.3 (6)
C17—N2—C18107.4 (6)C13—C14—C15119.7 (7)
C16—N2—C13108.4 (5)C13—C14—H14A120.2
C17—N2—C13112.5 (5)C15—C14—H14A120.2
C18—N2—C13110.8 (6)C14—C15—C10121.1 (7)
C25—N3—C19105.0 (5)C14—C15—H15A119.5
C25—N3—Hg1115.7 (4)C10—C15—H15A119.5
C19—N3—Hg1139.3 (4)N2—C16—H16A109.5
C25—N4—C24105.5 (5)N2—C16—H16B109.5
C25—N4—C26124.8 (5)H16A—C16—H16B109.5
C24—N4—C26129.3 (5)N2—C16—H16C109.5
C34—N5—C28104.3 (5)H16A—C16—H16C109.5
C34—N5—Hg1ii119.3 (4)H16B—C16—H16C109.5
C28—N5—Hg1ii134.7 (4)N2—C17—H17A109.5
C34—N6—C33107.1 (5)N2—C17—H17B109.5
C34—N6—C27128.3 (5)H17A—C17—H17B109.5
C33—N6—C27124.7 (5)N2—C17—H17C109.5
F1—P1—F691.2 (4)H17A—C17—H17C109.5
F1—P1—F3178.4 (4)H17B—C17—H17C109.5
F6—P1—F390.2 (4)N2—C18—H18A109.5
F1—P1—F490.0 (3)N2—C18—H18B109.5
F6—P1—F489.6 (3)H18A—C18—H18B109.5
F3—P1—F490.8 (4)N2—C18—H18C109.5
F1—P1—F590.3 (4)H18A—C18—H18C109.5
F6—P1—F5178.4 (4)H18B—C18—H18C109.5
F3—P1—F588.2 (4)C24—C19—N3109.8 (5)
F4—P1—F590.4 (3)C24—C19—C20120.5 (6)
F1—P1—F289.4 (3)N3—C19—C20129.7 (6)
F6—P1—F290.2 (3)C21—C20—C19116.7 (6)
F3—P1—F289.8 (4)C21—C20—H20A121.6
F4—P1—F2179.4 (4)C19—C20—H20A121.6
F5—P1—F289.8 (3)C20—C21—C22121.7 (6)
F7—P2—F990.5 (5)C20—C21—H21A119.2
F7—P2—F1187.4 (5)C22—C21—H21A119.2
F9—P2—F11177.6 (5)C23—C22—C21122.8 (7)
F7—P2—F1094.7 (5)C23—C22—H22A118.6
F9—P2—F1089.6 (5)C21—C22—H22A118.6
F11—P2—F1091.7 (5)C22—C23—C24115.2 (6)
F7—P2—F8175.5 (5)C22—C23—H23A122.4
F9—P2—F892.4 (5)C24—C23—H23A122.4
F11—P2—F889.6 (5)C19—C24—N4106.0 (5)
F10—P2—F888.8 (4)C19—C24—C23123.1 (6)
F7—P2—F1288.8 (5)N4—C24—C23130.9 (6)
F9—P2—F1288.7 (4)N3—C25—N4113.7 (6)
F11—P2—F1290.1 (5)N3—C25—H25A123.2
F10—P2—F12176.0 (5)N4—C25—H25A123.2
F8—P2—F1287.8 (4)N4—C26—C27113.1 (5)
C6—C1—C2117.2 (6)N4—C26—H26A109.0
C6—C1—S1126.6 (5)C27—C26—H26A109.0
C2—C1—S1116.3 (5)N4—C26—H26B109.0
C3—C2—C1122.1 (6)C27—C26—H26B109.0
C3—C2—H2A119.0H26A—C26—H26B107.8
C1—C2—H2A119.0N6—C27—C26109.7 (5)
C2—C3—C4118.6 (5)N6—C27—H27A109.7
C2—C3—H3A120.7C26—C27—H27A109.7
C4—C3—H3A120.7N6—C27—H27B109.7
C5—C4—C3120.2 (6)C26—C27—H27B109.7
C5—C4—N1122.7 (5)H27A—C27—H27B108.2
C3—C4—N1117.0 (5)C33—C28—N5109.7 (5)
C4—C5—C6120.1 (6)C33—C28—C29120.5 (6)
C4—C5—H5A120.0N5—C28—C29129.7 (6)
C6—C5—H5A120.0C30—C29—C28117.1 (6)
C1—C6—C5121.8 (6)C30—C29—H29A121.4
C1—C6—H6A119.1C28—C29—H29A121.4
C5—C6—H6A119.1C29—C30—C31121.8 (6)
N1—C7—H7A109.5C29—C30—H30A119.1
N1—C7—H7B109.5C31—C30—H30A119.1
H7A—C7—H7B109.5C32—C31—C30122.7 (7)
N1—C7—H7C109.5C32—C31—H31A118.7
H7A—C7—H7C109.5C30—C31—H31A118.7
H7B—C7—H7C109.5C31—C32—C33116.2 (6)
N1—C8—H8A109.5C31—C32—H32A121.9
N1—C8—H8B109.5C33—C32—H32A121.9
H8A—C8—H8B109.5N6—C33—C32133.0 (6)
N1—C8—H8C109.5N6—C33—C28105.2 (5)
H8A—C8—H8C109.5C32—C33—C28121.8 (6)
H8B—C8—H8C109.5N5—C34—N6113.8 (5)
N1—C9—H9A109.5N5—C34—H34A123.1
N1—C9—H9B109.5N6—C34—H34A123.1
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···N5iii0.942.593.479 (8)157
C7—H7A···F10iv0.972.423.380 (12)170
C9—H9C···F8iv0.972.553.508 (12)169
C8—H8A···F120.972.413.379 (12)177
C9—H9A···F90.972.493.452 (12)171
C16—H16C···F2v0.972.533.462 (10)160
C17—H17A···F90.972.393.286 (10)153
C17—H17C···F40.972.433.363 (10)162
C18—H18C···F12vi0.972.523.431 (11)156
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x, y+1/2, z+1/2; (v) x+2, y1/2, z+3/2; (vi) x+2, y+1/2, z+3/2.
(II) catena-poly[[{[4-(trimethylammonio)benzenethiolate- κS]mercury(II)}bis[µ-4-(trimethylammonio)benzenethiolate- κ2S:S]{[4-(trimethylammonio)benzenethiolate- κS]mercury(II)}-µ-1,1'-(hexane-1,6-diyl)bis(1H- benzimidazole)-κ2N3:N3'] tetrakis(hexafluoridophosphate)] top
Crystal data top
[Hg2(C20H22N4)(C9H13NS)4](PF6)4Z = 1
Mr = 1968.58F(000) = 966
Triclinic, P1Dx = 1.811 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.871 (2) ÅCell parameters from 8200 reflections
b = 10.364 (2) Åθ = 3.0–27.5°
c = 18.078 (4) ŵ = 4.56 mm1
α = 98.39 (3)°T = 223 K
β = 97.85 (3)°Prism, colourless
γ = 94.05 (3)°0.45 × 0.20 × 0.15 mm
V = 1804.7 (6) Å3
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
6337 independent reflections
Radiation source: fine-focus sealed tube5615 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(REQAB?; Jacobson, 1998)
h = 1111
Tmin = 0.234, Tmax = 0.548k = 1211
15125 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0434P)2]
where P = (Fo2 + 2Fc2)/3
6337 reflections(Δ/σ)max = 0.002
442 parametersΔρmax = 1.04 e Å3
0 restraintsΔρmin = 0.85 e Å3
Crystal data top
[Hg2(C20H22N4)(C9H13NS)4](PF6)4γ = 94.05 (3)°
Mr = 1968.58V = 1804.7 (6) Å3
Triclinic, P1Z = 1
a = 9.871 (2) ÅMo Kα radiation
b = 10.364 (2) ŵ = 4.56 mm1
c = 18.078 (4) ÅT = 223 K
α = 98.39 (3)°0.45 × 0.20 × 0.15 mm
β = 97.85 (3)°
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
6337 independent reflections
Absorption correction: multi-scan
(REQAB?; Jacobson, 1998)
5615 reflections with I > 2σ(I)
Tmin = 0.234, Tmax = 0.548Rint = 0.045
15125 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.03Δρmax = 1.04 e Å3
6337 reflectionsΔρmin = 0.85 e Å3
442 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.89148 (2)0.62232 (2)0.955548 (10)0.04418 (10)
S10.67247 (15)0.67404 (19)0.98267 (8)0.0609 (4)
S21.05378 (14)0.49835 (15)0.89525 (7)0.0434 (3)
N10.3033 (5)0.5693 (5)0.6816 (2)0.0465 (11)
N20.7996 (5)0.1770 (4)0.5987 (2)0.0456 (11)
N31.0638 (5)0.7776 (4)1.0276 (2)0.0448 (11)
N41.2681 (4)0.8288 (5)1.1002 (2)0.0447 (11)
C10.5705 (5)0.6414 (6)0.8923 (3)0.0425 (13)
C20.4469 (6)0.5712 (7)0.8845 (3)0.0593 (17)
H2A0.41930.53740.92610.071*
C30.3607 (6)0.5485 (7)0.8158 (3)0.0567 (16)
H3A0.27510.49980.81130.068*
C40.3990 (5)0.5966 (5)0.7548 (3)0.0384 (12)
C50.5226 (6)0.6670 (6)0.7610 (3)0.0464 (14)
H5A0.55020.70050.71930.056*
C60.6070 (6)0.6883 (6)0.8304 (3)0.0511 (15)
H6A0.69260.73700.83490.061*
C70.3591 (7)0.6249 (7)0.6191 (3)0.0651 (18)
H7A0.37560.71930.63250.098*
H7B0.29320.60320.57310.098*
H7C0.44460.58830.61100.098*
C80.2785 (9)0.4242 (7)0.6576 (4)0.085 (3)
H8A0.36510.38810.65180.128*
H8B0.21730.40520.60980.128*
H8C0.23680.38530.69570.128*
C90.1710 (7)0.6281 (9)0.6914 (5)0.090 (3)
H9A0.18920.72210.70670.134*
H9B0.12950.59040.72990.134*
H9C0.10890.60990.64390.134*
C100.9631 (5)0.3954 (5)0.8150 (3)0.0350 (11)
C110.8351 (6)0.4184 (5)0.7797 (3)0.0450 (13)
H11A0.78650.48390.80290.054*
C120.7786 (6)0.3459 (5)0.7110 (3)0.0452 (13)
H12A0.69180.36150.68730.054*
C130.8510 (6)0.2496 (5)0.6768 (3)0.0389 (12)
C140.9749 (6)0.2196 (6)0.7131 (3)0.0459 (13)
H14A1.02090.15080.69120.055*
C151.0291 (5)0.2923 (5)0.7816 (3)0.0414 (12)
H15A1.11290.27220.80670.050*
C160.9012 (7)0.2030 (7)0.5473 (3)0.069 (2)
H16A0.98910.17490.56640.104*
H16B0.91160.29600.54490.104*
H16C0.86880.15490.49700.104*
C170.6639 (6)0.2236 (6)0.5651 (3)0.0585 (16)
H17A0.67660.31680.56350.088*
H17B0.59400.20690.59620.088*
H17C0.63530.17670.51420.088*
C180.7763 (8)0.0337 (6)0.6000 (4)0.073 (2)
H18A0.86100.00180.62090.109*
H18B0.74680.01180.54890.109*
H18C0.70590.01790.63100.109*
C191.1933 (6)0.7516 (6)1.0406 (3)0.0456 (13)
H19A1.22980.68461.01060.055*
C201.0527 (6)0.8836 (6)1.0830 (3)0.0442 (13)
C210.9400 (6)0.9534 (6)1.0974 (3)0.0578 (16)
H21A0.85430.93211.06660.069*
C220.9575 (8)1.0523 (7)1.1568 (4)0.073 (2)
H22A0.88361.10101.16710.088*
C231.0852 (8)1.0824 (7)1.2029 (4)0.072 (2)
H23A1.09441.15061.24420.087*
C241.1977 (7)1.0158 (6)1.1901 (3)0.0545 (15)
H24A1.28291.03761.22130.065*
C251.1799 (6)0.9148 (6)1.1287 (3)0.0439 (13)
C261.4165 (6)0.8296 (6)1.1220 (3)0.0538 (15)
H26A1.44690.74691.09920.065*
H26B1.43770.83651.17700.065*
C271.4936 (6)0.9426 (6)1.0966 (3)0.0504 (15)
H27A1.59230.93391.10680.060*
H27B1.47571.02471.12650.060*
C281.4542 (5)0.9500 (6)1.0132 (3)0.0474 (14)
H28A1.45920.86390.98350.057*
H28B1.35910.97211.00430.057*
P10.66344 (16)0.04237 (16)0.33206 (9)0.0495 (4)
F10.5833 (6)0.0458 (5)0.2822 (3)0.131 (2)
F20.6100 (6)0.0288 (6)0.4031 (2)0.132 (2)
F30.7913 (6)0.0564 (6)0.3513 (3)0.141 (2)
F40.7485 (6)0.1317 (5)0.3809 (3)0.1178 (19)
F50.7157 (4)0.1148 (5)0.2598 (2)0.0985 (15)
F60.5362 (5)0.1442 (6)0.3137 (3)0.123 (2)
P20.78142 (18)0.65473 (16)0.58181 (9)0.0540 (4)
F70.6997 (4)0.7605 (4)0.6268 (3)0.0874 (13)
F80.8535 (6)0.6172 (6)0.6567 (3)0.129 (2)
F90.9050 (6)0.7586 (5)0.5891 (4)0.137 (2)
F100.8606 (5)0.5474 (5)0.5363 (3)0.1109 (16)
F110.7127 (10)0.6943 (8)0.5099 (3)0.217 (5)
F120.6641 (5)0.5488 (5)0.5824 (4)0.150 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.03977 (14)0.04984 (17)0.03765 (14)0.00091 (10)0.00192 (9)0.00536 (10)
S10.0426 (8)0.0975 (14)0.0377 (8)0.0111 (8)0.0046 (6)0.0064 (8)
S20.0406 (7)0.0520 (9)0.0332 (7)0.0008 (6)0.0046 (6)0.0052 (6)
N10.048 (3)0.049 (3)0.039 (2)0.006 (2)0.001 (2)0.006 (2)
N20.070 (3)0.035 (3)0.029 (2)0.007 (2)0.007 (2)0.0033 (19)
N30.044 (3)0.042 (3)0.042 (2)0.008 (2)0.006 (2)0.010 (2)
N40.042 (3)0.047 (3)0.041 (2)0.012 (2)0.006 (2)0.003 (2)
C10.039 (3)0.052 (4)0.033 (3)0.005 (3)0.003 (2)0.003 (2)
C20.050 (4)0.086 (5)0.040 (3)0.011 (3)0.006 (3)0.015 (3)
C30.041 (3)0.080 (5)0.047 (3)0.014 (3)0.010 (3)0.009 (3)
C40.038 (3)0.041 (3)0.034 (3)0.001 (2)0.001 (2)0.003 (2)
C50.049 (3)0.046 (4)0.045 (3)0.003 (3)0.006 (3)0.014 (3)
C60.041 (3)0.047 (4)0.060 (4)0.008 (3)0.002 (3)0.006 (3)
C70.083 (5)0.071 (5)0.041 (3)0.004 (4)0.004 (3)0.019 (3)
C80.136 (7)0.049 (5)0.055 (4)0.034 (4)0.011 (4)0.003 (3)
C90.052 (4)0.127 (8)0.088 (5)0.020 (5)0.005 (4)0.019 (5)
C100.044 (3)0.034 (3)0.026 (2)0.002 (2)0.009 (2)0.002 (2)
C110.056 (3)0.037 (3)0.037 (3)0.012 (3)0.001 (3)0.009 (2)
C120.052 (3)0.041 (4)0.038 (3)0.009 (3)0.003 (2)0.001 (2)
C130.059 (3)0.028 (3)0.027 (2)0.006 (2)0.008 (2)0.002 (2)
C140.056 (4)0.038 (3)0.043 (3)0.008 (3)0.014 (3)0.002 (2)
C150.042 (3)0.043 (3)0.040 (3)0.004 (2)0.005 (2)0.007 (2)
C160.081 (5)0.089 (5)0.036 (3)0.005 (4)0.022 (3)0.002 (3)
C170.075 (4)0.055 (4)0.038 (3)0.008 (3)0.001 (3)0.002 (3)
C180.123 (6)0.025 (4)0.060 (4)0.008 (4)0.003 (4)0.005 (3)
C190.047 (3)0.040 (3)0.044 (3)0.005 (3)0.006 (3)0.007 (2)
C200.052 (3)0.042 (3)0.036 (3)0.008 (3)0.008 (2)0.001 (2)
C210.053 (4)0.059 (4)0.057 (4)0.000 (3)0.007 (3)0.005 (3)
C220.072 (5)0.067 (5)0.075 (5)0.006 (4)0.019 (4)0.018 (4)
C230.089 (5)0.057 (5)0.062 (4)0.017 (4)0.019 (4)0.017 (3)
C240.062 (4)0.052 (4)0.044 (3)0.018 (3)0.009 (3)0.003 (3)
C250.051 (3)0.048 (4)0.031 (3)0.013 (3)0.008 (2)0.006 (2)
C260.047 (3)0.061 (4)0.048 (3)0.006 (3)0.004 (3)0.005 (3)
C270.042 (3)0.060 (4)0.044 (3)0.011 (3)0.004 (2)0.001 (3)
C280.037 (3)0.053 (4)0.047 (3)0.004 (3)0.001 (2)0.001 (3)
P10.0545 (9)0.0429 (10)0.0458 (8)0.0039 (7)0.0006 (7)0.0037 (7)
F10.194 (6)0.087 (4)0.090 (3)0.065 (4)0.059 (3)0.008 (3)
F20.126 (4)0.187 (6)0.063 (3)0.037 (4)0.007 (3)0.057 (3)
F30.118 (4)0.123 (5)0.157 (5)0.068 (4)0.042 (4)0.032 (4)
F40.186 (5)0.080 (3)0.079 (3)0.034 (3)0.026 (3)0.019 (3)
F50.084 (3)0.141 (4)0.069 (3)0.029 (3)0.022 (2)0.009 (3)
F60.109 (4)0.157 (5)0.083 (3)0.072 (3)0.025 (3)0.022 (3)
P20.0709 (11)0.0367 (9)0.0517 (9)0.0020 (8)0.0097 (8)0.0015 (7)
F70.096 (3)0.051 (2)0.117 (3)0.005 (2)0.056 (3)0.015 (2)
F80.149 (5)0.138 (5)0.098 (4)0.007 (4)0.012 (3)0.043 (4)
F90.123 (4)0.068 (3)0.238 (7)0.005 (3)0.099 (5)0.020 (4)
F100.119 (4)0.074 (3)0.129 (4)0.033 (3)0.022 (3)0.034 (3)
F110.352 (11)0.257 (9)0.062 (3)0.216 (9)0.006 (5)0.029 (4)
F120.067 (3)0.048 (3)0.320 (9)0.008 (2)0.020 (4)0.009 (4)
Geometric parameters (Å, º) top
Hg1—S12.3617 (16)C13—C141.384 (7)
Hg1—N32.362 (4)C14—C151.370 (7)
Hg1—S22.4010 (16)C14—H14A0.9400
Hg1—S2i3.1325 (16)C15—H15A0.9400
Hg1—Hg1i3.8233 (12)C16—H16A0.9700
S1—C11.771 (5)C16—H16B0.9700
S2—C101.762 (5)C16—H16C0.9700
S2—Hg1i3.1325 (16)C17—H17A0.9700
N1—C41.496 (6)C17—H17B0.9700
N1—C71.492 (7)C17—H17C0.9700
N1—C81.496 (8)C18—H18A0.9700
N1—C91.500 (8)C18—H18B0.9700
N2—C181.491 (7)C18—H18C0.9700
N2—C161.495 (7)C19—H19A0.9400
N2—C131.503 (6)C20—C251.394 (7)
N2—C171.534 (7)C20—C211.402 (8)
N3—C191.322 (7)C21—C221.355 (9)
N3—C201.395 (7)C21—H21A0.9400
N4—C191.339 (7)C22—C231.400 (10)
N4—C251.384 (7)C22—H22A0.9400
N4—C261.464 (7)C23—C241.377 (9)
C1—C21.355 (8)C23—H23A0.9400
C1—C61.366 (7)C24—C251.393 (8)
C2—C31.385 (8)C24—H24A0.9400
C2—H2A0.9400C26—C271.512 (8)
C3—C41.362 (7)C26—H26A0.9800
C3—H3A0.9400C26—H26B0.9800
C4—C51.359 (7)C27—C281.518 (7)
C5—C61.387 (8)C27—H27A0.9800
C5—H5A0.9400C27—H27B0.9800
C6—H6A0.9400C28—C28ii1.500 (10)
C7—H7A0.9700C28—H28A0.9800
C7—H7B0.9700C28—H28B0.9800
C7—H7C0.9700P1—F31.534 (5)
C8—H8A0.9700P1—F61.549 (5)
C8—H8B0.9700P1—F11.556 (4)
C8—H8C0.9700P1—F21.560 (4)
C9—H9A0.9700P1—F41.577 (4)
C9—H9B0.9700P1—F51.578 (4)
C9—H9C0.9700P2—F111.507 (5)
C10—C111.389 (7)P2—F121.540 (5)
C10—C151.396 (7)P2—F91.547 (5)
C11—C121.378 (7)P2—F81.556 (5)
C11—H11A0.9400P2—F71.600 (4)
C12—C131.389 (7)P2—F101.599 (4)
C12—H12A0.9400
S1—Hg1—N3110.36 (12)N2—C16—H16B109.5
S1—Hg1—S2156.38 (6)H16A—C16—H16B109.5
N3—Hg1—S293.26 (12)N2—C16—H16C109.5
S1—Hg1—S2i90.69 (5)H16A—C16—H16C109.5
N3—Hg1—S2i79.17 (11)H16B—C16—H16C109.5
S2—Hg1—S2i93.66 (4)N2—C17—H17A109.5
S1—Hg1—Hg1i125.82 (5)N2—C17—H17B109.5
N3—Hg1—Hg1i83.21 (12)H17A—C17—H17B109.5
S2—Hg1—Hg1i54.85 (4)N2—C17—H17C109.5
S2i—Hg1—Hg1i38.81 (3)H17A—C17—H17C109.5
C1—S1—Hg1102.65 (18)H17B—C17—H17C109.5
C10—S2—Hg1107.91 (18)N2—C18—H18A109.5
C10—S2—Hg1i117.05 (17)N2—C18—H18B109.5
Hg1—S2—Hg1i86.34 (4)H18A—C18—H18B109.5
C4—N1—C7113.3 (4)N2—C18—H18C109.5
C4—N1—C8108.6 (4)H18A—C18—H18C109.5
C7—N1—C8107.2 (5)H18B—C18—H18C109.5
C4—N1—C9109.6 (5)N3—C19—N4114.2 (5)
C7—N1—C9107.4 (5)N3—C19—H19A122.9
C8—N1—C9110.8 (6)N4—C19—H19A122.9
C18—N2—C16110.4 (5)C25—C20—N3108.3 (5)
C18—N2—C13110.6 (4)C25—C20—C21120.9 (5)
C16—N2—C13109.5 (4)N3—C20—C21130.8 (5)
C18—N2—C17108.0 (5)C22—C21—C20118.5 (6)
C16—N2—C17106.5 (4)C22—C21—H21A120.8
C13—N2—C17111.7 (4)C20—C21—H21A120.8
C19—N3—C20104.9 (4)C21—C22—C23120.3 (7)
C19—N3—Hg1121.8 (4)C21—C22—H22A119.8
C20—N3—Hg1129.8 (3)C23—C22—H22A119.8
C19—N4—C25105.8 (5)C24—C23—C22122.5 (6)
C19—N4—C26125.1 (5)C24—C23—H23A118.7
C25—N4—C26128.7 (5)C22—C23—H23A118.7
C2—C1—C6117.8 (5)C23—C24—C25117.1 (6)
C2—C1—S1118.7 (4)C23—C24—H24A121.5
C6—C1—S1123.4 (4)C25—C24—H24A121.5
C1—C2—C3120.8 (5)N4—C25—C20106.9 (5)
C1—C2—H2A119.6N4—C25—C24132.4 (6)
C3—C2—H2A119.6C20—C25—C24120.7 (6)
C4—C3—C2120.4 (5)N4—C26—C27111.3 (5)
C4—C3—H3A119.8N4—C26—H26A109.4
C2—C3—H3A119.8C27—C26—H26A109.4
C3—C4—C5120.0 (5)N4—C26—H26B109.4
C3—C4—N1118.8 (5)C27—C26—H26B109.4
C5—C4—N1121.2 (5)H26A—C26—H26B108.0
C4—C5—C6118.4 (5)C26—C27—C28113.3 (5)
C4—C5—H5A120.8C26—C27—H27A108.9
C6—C5—H5A120.8C28—C27—H27A108.9
C1—C6—C5122.5 (5)C26—C27—H27B108.9
C1—C6—H6A118.7C28—C27—H27B108.9
C5—C6—H6A118.7H27A—C27—H27B107.7
N1—C7—H7A109.5C28ii—C28—C27112.4 (6)
N1—C7—H7B109.5C28ii—C28—H28A109.1
H7A—C7—H7B109.5C27—C28—H28A109.1
N1—C7—H7C109.5C28ii—C28—H28B109.1
H7A—C7—H7C109.5C27—C28—H28B109.1
H7B—C7—H7C109.5H28A—C28—H28B107.9
N1—C8—H8A109.5F3—P1—F6178.7 (4)
N1—C8—H8B109.5F3—P1—F192.9 (3)
H8A—C8—H8B109.5F6—P1—F188.4 (3)
N1—C8—H8C109.5F3—P1—F288.0 (4)
H8A—C8—H8C109.5F6—P1—F292.1 (3)
H8B—C8—H8C109.5F1—P1—F289.8 (3)
N1—C9—H9A109.5F3—P1—F486.1 (3)
N1—C9—H9B109.5F6—P1—F492.6 (3)
H9A—C9—H9B109.5F1—P1—F4178.1 (4)
N1—C9—H9C109.5F2—P1—F491.8 (3)
H9A—C9—H9C109.5F3—P1—F592.6 (3)
H9B—C9—H9C109.5F6—P1—F587.4 (3)
C11—C10—C15118.5 (5)F1—P1—F589.9 (3)
C11—C10—S2123.3 (4)F2—P1—F5179.3 (3)
C15—C10—S2117.9 (4)F4—P1—F588.6 (3)
C12—C11—C10120.4 (5)F11—P2—F1292.8 (5)
C12—C11—H11A119.8F11—P2—F992.9 (5)
C10—C11—H11A119.8F12—P2—F9174.3 (4)
C11—C12—C13119.5 (5)F11—P2—F8178.7 (5)
C11—C12—H12A120.2F12—P2—F888.3 (4)
C13—C12—H12A120.2F9—P2—F886.1 (4)
C14—C13—C12121.0 (5)F11—P2—F787.5 (3)
C14—C13—N2117.7 (5)F12—P2—F789.4 (3)
C12—C13—N2121.3 (5)F9—P2—F790.0 (3)
C15—C14—C13118.6 (5)F8—P2—F791.7 (3)
C15—C14—H14A120.7F11—P2—F1092.2 (3)
C13—C14—H14A120.7F12—P2—F1089.6 (3)
C14—C15—C10121.8 (5)F9—P2—F1091.0 (3)
C14—C15—H15A119.1F8—P2—F1088.6 (3)
C10—C15—H15A119.1F7—P2—F10179.0 (3)
N2—C16—H16A109.5
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+3, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···S2iii0.942.833.564 (5)136
C5—H5A···F70.942.493.387 (6)160
C7—H7C···F120.972.353.296 (8)166
C17—H17A···F120.972.393.341 (8)165
C17—H17C···F20.972.313.260 (7)165
C8—H8B···F11iv0.972.463.112 (9)124
C17—H17B···F6v0.972.343.294 (7)167
C26—H26B···F6vi0.982.503.470 (7)170
Symmetry codes: (iii) x1, y, z; (iv) x+1, y+1, z+1; (v) x+1, y, z+1; (vi) x+1, y+1, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[Hg(C16H14N4)(C9H13NS)2](PF6)2·0.25H2O[Hg2(C20H22N4)(C9H13NS)4](PF6)4
Mr1091.871968.58
Crystal system, space groupMonoclinic, P21/cTriclinic, P1
Temperature (K)223223
a, b, c (Å)19.589 (4), 12.808 (3), 16.207 (3)9.871 (2), 10.364 (2), 18.078 (4)
α, β, γ (°)90, 97.14 (3), 9098.39 (3), 97.85 (3), 94.05 (3)
V3)4034.9 (14)1804.7 (6)
Z41
Radiation typeMo KαMo Kα
µ (mm1)4.094.56
Crystal size (mm)0.30 × 0.15 × 0.100.45 × 0.20 × 0.15
Data collection
DiffractometerRigaku Mercury CCD area-detector
diffractometer
Rigaku Mercury CCD area-detector
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Multi-scan
(REQAB?; Jacobson, 1998)
Tmin, Tmax0.373, 0.6850.234, 0.548
No. of measured, independent and
observed [I > 2σ(I)] reflections
22845, 9195, 7542 15125, 6337, 5615
Rint0.0450.045
(sin θ/λ)max1)0.6490.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.119, 1.07 0.038, 0.092, 1.03
No. of reflections91956337
No. of parameters523442
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.65, 1.181.04, 0.85

Computer programs: CrystalClear (Rigaku/MSC, 2001), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···F10i0.972.423.380 (12)169.7
C9—H9C···F8i0.972.553.508 (12)169.3
C8—H8A···F120.972.413.379 (12)176.7
C9—H9A···F90.972.493.452 (12)170.5
C16—H16C···F2ii0.972.533.462 (10)160.0
C17—H17A···F90.972.393.286 (10)152.8
C17—H17C···F40.972.433.363 (10)161.8
C18—H18C···F12iii0.972.523.431 (11)155.9
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y1/2, z+3/2; (iii) x+2, y+1/2, z+3/2.
Selected bond distances (Å) and angles (°) for (I) and (II) top
Compound (I)Compound (II)
Hg1-S12.3698 (16)2.3617 (16)
Hg1-S22.3816 (16)2.4010 (16)
Hg1-N32.533 (5)2.362 (4)
S1-Hg1-S2160.72 (6)156.38 (6)
S1-Hg1-N398.10 (13)110.36 (12)
S2-Hg1-N395.32 (13)93.26 (12)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···S2i0.942.833.564 (5)136.0
C5—H5A···F70.942.493.387 (6)160.0
C7—H7C···F120.972.353.296 (8)166.2
C17—H17A···F120.972.393.341 (8)164.9
C17—H17C···F20.972.313.260 (7)164.9
C8—H8B···F11ii0.972.463.112 (9)123.9
C17—H17B···F6iii0.972.343.294 (7)167.2
C26—H26B···F6iv0.982.503.470 (7)169.7
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds