Download citation
Download citation
link to html
An approach for analysing neutron and X-ray specular reflectivity data from stratified media having variation in the scattering-length density near the surface is described. The method has its origin in small-angle scattering and it is composed of two steps: (i) indirect Fourier transformation [Glatter (1977). J. Appl. Cryst. 10, 415–421] giving the profile correlation function p(z) of the derivative dρ/dz of the scattering-length density; (ii) square-root deconvolution [Glatter (1981). J. Appl. Cryst. 14, 101–108] giving dρ/dz and ρ, the scattering-length-density profile. The only requirement for applying the method is that the scattering-length density varies only in a limited range. In nearly all cases the approach does not require any knowledge of the chemical composition of the surface layer and consequently incorporates a certain degree of objectivity. The method gives the smoothest profile which agrees with the experimental reflectivity data. The method is tested on simulated reflectivity data for a series of different surface profiles and subsequently used for analysing experimental data on fluorocarbon amphiphiles in water and salt solutions. The tests on simulated data show that the indirect Fourier transformation gives correlation functions agreeing very well with the corresponding functions of the original profiles. It is further demonstrated that the square-root deconvolution gives reliable results for the scattering-length-density profiles.
Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds