Download citation
Download citation
link to html
The structure of the title salt, {[Cu2(C20H20N4)3](ClO4)2·2CH3CN}n, consists of linear [CuI2L3] polymer chains [L is (E)-1,2-bis­(1-ethyl-1H-benzimidazol-2-yl)ethene], which extend along the c cell direction, inter­spersed with disordered perchlorate ions and acetonitrile solvent mol­ecules. In a given chain, each CuI ion exhibits distorted trigonal planar coordination to three L ligands; two of these are linked to adjacent CuI ions to form dimeric units containing 14-membered rings that adopt a twisted-loop configuration, stabilized by π–π inter­actions between the ethene fragments of the two ligands. The dimeric units exhibit diad symmetry (twofold axis sites in I2/a) and are linked by a third, centrosymmetric, S-shaped L ligand (inversion centers in I2/a) to form the copolymer chain. When viewed along the b cell direction, the 14-membered rings appear as vacant ellipses that form channels parallel to the b axis. The walls of the channels are formed by the benzimidazole fragments of the dimeric units. This study of a novel alternating copolymer containing homocoordinated CuI ions demonstrates further the usefulness of bis(benzimidazoles) as versatile bidentate ligands.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108002618/gz3116sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108002618/gz3116Isup2.hkl
Contains datablock I

CCDC reference: 690181

Comment top

Our long-standing interest in the chemistry of bis(imidazoles), bis(benzimidazoles) and their complexes with metal ions has demonstrated the usefulness of these species as geometrically constraining ligands (Stibrany et al., 2004), proton sponges (Stibrany et al., 2002), polymerization catalysts (Stibrany et al., 2003; Stibrany & Kacker, 2002), and agents to study electron transfer (Knapp et al., 1990; Xie et al., 1999). An effort to prepare a coordination complex of CuII and L, where L is (E)-1,2-bis(1-ethylbenzimidazol-2-yl)ethene, yielded instead, via a redox reaction, an amorphous mass and a few low-quality crystals of the title salt, (I), [CuI2L3](ClO4)2(CH3CN)2. High-quality crystals, one of which was used for the structure determination reported here, were obtained in good yield by the direct reaction of CuI(ClO4) and L in acetonitrile.

The structure of (I) consists of CuI2L2 dimeric units bridged by ligands L to form linear polymeric chains interspersed with disordered perchlorate counter-ions and with solvent acetonitrile molecules. In addition to a perchlorate ion and an acetonitrile solvent molecule, the asymmetric unit (Fig. 1) contains a CuI ion bonded to the imine N atoms N13 and N33 of two L ligands. Only half of the ligand containing N33 is unique, and the cation portion of the asymmetric unit can be viewed as containing a CuI ion and three half ligands (ethylbenzimidazole fragments containing one ethene atom), which we designate as etbzim1, etbzim2 and etbzim3 for the fragments containing N13, N23 and N33, respectively.

In forming the polymer chain, both ligands utilize crystallographic symmetry. Ligands L derived from etbzim3 are centrosymmetrically related (4d sites in I2/a), with the inversion centers located at the mid-points of the ethene fragments (atom C3 and its symmetry-related partner in Fig. 1), while ligands generated from etbzim1 and etbzim2 exhibit twofold symmetry (4e sites in space group I2/a). The result is the alternating copolymer chain sketched in the scheme and shown in Fig. 2. Partial removal of the benzimidazole fragments, as in Fig. 3, helps to clarify the connectivity and the linkage along a given chain. Thus, etbzim1 and etbzim2 are linked to adjacent Cu atoms by two S-shaped ligands L in a twisted-loop arrangement to yield dimeric units. The two symmetry-related Cu ions in the dimeric units are part of 14-membered rings, which are stabilized by ππ interactions (Janiak, 2000) between the ethene groups, as indicated by the C1···C1' and C2···C2' distances of 3.399 (3) and 3.351 (3) Å), respectively. A third S-shaped bidentate ligand links the dimers and completes the alternating copolymer cation chain.

At the unique CuI ion (Fig. 2), a distorted trigonal–planar coordination geometry is formed (Table 1), in which the Cu—N33 bond length to etbzim3 is substantially longer than the corresponding Cu—N(imine) bonds to etbzim1 and etbzim2, while the N13—Cu—N23 angle, involving etbzim1 and etbzim2, is substantially larger than those involving etbzim3. Excluding the methyl group atoms and the methylene H atoms, the atoms of a given benzimidazole fragment are essentially coplanar, as expected, and, as indicated by the metric data in Table 2, the geometric parameters of the three ligands compare well with one another and with those of the unique, centrosymmetric benzimidazole fragments in two structures that contain the free ligand L (La: Stibrany et al., 2005; Lb: Stibrany & Potenza, 2006).

In the crystal structure (Fig. 4), the polymer strands extend along the c cell direction and form layers centered about the planes x = 1/4 and 3/4. With crystallographic symmetry taken into account, the repeat unit in the solid state is seen to consist of two dimers and two single-ligand linkers. In Fig. 4, the S-shaped centrosymmetric ligands are clearly seen, while the 14-membered rings, viewed along their diad axes, appear as jagged ellipses. The ellipses outline vacant channels along the b cell direction, each with a cross section area of approximately 14 Å2, with the major and minor axes of the ellipses taken as the Cu···Cu' and ethene–ethene π overlap distances, respectively. The perchlorate counter-ions are centered about the planes x = 0 and 1/2, midway between the polymer strands. Along these planes, the perchlorate anions alternate with benzimidazole fragments from bzim3, which extend from the polymer chains along the a cell direction. In contrast, the benzimidazole fragments bzim1 and bzim2 extend along the b cell direction and form the walls of the channels noted above. The perchlorate ions are stabilized somewhat in the crystal structure by several weak C—H···O hydrogen bonds with the benzimidazole fragments. The solvent acetonitrile molecules are associated closely with a given chain (Fig. 4), with the cyano group located near the N(amine) and C(methylene) atoms, N33 and C32, respectively, of bzim3.

Knowledge of the structure is helpful in suggesting a possible path for the formation and termination of the copolymer chains. In acetonitrile, CuClO4 forms Cu(NCCH3)4+ ions. Stepwise replacement of acetonitrile by the stronger imine bases of the bulky ligand L could produce the copolymer chains, which may be terminated at Cu by having one or two acetonitrile ligands complete the coordination of a terminal dimer. In support of this possibility, we note that a structure containing trigonal CuI(bbil)(NCCH3) and tetrahedral CuI(bbil)(NCCH3)2 cations in the same crystal, where bbil is a bis(benzimidazole) ligand similar to L, has recently been reported (Stibrany & Potenza, 2006).

Structurally characterized polymeric complexes containing trigonally coordinated copper(I) ions are rare. We are aware of four such systems, one with alternating trigonal CuCl3 and tetrahedral CuCl4 units (Andersson & Jagner, 1988), one with N, S and Cl coordination to CuI (Devillanova et al., 1998), and two organometallic complexes with trigonal coordination of CuI by an olefin and two chloride ions (Baenziger et al., 1964; Goreshnik et al., 2005). In the four complexes noted above, the CuI—Cl and CuI—S linkages, formed with the relatively soft Cl and S ligands, range from 2.215 (2) to 2.288 (2) Å, all substantially larger than the CuI—N distances in the title complex, which are derived from the hard (stronger) imine bases in the benzimidazole fragments. The lone Cu—N(imine) distance of 1.929 Å in one of the complexes above (Devillanova et al., 1998) compares favorably with those in the title complex.

Lastly, we note that, owing to the steric bulk and limited flexibility of ligands such as L, it would seem possible to prepare a variety of polymers similar to that of the title complex with CuI and with other metals, such as AgI, known to accommodate trigonal coordination easily.

Experimental top

A colorless solution of 50 mg of [Cu(CH3CN)4](ClO4) (0.15 mmol) was prepared in 10 ml of acetonitrile and 1 ml of methanol. Addition of 73 mg of (E)-1,2-bis(1-ethylbenzimidazol-2-yl)ethene (0.22 mmol) yielded a green solution, which was sealed in a jar containing diethyl ether to allow slow vapor diffusion. Orange crystalline prisms formed over a period of several days. The crystals exhibited yellow–green dichroism (yield 62 mg, 59.9%).

Refinement top

H atoms were positioned geometrically and were refined using a riding model, with C—H distances of 0.93–0.97 Å and Uiso(H) values of 1.5 Ueq(C) for the methyl H atoms and 1.2 Ueq(C) for all others. The perchlorate group exhibited large thermal parameters and was modeled assuming a three-site disorder about a threefold axis; the occupancy factors for the three components were allowed to vary and their summation was set to 1.00. A total of 26 restraints was employed to ensure convergence of this model.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-32 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Version 6.10; Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Only the major component of the disordered perchlorate ion is shown. [Symmetry code: (iii) –x + 1/2, −y + 1/2, −z + 3/2.]
[Figure 2] Fig. 2. The repeat unit of the cationic, alternating copolymer chain in (I). H atoms have been omitted for clarity. [Symmetry codes: (ii) −x + 1/2, y, −z + 1; (iii) −x + 1/2, −y + 1/2, −z + 3/2; (iv) x, −y + 1/2, z + 1/2.]
[Figure 3] Fig. 3. The repeat unit showing only the connectivity of the CuI ions. The view is approximately normal to the twofold axis of the 14-membered ring. Displacement ellipsoids are shown at the 30% probability level. [Symmetry codes: (ii) −x + 1/2, y, −z + 1; (iii) −x + 1/2, −y + 1/2, −z + 3/2; (iv): x, −y + 1/2, z + 1/2.]
[Figure 4] Fig. 4. A projection of the structure along the b axis constructed by using the repeat unit in Fig. 3, augmented by the ethyl groups of the ligand.
catena-poly[[[bis[µ-(E)-1,2-bis(1-ethyl-1H-benzimidazol-2-yl)ethene-κ2N3:N3']dicopper(I)]-µ-(E)-1,2-bis(1-ethyl-1H-benzimidazol-2-yl)ethene-κ2N3:N3'] bis(perchlorate) acetonitrile disolvate] top
Crystal data top
[Cu2(C20H20N4)3](ClO4)2·2C2H3NF(000) = 2816
Mr = 678.64Dx = 1.367 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 2yaCell parameters from 1014 reflections
a = 21.834 (6) Åθ = 2.4–25.2°
b = 12.948 (4) ŵ = 0.79 mm1
c = 23.502 (10) ÅT = 297 K
β = 97.039 (4)°Prism, orange
V = 6594 (4) Å30.47 × 0.25 × 0.15 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
6478 independent reflections
Radiation source: fine-focus sealed tube5414 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
h = 2626
Tmin = 0.757, Tmax = 1.00k = 1515
30631 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0645P)2 + 2.91P]
where P = (Fo2 + 2Fc2)/3
6478 reflections(Δ/σ)max = 0.002
469 parametersΔρmax = 0.41 e Å3
26 restraintsΔρmin = 0.21 e Å3
Crystal data top
[Cu2(C20H20N4)3](ClO4)2·2C2H3NV = 6594 (4) Å3
Mr = 678.64Z = 8
Monoclinic, I2/aMo Kα radiation
a = 21.834 (6) ŵ = 0.79 mm1
b = 12.948 (4) ÅT = 297 K
c = 23.502 (10) Å0.47 × 0.25 × 0.15 mm
β = 97.039 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6478 independent reflections
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
5414 reflections with I > 2σ(I)
Tmin = 0.757, Tmax = 1.00Rint = 0.023
30631 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03326 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.00Δρmax = 0.41 e Å3
6478 reflectionsΔρmin = 0.21 e Å3
469 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.290850 (9)0.282786 (15)0.617923 (8)0.03564 (9)
N110.16281 (7)0.49507 (10)0.54648 (6)0.0364 (3)
N130.23106 (6)0.39187 (10)0.59648 (6)0.0345 (3)
N230.18214 (6)0.15744 (11)0.41895 (6)0.0348 (3)
N210.15085 (6)0.04506 (11)0.48138 (6)0.0352 (3)
N310.39076 (7)0.25593 (15)0.78175 (7)0.0490 (4)
N330.34544 (7)0.29116 (12)0.69369 (6)0.0392 (3)
C10.17362 (7)0.32091 (13)0.50766 (7)0.0344 (3)
H10.15950.34220.47060.041*
C20.17790 (8)0.22007 (12)0.51753 (7)0.0338 (3)
H20.18670.19780.55530.041*
C30.27702 (8)0.24514 (16)0.76595 (8)0.0414 (4)
H30.27680.22430.80380.050*
C110.18837 (8)0.55167 (13)0.59280 (7)0.0387 (4)
C120.18933 (7)0.40004 (12)0.55032 (7)0.0326 (3)
C130.23097 (8)0.48698 (13)0.62415 (7)0.0373 (4)
C140.26569 (9)0.52153 (16)0.67409 (8)0.0484 (5)
H140.29430.47910.69530.058*
C150.25561 (11)0.62187 (17)0.69073 (9)0.0596 (6)
H150.27840.64780.72360.072*
C160.21214 (12)0.68520 (16)0.65945 (10)0.0608 (6)
H160.20640.75190.67250.073*
C170.17763 (10)0.65250 (14)0.61011 (9)0.0507 (5)
H170.14870.69500.58930.061*
C180.11490 (9)0.53181 (15)0.50168 (8)0.0464 (4)
H18A0.08830.58030.51840.056*
H18B0.08980.47370.48690.056*
C190.14148 (14)0.5832 (2)0.45331 (11)0.0803 (8)
H19A0.16890.63740.46810.120*
H19B0.10870.61180.42700.120*
H19C0.16390.53340.43370.120*
C210.15102 (8)0.00746 (13)0.43050 (8)0.0374 (4)
C220.16961 (7)0.14295 (12)0.47263 (7)0.0324 (3)
C230.17065 (8)0.06296 (13)0.39174 (7)0.0372 (4)
C240.17902 (10)0.03166 (16)0.33650 (8)0.0502 (5)
H240.19250.07760.31030.060*
C250.16656 (11)0.06967 (17)0.32229 (10)0.0590 (5)
H250.17190.09260.28570.071*
C260.14611 (10)0.13884 (16)0.36108 (10)0.0572 (5)
H260.13800.20670.34970.069*
C270.13755 (9)0.10983 (14)0.41581 (9)0.0479 (4)
H270.12350.15600.44160.057*
C280.13061 (9)0.00225 (14)0.53360 (8)0.0449 (4)
H28A0.09400.03960.52350.054*
H28B0.11970.05830.55780.054*
C290.18003 (12)0.0629 (2)0.56642 (11)0.0763 (7)
H29A0.19150.11760.54230.114*
H29B0.16470.09170.59950.114*
H29C0.21550.02080.57840.114*
C310.43703 (9)0.27983 (17)0.74982 (9)0.0503 (5)
C320.33633 (8)0.26430 (14)0.74665 (7)0.0387 (4)
C330.40860 (9)0.30155 (16)0.69479 (8)0.0446 (4)
C340.44357 (10)0.3284 (2)0.65143 (10)0.0617 (6)
H340.42510.34320.61460.074*
C350.50635 (11)0.3323 (3)0.66515 (12)0.0783 (8)
H350.53080.34960.63680.094*
C360.53447 (11)0.3112 (3)0.72012 (13)0.0838 (9)
H360.57720.31550.72770.101*
C370.50084 (10)0.2841 (2)0.76379 (11)0.0717 (7)
H370.51970.26940.80050.086*
C380.40102 (11)0.2191 (2)0.84102 (9)0.0706 (8)
H38A0.36350.22780.85870.085*
H38B0.43310.26030.86240.085*
C390.41966 (14)0.1076 (3)0.84414 (14)0.1008 (11)
H39A0.38670.06600.82540.151*
H39B0.42820.08700.88360.151*
H39C0.45600.09820.82540.151*
N60.3841 (2)0.5218 (5)0.7969 (2)0.194 (2)
C60.4325 (2)0.5296 (4)0.8181 (2)0.1262 (14)
C70.4933 (2)0.5380 (4)0.8462 (2)0.1360 (16)
H7A0.50670.47200.86160.204*
H7B0.49430.58750.87670.204*
H7C0.52030.56030.81930.204*
Cl10.50228 (2)0.23206 (4)0.49950 (3)0.05883 (15)
O10.56385 (7)0.22805 (12)0.52523 (8)0.0722 (5)
O20.4636 (3)0.1939 (14)0.5391 (3)0.099 (6)0.278 (17)
O2A0.4673 (3)0.1629 (7)0.5295 (5)0.121 (5)0.559 (19)
O2B0.5213 (7)0.2831 (16)0.4364 (4)0.099 (7)0.165 (10)
O30.4956 (4)0.1681 (11)0.4506 (4)0.074 (4)0.278 (17)
O3A0.4987 (4)0.2028 (11)0.4420 (2)0.166 (7)0.559 (19)
O3B0.4760 (6)0.1496 (10)0.4800 (8)0.117 (8)0.165 (10)
O40.4852 (6)0.3337 (5)0.4842 (9)0.132 (9)0.278 (17)
O4A0.4785 (3)0.3324 (4)0.5044 (6)0.112 (4)0.559 (19)
O4B0.4711 (6)0.3147 (14)0.5154 (7)0.087 (8)0.165 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.04165 (14)0.03298 (13)0.03171 (13)0.00657 (8)0.00219 (9)0.00009 (8)
N110.0419 (8)0.0288 (7)0.0375 (7)0.0054 (6)0.0014 (6)0.0006 (6)
N130.0417 (8)0.0298 (7)0.0315 (7)0.0055 (6)0.0018 (6)0.0026 (5)
N230.0415 (8)0.0288 (7)0.0334 (7)0.0054 (6)0.0023 (6)0.0012 (6)
N210.0384 (7)0.0281 (7)0.0398 (8)0.0019 (5)0.0076 (6)0.0015 (6)
N310.0378 (8)0.0742 (11)0.0327 (8)0.0005 (8)0.0049 (6)0.0020 (8)
N330.0374 (8)0.0481 (9)0.0315 (7)0.0027 (6)0.0015 (6)0.0021 (6)
C10.0382 (9)0.0332 (8)0.0309 (8)0.0018 (7)0.0007 (6)0.0014 (7)
C20.0377 (9)0.0320 (8)0.0314 (8)0.0003 (6)0.0037 (7)0.0010 (6)
C30.0399 (9)0.0546 (11)0.0292 (8)0.0032 (8)0.0028 (7)0.0009 (8)
C110.0457 (9)0.0317 (8)0.0385 (9)0.0019 (7)0.0047 (7)0.0023 (7)
C120.0374 (8)0.0285 (8)0.0324 (8)0.0026 (6)0.0055 (6)0.0009 (6)
C130.0455 (9)0.0321 (8)0.0344 (8)0.0032 (7)0.0047 (7)0.0032 (7)
C140.0578 (12)0.0437 (10)0.0412 (10)0.0066 (9)0.0040 (8)0.0066 (8)
C150.0784 (15)0.0490 (12)0.0488 (11)0.0002 (11)0.0024 (10)0.0173 (10)
C160.0862 (16)0.0358 (10)0.0592 (13)0.0069 (10)0.0044 (12)0.0134 (9)
C170.0636 (12)0.0313 (9)0.0566 (12)0.0089 (8)0.0044 (9)0.0031 (8)
C180.0481 (10)0.0394 (10)0.0488 (11)0.0101 (8)0.0061 (8)0.0031 (8)
C190.100 (2)0.0823 (18)0.0588 (14)0.0253 (15)0.0088 (13)0.0297 (13)
C210.0357 (8)0.0317 (8)0.0448 (10)0.0025 (7)0.0041 (7)0.0037 (7)
C220.0333 (8)0.0282 (8)0.0353 (8)0.0002 (6)0.0028 (6)0.0024 (6)
C230.0387 (9)0.0338 (8)0.0384 (9)0.0037 (7)0.0017 (7)0.0033 (7)
C240.0626 (12)0.0465 (11)0.0416 (10)0.0097 (9)0.0070 (9)0.0066 (8)
C250.0737 (14)0.0535 (12)0.0503 (12)0.0076 (11)0.0090 (10)0.0196 (10)
C260.0671 (13)0.0374 (10)0.0668 (14)0.0096 (9)0.0070 (11)0.0174 (10)
C270.0508 (11)0.0323 (9)0.0608 (12)0.0076 (8)0.0077 (9)0.0038 (8)
C280.0523 (11)0.0357 (9)0.0487 (10)0.0061 (8)0.0150 (8)0.0059 (8)
C290.0752 (16)0.0803 (17)0.0708 (16)0.0030 (13)0.0017 (13)0.0351 (14)
C310.0388 (10)0.0672 (14)0.0434 (10)0.0036 (9)0.0014 (8)0.0055 (9)
C320.0353 (9)0.0479 (10)0.0317 (8)0.0023 (7)0.0007 (7)0.0044 (7)
C330.0384 (9)0.0539 (11)0.0409 (10)0.0015 (8)0.0023 (7)0.0034 (8)
C340.0500 (12)0.0855 (17)0.0506 (12)0.0084 (11)0.0103 (9)0.0032 (11)
C350.0516 (13)0.117 (2)0.0694 (16)0.0179 (14)0.0196 (12)0.0016 (16)
C360.0382 (12)0.132 (3)0.0812 (18)0.0165 (14)0.0057 (12)0.0113 (18)
C370.0389 (11)0.113 (2)0.0604 (14)0.0078 (12)0.0054 (10)0.0036 (14)
C380.0470 (12)0.128 (3)0.0338 (10)0.0007 (13)0.0069 (9)0.0113 (12)
C390.084 (2)0.128 (3)0.091 (2)0.0118 (19)0.0113 (16)0.056 (2)
N60.123 (3)0.257 (6)0.192 (5)0.020 (4)0.025 (3)0.069 (4)
C60.112 (3)0.134 (4)0.127 (3)0.020 (3)0.005 (3)0.030 (3)
C70.111 (3)0.125 (3)0.165 (4)0.010 (3)0.014 (3)0.015 (3)
Cl10.0380 (3)0.0537 (3)0.0823 (4)0.0017 (2)0.0025 (2)0.0063 (3)
O10.0446 (8)0.0576 (10)0.1089 (14)0.0038 (7)0.0129 (9)0.0113 (9)
O20.052 (5)0.193 (18)0.055 (6)0.018 (6)0.021 (4)0.013 (7)
O2A0.092 (4)0.076 (4)0.200 (12)0.034 (3)0.034 (5)0.027 (5)
O2B0.090 (10)0.126 (16)0.078 (9)0.008 (10)0.007 (7)0.029 (9)
O30.070 (6)0.102 (8)0.045 (5)0.009 (5)0.007 (4)0.022 (5)
O3A0.195 (12)0.217 (14)0.074 (4)0.099 (10)0.032 (5)0.005 (6)
O3B0.105 (12)0.134 (14)0.110 (17)0.079 (11)0.014 (11)0.062 (13)
O40.064 (8)0.084 (9)0.24 (2)0.013 (6)0.017 (11)0.047 (10)
O4A0.069 (4)0.048 (3)0.225 (11)0.016 (3)0.041 (6)0.008 (4)
O4B0.071 (12)0.109 (17)0.083 (11)0.054 (12)0.021 (9)0.002 (11)
Geometric parameters (Å, º) top
Cu1—N131.9473 (14)C26—H260.9300
Cu1—N23i1.9642 (14)C27—H270.9300
Cu1—N332.0206 (16)C28—C291.505 (3)
N11—C121.358 (2)C28—H28A0.9700
N11—C111.373 (2)C28—H28B0.9700
N11—C181.470 (2)C29—H29A0.9600
N13—C121.333 (2)C29—H29B0.9600
N13—C131.393 (2)C29—H29C0.9600
N23—C221.336 (2)C31—C371.393 (3)
N23—C231.389 (2)C31—C331.393 (3)
N23—Cu1i1.9642 (14)C33—C341.390 (3)
N21—C221.355 (2)C34—C351.370 (3)
N21—C211.376 (2)C34—H340.9300
N21—C281.463 (2)C35—C361.388 (4)
N31—C321.366 (2)C35—H350.9300
N31—C311.366 (3)C36—C371.379 (4)
N31—C381.463 (3)C36—H360.9300
N33—C321.330 (2)C37—H370.9300
N33—C331.383 (2)C38—C391.500 (5)
C1—C21.327 (2)C38—H38A0.9700
C1—C121.445 (2)C38—H38B0.9700
C1—H10.9300C39—H39A0.9600
C2—C221.448 (2)C39—H39B0.9600
C2—H20.9300C39—H39C0.9600
C3—C3ii1.324 (4)N6—C61.115 (5)
C3—C321.445 (3)C6—C71.413 (6)
C3—H30.9300C7—H7A0.9600
C11—C131.393 (2)C7—H7B0.9600
C11—C171.396 (2)C7—H7C0.9600
C13—C141.391 (3)Cl1—O3B1.271 (9)
C14—C151.382 (3)Cl1—O4B1.345 (10)
C14—H140.9300Cl1—O3A1.396 (4)
C15—C161.394 (3)Cl1—O41.403 (4)
C15—H150.9300Cl1—O11.4059 (16)
C16—C171.370 (3)Cl1—O4A1.409 (4)
C16—H160.9300Cl1—O31.409 (4)
C17—H170.9300Cl1—O21.419 (4)
C18—C191.495 (3)Cl1—O2A1.420 (4)
C18—H18A0.9700Cl1—O2B1.719 (10)
C18—H18B0.9700O2—O3B1.56 (2)
C19—H19A0.9600O2—O4B1.67 (2)
C19—H19B0.9600O2A—O3B1.214 (19)
C19—H19C0.9600O2B—O3A1.165 (19)
C21—C271.392 (2)O2B—O41.59 (3)
C21—C231.393 (2)O2B—O31.64 (2)
C23—C241.393 (3)O3—O3A0.50 (2)
C24—C251.373 (3)O3—O3B0.89 (2)
C24—H240.9300O3A—O3B1.276 (19)
C25—C261.390 (3)O4—O4A0.51 (3)
C25—H250.9300O4—O4B0.86 (3)
C26—C271.375 (3)
N13—Cu1—N23i135.49 (6)C35—C34—C33117.4 (2)
N13—Cu1—N33119.57 (6)C35—C34—H34121.3
N23—Cu1—N33i104.87 (6)C33—C34—H34121.3
C12—N11—C11107.61 (14)C34—C35—C36121.8 (2)
C12—N11—C18126.95 (15)C34—C35—H35119.1
C11—N11—C18125.44 (15)C36—C35—H35119.1
C12—N13—C13105.66 (13)C37—C36—C35121.9 (2)
C12—N13—Cu1129.65 (11)C37—C36—H36119.1
C13—N13—Cu1124.04 (11)C35—C36—H36119.1
C22—N23—C23105.34 (14)C36—C37—C31116.3 (2)
C22—N23—Cu1i129.77 (11)C36—C37—H37121.8
C23—N23—Cu1i124.87 (12)C31—C37—H37121.8
C22—N21—C21107.29 (14)N31—C38—C39111.7 (2)
C22—N21—C28127.54 (15)N31—C38—H38A109.3
C21—N21—C28125.09 (15)C39—C38—H38A109.3
C32—N31—C31107.31 (16)N31—C38—H38B109.3
C32—N31—C38128.41 (18)C39—C38—H38B109.3
C31—N31—C38124.03 (17)H38A—C38—H38B107.9
C32—N33—C33105.72 (15)C38—C39—H39A109.5
C32—N33—Cu1132.12 (13)C38—C39—H39B109.5
C33—N33—Cu1120.07 (12)H39A—C39—H39B109.5
C2—C1—C12124.79 (15)C38—C39—H39C109.5
C2—C1—H1117.6H39A—C39—H39C109.5
C12—C1—H1117.6H39B—C39—H39C109.5
C1—C2—C22123.44 (15)N6—C6—C7178.6 (7)
C1—C2—H2118.3C6—C7—H7A109.5
C22—C2—H2118.3C6—C7—H7B109.5
C3ii—C3—C32125.2 (2)H7A—C7—H7B109.5
C3ii—C3—H3117.4C6—C7—H7C109.5
C32—C3—H3117.4H7A—C7—H7C109.5
N11—C11—C13106.17 (15)H7B—C7—H7C109.5
N11—C11—C17131.60 (17)O3B—Cl1—O4B123.1 (5)
C13—C11—C17122.23 (17)O3B—Cl1—O3A56.9 (9)
N13—C12—N11111.68 (14)O4B—Cl1—O3A120.9 (8)
N13—C12—C1126.08 (15)O3B—Cl1—O4127.0 (8)
N11—C12—C1122.23 (15)O3A—Cl1—O491.4 (10)
C14—C13—N13130.29 (16)O3B—Cl1—O1119.3 (7)
C14—C13—C11120.82 (16)O4B—Cl1—O1113.6 (6)
N13—C13—C11108.89 (15)O3A—Cl1—O1110.1 (3)
C15—C14—C13116.86 (18)O4—Cl1—O1110.8 (4)
C15—C14—H14121.6O3B—Cl1—O4A130.5 (8)
C13—C14—H14121.6O3A—Cl1—O4A110.6 (4)
C14—C15—C16121.71 (19)O1—Cl1—O4A110.0 (3)
C14—C15—H15119.1O4B—Cl1—O3133.5 (8)
C16—C15—H15119.1O4—Cl1—O3110.1 (5)
C17—C16—C15122.20 (19)O1—Cl1—O3109.1 (3)
C17—C16—H16118.9O4A—Cl1—O3127.3 (7)
C15—C16—H16118.9O3B—Cl1—O270.4 (11)
C16—C17—C11116.17 (19)O4B—Cl1—O274.5 (11)
C16—C17—H17121.9O3A—Cl1—O2124.9 (6)
C11—C17—H17121.9O4—Cl1—O2109.5 (9)
N11—C18—C19112.36 (18)O1—Cl1—O2108.6 (4)
N11—C18—H18A109.1O4A—Cl1—O290.7 (8)
C19—C18—H18A109.1O3—Cl1—O2108.6 (4)
N11—C18—H18B109.1O3B—Cl1—O2A53.3 (9)
C19—C18—H18B109.1O4B—Cl1—O2A92.4 (10)
H18A—C18—H18B107.9O3A—Cl1—O2A109.9 (4)
C18—C19—H19A109.5O4—Cl1—O2A125.2 (8)
C18—C19—H19B109.5O1—Cl1—O2A107.9 (3)
H19A—C19—H19B109.5O4A—Cl1—O2A108.3 (4)
C18—C19—H19C109.5O3—Cl1—O2A91.5 (7)
H19A—C19—H19C109.5O3B—Cl1—O2B99.1 (6)
H19B—C19—H19C109.5O4B—Cl1—O2B96.8 (6)
N21—C21—C27131.53 (17)O4—Cl1—O2B60.2 (12)
N21—C21—C23106.17 (15)O1—Cl1—O2B93.7 (4)
C27—C21—C23122.27 (17)O4A—Cl1—O2B81.2 (8)
N23—C22—N21112.04 (14)O3—Cl1—O2B62.3 (9)
N23—C22—C2124.70 (14)O2—Cl1—O2B157.6 (6)
N21—C22—C2123.19 (15)O2A—Cl1—O2B150.7 (6)
N23—C23—C21109.16 (15)Cl1—O2—O3B50.3 (5)
N23—C23—C24130.41 (17)Cl1—O2—O4B50.7 (5)
C21—C23—C24120.32 (17)O3B—O2—O4B90.8 (8)
C25—C24—C23117.38 (19)O3B—O2A—Cl157.1 (5)
C25—C24—H24121.3O3A—O2B—O491.9 (10)
C23—C24—H24121.3O4—O2B—O391.1 (8)
C24—C25—C26121.8 (2)O3A—O2B—Cl153.8 (4)
C24—C25—H25119.1O4—O2B—Cl150.0 (5)
C26—C25—H25119.1O3—O2B—Cl149.5 (4)
C27—C26—C25121.93 (18)O3A—O3—O3B131.1 (18)
C27—C26—H26119.0O3A—O3—Cl178.2 (7)
C25—C26—H26119.0O3B—O3—Cl162.4 (7)
C26—C27—C21116.32 (19)O3B—O3—O2B127.7 (12)
C26—C27—H27121.8Cl1—O3—O2B68.2 (7)
C21—C27—H27121.8O3—O3A—O2B157.9 (14)
N21—C28—C29111.76 (17)O2B—O3A—O3B140.1 (10)
N21—C28—H28A109.3O3—O3A—Cl181.3 (7)
C29—C28—H28A109.3O2B—O3A—Cl183.8 (7)
N21—C28—H28B109.3O3B—O3A—Cl156.6 (5)
C29—C28—H28B109.3O3—O3B—O2A148.6 (9)
H28A—C28—H28B107.9O3—O3B—Cl179.3 (9)
C28—C29—H29A109.5O2A—O3B—Cl169.7 (8)
C28—C29—H29B109.5O2A—O3B—O3A135.6 (10)
H29A—C29—H29B109.5Cl1—O3B—O3A66.5 (6)
C28—C29—H29C109.5O3—O3B—O2138.3 (10)
H29A—C29—H29C109.5Cl1—O3B—O259.3 (8)
H29B—C29—H29C109.5O3A—O3B—O2123.4 (10)
N31—C31—C37131.7 (2)O4A—O4—Cl180.2 (9)
N31—C31—C33106.29 (17)O4B—O4—Cl168.1 (9)
C37—C31—C33122.0 (2)O4A—O4—O2B149.4 (8)
N33—C32—N31111.54 (16)O4B—O4—O2B137.7 (11)
N33—C32—C3125.52 (16)Cl1—O4—O2B69.8 (8)
N31—C32—C3122.94 (17)O4—O4A—Cl178.8 (7)
N33—C33—C34130.29 (18)O4—O4B—Cl175.3 (10)
N33—C33—C31109.13 (17)O4—O4B—O2127.4 (13)
C34—C33—C31120.58 (19)Cl1—O4B—O254.8 (7)
N23i—Cu1—N13—C126.50 (19)O2A—Cl1—O3—O2B166.4 (6)
N33—Cu1—N13—C12177.10 (13)O4—O2B—O3—O3A98 (5)
N23i—Cu1—N13—C13162.85 (12)Cl1—O2B—O3—O3A128 (5)
N33—Cu1—N13—C1313.54 (16)O3A—O2B—O3—O3B109 (5)
N13—Cu1—N33—C3283.63 (18)O4—O2B—O3—O3B10.9 (14)
N23i—Cu1—N33—C3298.98 (17)Cl1—O2B—O3—O3B19.6 (13)
N13—Cu1—N33—C33115.37 (14)O3A—O2B—O3—Cl1128 (5)
N23i—Cu1—N33—C3362.02 (15)O4—O2B—O3—Cl130.5 (4)
C12—C1—C2—C22171.62 (16)O3B—O3—O3A—O2B84 (6)
C12—N11—C11—C130.07 (19)Cl1—O3—O3A—O2B48 (4)
C18—N11—C11—C13179.41 (16)Cl1—O3—O3A—O3B35.8 (17)
C12—N11—C11—C17179.2 (2)O2B—O3—O3A—O3B84 (6)
C18—N11—C11—C170.1 (3)O3B—O3—O3A—Cl135.8 (17)
C13—N13—C12—N110.48 (19)O2B—O3—O3A—Cl148 (4)
Cu1—N13—C12—N11170.37 (12)O4—O2B—O3A—O382 (5)
C13—N13—C12—C1179.08 (16)Cl1—O2B—O3A—O348 (4)
Cu1—N13—C12—C18.2 (2)O4—O2B—O3A—O3B27.8 (19)
C11—N11—C12—N130.35 (19)O3—O2B—O3A—O3B55 (4)
C18—N11—C12—N13179.68 (16)Cl1—O2B—O3A—O3B6.9 (15)
C11—N11—C12—C1179.02 (15)O4—O2B—O3A—Cl134.7 (6)
C18—N11—C12—C11.7 (3)O3—O2B—O3A—Cl148 (4)
C2—C1—C12—N1328.6 (3)O3B—Cl1—O3A—O321.6 (16)
C2—C1—C12—N11152.96 (17)O4B—Cl1—O3A—O3133.3 (17)
C12—N13—C13—C14179.57 (19)O4—Cl1—O3A—O3156.2 (17)
Cu1—N13—C13—C148.1 (3)O1—Cl1—O3A—O391.0 (15)
C12—N13—C13—C110.42 (19)O4A—Cl1—O3A—O3147.3 (15)
Cu1—N13—C13—C11171.08 (12)O2—Cl1—O3A—O341.1 (17)
N11—C11—C13—C14179.46 (17)O2A—Cl1—O3A—O327.7 (16)
C17—C11—C13—C141.1 (3)O2B—Cl1—O3A—O3163.7 (19)
N11—C11—C13—N130.2 (2)O3B—Cl1—O3A—O2B174.7 (13)
C17—C11—C13—N13179.62 (17)O4B—Cl1—O3A—O2B63.0 (10)
N13—C13—C14—C15179.3 (2)O4—Cl1—O3A—O2B40.2 (10)
C11—C13—C14—C150.2 (3)O1—Cl1—O3A—O2B72.7 (9)
C13—C14—C15—C160.8 (3)O4A—Cl1—O3A—O2B49.1 (10)
C14—C15—C16—C171.0 (4)O3—Cl1—O3A—O2B163.7 (19)
C15—C16—C17—C110.1 (3)O2—Cl1—O3A—O2B155.3 (10)
N11—C11—C17—C16179.8 (2)O2A—Cl1—O3A—O2B168.6 (9)
C13—C11—C17—C161.0 (3)O4B—Cl1—O3A—O3B111.7 (8)
C12—N11—C18—C1991.8 (2)O4—Cl1—O3A—O3B134.6 (11)
C11—N11—C18—C1989.0 (2)O1—Cl1—O3A—O3B112.6 (8)
C22—N21—C21—C27178.06 (19)O4A—Cl1—O3A—O3B125.7 (10)
C28—N21—C21—C274.9 (3)O3—Cl1—O3A—O3B21.6 (16)
C22—N21—C21—C230.13 (18)O2—Cl1—O3A—O3B19.5 (11)
C28—N21—C21—C23177.12 (16)O2A—Cl1—O3A—O3B6.2 (10)
C23—N23—C22—N210.03 (19)O2B—Cl1—O3A—O3B174.7 (13)
Cu1i—N23—C22—N21178.63 (11)O3A—O3—O3B—O2A49 (5)
C23—N23—C22—C2176.96 (15)Cl1—O3—O3B—O2A9 (3)
Cu1i—N23—C22—C24.4 (2)O2B—O3—O3B—O2A29 (4)
C21—N21—C22—N230.10 (19)O3A—O3—O3B—Cl140 (2)
C28—N21—C22—N23176.99 (15)O2B—O3—O3B—Cl120.6 (13)
C21—N21—C22—C2177.09 (15)Cl1—O3—O3B—O3A40 (2)
C28—N21—C22—C26.0 (3)O2B—O3—O3B—O3A19.6 (15)
C1—C2—C22—N2329.2 (3)O3A—O3—O3B—O234 (3)
C1—C2—C22—N21154.17 (17)Cl1—O3—O3B—O26.3 (16)
C22—N23—C23—C210.06 (19)O2B—O3—O3B—O214 (3)
Cu1i—N23—C23—C21178.63 (11)Cl1—O2A—O3B—O39 (3)
C22—N23—C23—C24176.12 (19)Cl1—O2A—O3B—O3A9.5 (13)
Cu1i—N23—C23—C245.2 (3)Cl1—O2A—O3B—O238 (2)
N21—C21—C23—N230.12 (19)O4B—Cl1—O3B—O3119.9 (14)
C27—C21—C23—N23178.29 (17)O3A—Cl1—O3B—O312.0 (10)
N21—C21—C23—C24176.51 (16)O4—Cl1—O3B—O375.1 (16)
C27—C21—C23—C241.7 (3)O1—Cl1—O3B—O384.0 (13)
N23—C23—C24—C25176.5 (2)O4A—Cl1—O3B—O3101.8 (15)
C21—C23—C24—C250.7 (3)O2—Cl1—O3B—O3175.2 (13)
C23—C24—C25—C260.3 (3)O2A—Cl1—O3B—O3175.2 (16)
C24—C25—C26—C270.4 (4)O2B—Cl1—O3B—O315.6 (13)
C25—C26—C27—C210.6 (3)O4B—Cl1—O3B—O2A64.9 (14)
N21—C21—C27—C26176.09 (19)O3A—Cl1—O3B—O2A172.8 (11)
C23—C21—C27—C261.6 (3)O4—Cl1—O3B—O2A109.7 (14)
C22—N21—C28—C29102.9 (2)O1—Cl1—O3B—O2A91.3 (9)
C21—N21—C28—C2980.7 (2)O4A—Cl1—O3B—O2A83.0 (10)
C32—N31—C31—C37179.7 (3)O3—Cl1—O3B—O2A175.2 (16)
C38—N31—C31—C375.5 (4)O2—Cl1—O3B—O2A9.6 (8)
C32—N31—C31—C330.6 (2)O2B—Cl1—O3B—O2A169.2 (8)
C38—N31—C31—C33174.2 (2)O4B—Cl1—O3B—O3A107.9 (12)
C33—N33—C32—N310.6 (2)O4—Cl1—O3B—O3A63.0 (17)
Cu1—N33—C32—N31162.41 (14)O1—Cl1—O3B—O3A96.0 (7)
C33—N33—C32—C3179.80 (18)O4A—Cl1—O3B—O3A89.7 (11)
Cu1—N33—C32—C317.2 (3)O3—Cl1—O3B—O3A12.0 (10)
C31—N31—C32—N330.7 (2)O2—Cl1—O3B—O3A163.1 (9)
C38—N31—C32—N33173.8 (2)O2A—Cl1—O3B—O3A172.8 (11)
C31—N31—C32—C3179.63 (19)O2B—Cl1—O3B—O3A3.6 (9)
C38—N31—C32—C35.9 (3)O4B—Cl1—O3B—O255.2 (13)
C3ii—C3—C32—N332.3 (4)O3A—Cl1—O3B—O2163.1 (9)
C3ii—C3—C32—N31178.1 (3)O4—Cl1—O3B—O2100.1 (14)
C32—N33—C33—C34179.9 (2)O1—Cl1—O3B—O2100.9 (8)
Cu1—N33—C33—C3414.6 (3)O4A—Cl1—O3B—O273.4 (11)
C32—N33—C33—C310.2 (2)O3—Cl1—O3B—O2175.2 (13)
Cu1—N33—C33—C31165.28 (13)O2A—Cl1—O3B—O29.6 (8)
N31—C31—C33—N330.2 (2)O2B—Cl1—O3B—O2159.6 (7)
C37—C31—C33—N33180.0 (2)O2B—O3A—O3B—O3144 (3)
N31—C31—C33—C34179.6 (2)Cl1—O3A—O3B—O3136 (2)
C37—C31—C33—C340.1 (4)O3—O3A—O3B—O2A146 (3)
N33—C33—C34—C35179.8 (2)O2B—O3A—O3B—O2A2 (3)
C31—C33—C34—C350.1 (4)Cl1—O3A—O3B—O2A9.7 (13)
C33—C34—C35—C360.5 (5)O3—O3A—O3B—Cl1136 (2)
C34—C35—C36—C370.7 (5)O2B—O3A—O3B—Cl18.2 (18)
C35—C36—C37—C310.5 (5)O3—O3A—O3B—O2154 (2)
N31—C31—C37—C36179.8 (3)O2B—O3A—O3B—O29 (2)
C33—C31—C37—C360.1 (4)Cl1—O3A—O3B—O217.4 (8)
C32—N31—C38—C3996.9 (3)Cl1—O2—O3B—O37.2 (19)
C31—N31—C38—C3976.8 (3)O4B—O2—O3B—O326 (2)
O4B—Cl1—O2—O3B134.5 (7)Cl1—O2—O3B—O2A138 (2)
O3A—Cl1—O2—O3B17.2 (10)O4B—O2—O3B—O2A171 (2)
O4—Cl1—O2—O3B123.5 (9)O4B—O2—O3B—Cl133.5 (4)
O1—Cl1—O2—O3B115.4 (7)Cl1—O2—O3B—O3A18.6 (8)
O4A—Cl1—O2—O3B133.2 (8)O4B—O2—O3B—O3A15.0 (10)
O3—Cl1—O2—O3B3.2 (9)O3B—Cl1—O4—O4A108 (2)
O2A—Cl1—O2—O3B24.2 (17)O4B—Cl1—O4—O4A10.2 (17)
O2B—Cl1—O2—O3B65 (2)O3A—Cl1—O4—O4A156.2 (16)
O3B—Cl1—O2—O4B134.5 (7)O1—Cl1—O4—O4A91.6 (17)
O3A—Cl1—O2—O4B117.2 (9)O3—Cl1—O4—O4A147.5 (15)
O4—Cl1—O2—O4B11.0 (9)O2—Cl1—O4—O4A28.2 (17)
O1—Cl1—O2—O4B110.1 (7)O2A—Cl1—O4—O4A40.5 (18)
O4A—Cl1—O2—O4B1.3 (8)O2B—Cl1—O4—O4A173.7 (19)
O3—Cl1—O2—O4B131.3 (8)O3B—Cl1—O4—O4B97.7 (15)
O2A—Cl1—O2—O4B158.7 (19)O3A—Cl1—O4—O4B146.1 (13)
O2B—Cl1—O2—O4B69 (2)O1—Cl1—O4—O4B101.8 (13)
O4B—Cl1—O2A—O3B130.7 (8)O4A—Cl1—O4—O4B10.2 (17)
O3A—Cl1—O2A—O3B6.4 (10)O3—Cl1—O4—O4B137.4 (12)
O4—Cl1—O2A—O3B113.1 (12)O2—Cl1—O4—O4B18.0 (14)
O1—Cl1—O2A—O3B113.6 (9)O2A—Cl1—O4—O4B30.4 (15)
O4A—Cl1—O2A—O3B127.3 (9)O2B—Cl1—O4—O4B176.1 (15)
O3—Cl1—O2A—O3B3.0 (10)O3B—Cl1—O4—O2B78.4 (12)
O2—Cl1—O2A—O3B151 (2)O4B—Cl1—O4—O2B176.1 (15)
O2B—Cl1—O2A—O3B22.3 (16)O3A—Cl1—O4—O2B30.0 (7)
O3B—Cl1—O2B—O3A4.5 (11)O1—Cl1—O4—O2B82.1 (7)
O4B—Cl1—O2B—O3A129.7 (10)O4A—Cl1—O4—O2B173.7 (19)
O4—Cl1—O2B—O3A132.0 (10)O3—Cl1—O4—O2B38.7 (8)
O1—Cl1—O2B—O3A116.0 (7)O2—Cl1—O4—O2B158.1 (7)
O4A—Cl1—O2B—O3A134.3 (8)O2A—Cl1—O4—O2B145.7 (7)
O3—Cl1—O2B—O3A6.4 (8)O3A—O2B—O4—O4A49 (4)
O2—Cl1—O2B—O3A64 (3)O3—O2B—O4—O4A43 (4)
O2A—Cl1—O2B—O3A22.4 (18)Cl1—O2B—O4—O4A12 (4)
O3B—Cl1—O2B—O4127.6 (9)O3A—O2B—O4—O4B31 (2)
O4B—Cl1—O2B—O42.3 (9)O3—O2B—O4—O4B25 (2)
O3A—Cl1—O2B—O4132.0 (10)Cl1—O2B—O4—O4B5 (2)
O1—Cl1—O2B—O4111.9 (5)O3A—O2B—O4—Cl136.9 (6)
O4A—Cl1—O2B—O42.3 (7)O3—O2B—O4—Cl130.3 (4)
O3—Cl1—O2B—O4138.4 (7)O4B—O4—O4A—Cl138 (4)
O2—Cl1—O2B—O468 (3)O2B—O4—O4A—Cl112 (3)
O2A—Cl1—O2B—O4109.7 (14)O3B—Cl1—O4A—O489 (2)
O3B—Cl1—O2B—O310.9 (9)O4B—Cl1—O4A—O4158 (3)
O4B—Cl1—O2B—O3136.1 (8)O3A—Cl1—O4A—O425.5 (18)
O3A—Cl1—O2B—O36.4 (8)O1—Cl1—O4A—O496.3 (16)
O4—Cl1—O2B—O3138.4 (7)O3—Cl1—O4A—O439.3 (18)
O1—Cl1—O2B—O3109.6 (5)O2—Cl1—O4A—O4153.6 (16)
O4A—Cl1—O2B—O3140.7 (6)O2A—Cl1—O4A—O4146.0 (16)
O2—Cl1—O2B—O371 (3)O2B—Cl1—O4A—O45.5 (16)
O2A—Cl1—O2B—O328.8 (15)O4A—O4—O4B—Cl1140 (4)
O3B—Cl1—O3—O3A150 (2)O2B—O4—O4B—Cl15 (2)
O4B—Cl1—O3—O3A59 (2)O4A—O4—O4B—O2158 (5)
O4—Cl1—O3—O3A25.5 (18)Cl1—O4—O4B—O218.1 (11)
O1—Cl1—O3—O3A96.4 (15)O2B—O4—O4B—O213 (3)
O4A—Cl1—O3—O3A39.5 (17)O3B—Cl1—O4B—O4109.0 (16)
O2—Cl1—O3—O3A145.4 (15)O3A—Cl1—O4B—O440.6 (16)
O2A—Cl1—O3—O3A154.0 (15)O1—Cl1—O4B—O493.7 (12)
O2B—Cl1—O3—O3A12.4 (15)O4A—Cl1—O4B—O413 (2)
O4B—Cl1—O3—O3B90.9 (15)O3—Cl1—O4B—O461.2 (18)
O3A—Cl1—O3—O3B150 (2)O2—Cl1—O4B—O4162.4 (13)
O4—Cl1—O3—O3B124.7 (13)O2A—Cl1—O4B—O4155.6 (12)
O1—Cl1—O3—O3B113.4 (12)O2B—Cl1—O4B—O43.4 (13)
O4A—Cl1—O3—O3B110.7 (15)O3B—Cl1—O4B—O253.4 (13)
O2—Cl1—O3—O3B4.8 (13)O3A—Cl1—O4B—O2121.8 (8)
O2A—Cl1—O3—O3B3.8 (13)O4—Cl1—O4B—O2162.4 (13)
O2B—Cl1—O3—O3B162.5 (14)O1—Cl1—O4B—O2103.9 (5)
O3B—Cl1—O3—O2B162.5 (14)O4A—Cl1—O4B—O2176 (3)
O4B—Cl1—O3—O2B71.6 (11)O3—Cl1—O4B—O2101.2 (10)
O3A—Cl1—O3—O2B12.4 (15)O2A—Cl1—O4B—O26.8 (6)
O4—Cl1—O3—O2B37.8 (10)O2B—Cl1—O4B—O2159.0 (6)
O1—Cl1—O3—O2B84.0 (6)Cl1—O2—O4B—O421.6 (14)
O4A—Cl1—O3—O2B51.8 (8)O3B—O2—O4B—O411.7 (15)
O2—Cl1—O3—O2B157.7 (7)O3B—O2—O4B—Cl133.3 (4)
Symmetry codes: (i) x+1/2, y, z+1; (ii) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Cu2(C20H20N4)3](ClO4)2·2C2H3N
Mr678.64
Crystal system, space groupMonoclinic, I2/a
Temperature (K)297
a, b, c (Å)21.834 (6), 12.948 (4), 23.502 (10)
β (°) 97.039 (4)
V3)6594 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.47 × 0.25 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Blessing, 1995)
Tmin, Tmax0.757, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
30631, 6478, 5414
Rint0.023
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.096, 1.00
No. of reflections6478
No. of parameters469
No. of restraints26
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.21

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-32 (Farrugia, 1997), SHELXTL (Version 6.10; Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—N131.9473 (14)Cu1—N332.0206 (16)
Cu1—N23i1.9642 (14)
N13—Cu1—N23i135.49 (6)N23—Cu1—N33i104.87 (6)
N13—Cu1—N33119.57 (6)
Symmetry code: (i) x+1/2, y, z+1.
Comparison of selected bond lengths (Å) in five centrosymmetric ligands with structure L: etbzim1, etbzim2, etbzim3, and the structures La and Lb (see text for references to La and Lb). top
Bondetbzim1etbzim2etbzim3LaLb
C1—C21.327 (2)1.327 (2)1.324 (4)1.332 (4)1.323 (5)
C1—C121.445 (2)1.448 (2)1.445 (3)1.440 (3)1.449 (3)
N11—C121.358 (2)1.355 (2)1.366 (2)1.376 (3)1.371 (3)
N13—C121.333 (2)1.336 (2)1.330 (2)1.321 (3)1.325 (3)
N11—C111.373 (2)1.376 (2)1.366 (2)1.381 (3)1.389 (3)
N13—C131.393 (2)1.389 (2)1.383 (2)1.377 (3)1.384 (3)
C11—C131.393 (2)1.393 (3)1.393 (3)1.404 (3)1.387 (3)
C11—C171.396 (3)1.392 (2)1.393 (3)1.395 (3)1.395 (3)
C13—C141.391 (3)1.393 (3)1.390 (3)1.391 (3)1.396 (3)
C14—C151.382 (3)1.373 (3)1.370 (3)1.372 (4)1.374 (3)
C16—C171.370 (3)1.375 (3)1.379 (4)1.368 (4)1.373 (4)
C15—C161.394 (3)1.390 (3)1.388 (4)1.391 (4)1.392 (4)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds