Download citation
Download citation
link to html
The AuI atom in the title compound, [Au(C9H9ClNOS)(C18H15P)]·0.5CH2Cl2, exists within a slightly distorted linear geometry defined by an S,P donor set [S—Au—P angle = 178.01 (4)°]; a close intra­molecular Au...O contact [2.964 (4) Å] also occurs. In the crystal structure, mol­ecules are linked into supra­molecular chains propagating along [010] by C—H...N, C—H...S and C—H...π inter­actions. The solvent mol­ecule is disordered about a twofold rotation axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536810018179/hb5453sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536810018179/hb5453Isup2.hkl
Contains datablock I

CCDC reference: 781233

Key indicators

  • Single-crystal X-ray study
  • T = 223 K
  • Mean [sigma](C-C) = 0.007 Å
  • Disorder in solvent or counterion
  • R factor = 0.032
  • wR factor = 0.092
  • Data-to-parameter ratio = 20.3

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT919_ALERT_3_B Reflection(s) # Likely Affected by the Beamstop 1
Alert level C PLAT202_ALERT_3_C Isotropic non-H Atoms in Anion/Solvent ......... 2 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 3 PLAT971_ALERT_2_C Large Calcd. Non-Metal Positive Residual Density 1.68 eA-3 PLAT972_ALERT_2_C Large Calcd. Non-Metal Negative Residual Density -1.74 eA-3 PLAT973_ALERT_2_C Large Calcd. Positive Residual Density on Au 1.05 eA-3 PLAT041_ALERT_1_C Calc. and Reported SumFormula Strings Differ ? PLAT042_ALERT_1_C Calc. and Reported MoietyFormula Strings Differ ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 0.50 Ratio PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors of C28
Alert level G PLAT083_ALERT_2_G SHELXL Second Parameter in WGHT Unusually Large. 9.30 PLAT431_ALERT_2_G Short Inter HL..A Contact Cl1 .. Cl3 .. 3.17 Ang. PLAT302_ALERT_4_G Note: Anion/Solvent Disorder ................... 25.00 Perc. PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 1 P1 -AU -S1 -C1 -143.50 1.20 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 2 S1 -AU -P1 -C22 171.40 1.20 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 3 S1 -AU -P1 -C16 53.80 1.20 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 4 S1 -AU -P1 -C10 -66.50 1.20 1.555 1.555 1.555 1.555
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 7 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 6 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The structure of the title compound, (I), was investigated in the context of a study of molecules with the general formula R3PAu[SC(OR')NR''], for R, R' and R'' = alkyl and aryl, of interest in terms of crystal engineering endeavours (Ho et al., 2006; Ho & Tiekink, 2007; Kuan et al., 2008).

The nearly linear SP coordination geometry observed for the Au atom in (I), Fig. 1, is defined by phosphine and thiolate ligands, Table 1. The small deviation from the ideal linearity [S—Au—P = 178.01 (4) °] is related to a short intramolecular Au···O contact [2.964 (4) Å].

The major feature of the crystal packing is the presence of C–H···N (leading to centrosymmetric dimers), C–H···S and C–H···π interactions that lead to the formation of supramolecular chains along the b axis, Fig. 2 and Table 2. Chains are arranged to form channels in which reside the (disordered) CH2Cl2 molecules, Fig. 3.

Related literature top

For the structural systematics and luminescence properties of phosphinegold(I) carbonimidothioates, see: Ho et al. (2006); Ho & Tiekink (2007); Kuan et al. (2008). For the synthesis, see Hall et al. (1993).

Experimental top

Compound (I) was prepared following the standard literature procedure from the reaction of Ph3AuCl and EtOC(S)N(H)(C6H4Cl-4) in the presence of NaOH (Hall et al., 1993). Yellow blocks of (I) were obtained by the slow evaporation of a CH2Cl2/hexane (3/1) solution held at room temperature.

Refinement top

The H atoms were geometrically placed (C—H = 0.94–0.98 Å) and refined as riding with Uiso(H) = 1.2-1.5Ueq(C). The maximum and minimum residual electron density peaks of 1.73 and 1.87 e Å-3, respectively, were located 0.68 Å and 0.52 Å from the Cl2 atom. The solvent CH2Cl2 molecule (modelled isotropically) was disordered about a 2-fold axis of symmetry with the C and one Cl atom lying on the axis.

Structure description top

The structure of the title compound, (I), was investigated in the context of a study of molecules with the general formula R3PAu[SC(OR')NR''], for R, R' and R'' = alkyl and aryl, of interest in terms of crystal engineering endeavours (Ho et al., 2006; Ho & Tiekink, 2007; Kuan et al., 2008).

The nearly linear SP coordination geometry observed for the Au atom in (I), Fig. 1, is defined by phosphine and thiolate ligands, Table 1. The small deviation from the ideal linearity [S—Au—P = 178.01 (4) °] is related to a short intramolecular Au···O contact [2.964 (4) Å].

The major feature of the crystal packing is the presence of C–H···N (leading to centrosymmetric dimers), C–H···S and C–H···π interactions that lead to the formation of supramolecular chains along the b axis, Fig. 2 and Table 2. Chains are arranged to form channels in which reside the (disordered) CH2Cl2 molecules, Fig. 3.

For the structural systematics and luminescence properties of phosphinegold(I) carbonimidothioates, see: Ho et al. (2006); Ho & Tiekink (2007); Kuan et al. (2008). For the synthesis, see Hall et al. (1993).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing displacement ellipsoids at the 50% probability level. The solvent CH2Cl2 molecule of crystallisation is omitted.
[Figure 2] Fig. 2. A view of the supramolecular chain in (I), aligned along the b axis, mediated by C–H···N (blue), C–H···S (orange), and C–H···π contacts (purple) shown as dashed lines.
[Figure 3] Fig. 3. A view in projection down the b axis of the crystal packing in (I), highlighting the channels in which reside the (disordered) CH2Cl2 molecules (shown in space filling mode).
[(Z)-O-Ethyl N-(4-chlorophenyl)thiocarbamato- κS](triphenylphosphine-κP)gold(I) dichloromethane hemisolvate top
Crystal data top
[Au(C9H9ClNOS)(C18H15P)]·0.5CH2Cl2F(000) = 2792
Mr = 716.40Dx = 1.758 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 6681 reflections
a = 30.5163 (16) Åθ = 2.5–29.1°
b = 8.5881 (5) ŵ = 5.79 mm1
c = 21.0518 (12) ÅT = 223 K
β = 101.054 (1)°Block, yellow
V = 5414.8 (5) Å30.15 × 0.15 × 0.13 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
6214 independent reflections
Radiation source: fine-focus sealed tube5381 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 27.5°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 3938
Tmin = 0.672, Tmax = 1k = 611
18509 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.05P)2 + 9.3001P]
where P = (Fo2 + 2Fc2)/3
6214 reflections(Δ/σ)max = 0.001
306 parametersΔρmax = 1.73 e Å3
0 restraintsΔρmin = 1.87 e Å3
Crystal data top
[Au(C9H9ClNOS)(C18H15P)]·0.5CH2Cl2V = 5414.8 (5) Å3
Mr = 716.40Z = 8
Monoclinic, C2/cMo Kα radiation
a = 30.5163 (16) ŵ = 5.79 mm1
b = 8.5881 (5) ÅT = 223 K
c = 21.0518 (12) Å0.15 × 0.15 × 0.13 mm
β = 101.054 (1)°
Data collection top
Bruker SMART CCD
diffractometer
6214 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
5381 reflections with I > 2σ(I)
Tmin = 0.672, Tmax = 1Rint = 0.031
18509 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.10Δρmax = 1.73 e Å3
6214 reflectionsΔρmin = 1.87 e Å3
306 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Au0.082143 (5)0.03531 (2)0.391240 (8)0.02794 (7)
Cl10.15255 (7)0.6401 (2)0.23755 (9)0.0849 (7)
S10.01688 (4)0.16692 (14)0.35074 (6)0.0351 (3)
P10.14730 (3)0.08554 (13)0.43121 (5)0.0251 (2)
O10.00607 (11)0.0698 (4)0.41402 (17)0.0367 (8)
N10.06288 (12)0.1010 (5)0.38198 (19)0.0344 (9)
C10.02287 (15)0.0627 (5)0.3836 (2)0.0301 (9)
C20.08159 (14)0.2323 (6)0.3475 (2)0.0317 (9)
C30.08667 (17)0.2412 (7)0.2804 (2)0.0416 (11)
H30.07540.16120.25770.050*
C40.10818 (18)0.3672 (7)0.2469 (2)0.0460 (13)
H40.11140.37270.20170.055*
C50.1248 (2)0.4838 (7)0.2801 (3)0.0486 (14)
C60.1206 (2)0.4782 (7)0.3461 (3)0.0513 (15)
H60.13210.55860.36840.062*
C70.09900 (18)0.3514 (7)0.3793 (2)0.0436 (12)
H70.09620.34650.42450.052*
C80.03693 (17)0.1648 (6)0.4414 (3)0.0438 (12)
H8A0.06390.18600.40900.053*
H8B0.04560.11170.47830.053*
C90.0126 (2)0.3152 (7)0.4631 (3)0.0581 (16)
H9A0.03200.38310.48210.087*
H9B0.01410.29220.49510.087*
H9C0.00420.36630.42620.087*
C100.18807 (15)0.0764 (6)0.3788 (2)0.0291 (9)
C110.22367 (16)0.1789 (7)0.3848 (2)0.0387 (11)
H110.22620.26020.41520.046*
C120.25552 (17)0.1628 (8)0.3465 (3)0.0494 (14)
H120.27990.23170.35120.059*
C130.2511 (2)0.0445 (8)0.3014 (3)0.0568 (18)
H130.27270.03240.27550.068*
C140.2155 (2)0.0556 (8)0.2940 (3)0.0551 (16)
H140.21260.13460.26250.066*
C150.18380 (19)0.0406 (6)0.3324 (2)0.0408 (12)
H150.15940.10940.32730.049*
C160.17531 (15)0.0050 (5)0.5079 (2)0.0270 (9)
C170.21857 (16)0.0542 (6)0.5187 (2)0.0330 (10)
H170.23530.05000.48560.040*
C180.23708 (18)0.1196 (7)0.5781 (2)0.0459 (13)
H180.26620.16030.58510.055*
C190.2125 (2)0.1245 (6)0.6267 (2)0.0461 (13)
H190.22500.16920.66680.055*
C200.17016 (19)0.0650 (7)0.6171 (2)0.0426 (12)
H200.15390.06770.65070.051*
C210.15130 (17)0.0009 (6)0.5579 (2)0.0346 (10)
H210.12210.03900.55140.042*
C220.13970 (14)0.2882 (5)0.4482 (2)0.0276 (9)
C230.16943 (15)0.3689 (6)0.4943 (2)0.0349 (10)
H230.19460.31730.51780.042*
C240.16261 (19)0.5276 (6)0.5068 (3)0.0406 (12)
H240.18320.58230.53770.049*
C250.12537 (18)0.6007 (6)0.4730 (3)0.0430 (12)
H250.12060.70650.48090.052*
C260.0947 (2)0.5208 (7)0.4275 (3)0.0487 (14)
H260.06920.57210.40500.058*
C270.10177 (16)0.3649 (6)0.4152 (2)0.0360 (10)
H270.08090.31070.38450.043*
Cl20.50000.0930 (15)0.25000.288 (5)*
Cl30.44248 (15)0.3008 (6)0.2579 (2)0.0923 (12)*0.50
C280.50000.2911 (17)0.25000.101 (4)*
H28A0.50540.33600.20940.122*0.50
H28B0.52050.33600.28700.122*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.02219 (10)0.02619 (11)0.03374 (10)0.00001 (6)0.00111 (7)0.00359 (7)
Cl10.0923 (13)0.0844 (13)0.0850 (12)0.0519 (11)0.0347 (10)0.0537 (11)
S10.0244 (5)0.0319 (6)0.0480 (6)0.0006 (5)0.0041 (5)0.0140 (5)
P10.0215 (5)0.0231 (5)0.0295 (5)0.0008 (4)0.0022 (4)0.0022 (4)
O10.0297 (17)0.0335 (18)0.0484 (19)0.0048 (14)0.0108 (14)0.0135 (15)
N10.0287 (19)0.037 (2)0.040 (2)0.0057 (17)0.0116 (16)0.0095 (18)
C10.029 (2)0.031 (2)0.030 (2)0.0004 (18)0.0043 (17)0.0032 (18)
C20.022 (2)0.037 (2)0.037 (2)0.0010 (19)0.0071 (17)0.011 (2)
C30.044 (3)0.043 (3)0.037 (2)0.009 (2)0.007 (2)0.006 (2)
C40.047 (3)0.055 (3)0.034 (2)0.003 (3)0.004 (2)0.010 (2)
C50.040 (3)0.048 (3)0.059 (3)0.016 (2)0.013 (3)0.027 (3)
C60.060 (4)0.043 (3)0.056 (3)0.020 (3)0.024 (3)0.008 (3)
C70.050 (3)0.047 (3)0.038 (2)0.014 (3)0.018 (2)0.011 (2)
C80.035 (3)0.041 (3)0.058 (3)0.003 (2)0.016 (2)0.021 (3)
C90.053 (3)0.044 (3)0.082 (4)0.009 (3)0.026 (3)0.030 (3)
C100.029 (2)0.032 (2)0.0255 (19)0.0056 (19)0.0037 (17)0.0043 (18)
C110.035 (2)0.044 (3)0.036 (2)0.002 (2)0.0049 (19)0.004 (2)
C120.032 (3)0.075 (4)0.043 (3)0.001 (3)0.010 (2)0.017 (3)
C130.047 (3)0.088 (5)0.039 (3)0.023 (3)0.021 (3)0.021 (3)
C140.069 (4)0.062 (4)0.037 (3)0.021 (3)0.017 (3)0.003 (3)
C150.045 (3)0.040 (3)0.037 (2)0.007 (2)0.009 (2)0.004 (2)
C160.026 (2)0.023 (2)0.031 (2)0.0017 (17)0.0029 (17)0.0024 (17)
C170.026 (2)0.035 (3)0.037 (2)0.0047 (19)0.0043 (18)0.000 (2)
C180.040 (3)0.047 (3)0.046 (3)0.013 (3)0.005 (2)0.003 (3)
C190.064 (3)0.039 (3)0.032 (2)0.005 (3)0.000 (2)0.000 (2)
C200.052 (3)0.044 (3)0.033 (2)0.002 (2)0.010 (2)0.002 (2)
C210.031 (2)0.038 (3)0.036 (2)0.001 (2)0.0072 (19)0.001 (2)
C220.028 (2)0.022 (2)0.034 (2)0.0022 (17)0.0084 (17)0.0012 (17)
C230.028 (2)0.032 (3)0.043 (2)0.0005 (19)0.0030 (19)0.004 (2)
C240.042 (3)0.031 (3)0.051 (3)0.011 (2)0.016 (2)0.010 (2)
C250.056 (3)0.023 (2)0.055 (3)0.002 (2)0.023 (3)0.002 (2)
C260.054 (4)0.035 (3)0.058 (3)0.015 (3)0.013 (3)0.009 (3)
C270.037 (2)0.032 (3)0.037 (2)0.006 (2)0.001 (2)0.000 (2)
Geometric parameters (Å, º) top
Au—P12.2578 (11)C12—H120.9400
Au—S12.3064 (11)C13—C141.371 (10)
Cl1—C51.740 (5)C13—H130.9400
S1—C11.753 (5)C14—C151.381 (8)
P1—C221.801 (5)C14—H140.9400
P1—C161.814 (5)C15—H150.9400
P1—C101.816 (4)C16—C171.392 (6)
O1—C11.358 (5)C16—C211.394 (6)
O1—C81.447 (6)C17—C181.387 (7)
N1—C11.259 (6)C17—H170.9400
N1—C21.402 (6)C18—C191.380 (8)
C2—C71.382 (7)C18—H180.9400
C2—C31.393 (6)C19—C201.368 (8)
C3—C41.386 (7)C19—H190.9400
C3—H30.9400C20—C211.382 (7)
C4—C51.372 (8)C20—H200.9400
C4—H40.9400C21—H210.9400
C5—C61.372 (9)C22—C231.381 (6)
C6—C71.390 (7)C22—C271.396 (6)
C6—H60.9400C23—C241.411 (7)
C7—H70.9400C23—H230.9400
C8—C91.516 (7)C24—C251.372 (8)
C8—H8A0.9800C24—H240.9400
C8—H8B0.9800C25—C261.386 (9)
C9—H9A0.9700C25—H250.9400
C9—H9B0.9700C26—C271.388 (8)
C9—H9C0.9700C26—H260.9400
C10—C111.385 (7)C27—H270.9400
C10—C151.389 (7)Cl2—C281.701 (18)
C11—C121.383 (7)Cl3—C281.797 (5)
C11—H110.9400C28—H28A0.9800
C12—C131.379 (9)C28—H28B0.9800
P1—Au—S1178.01 (4)C14—C13—C12120.8 (5)
C1—S1—Au102.58 (16)C14—C13—H13119.6
C22—P1—C16104.4 (2)C12—C13—H13119.6
C22—P1—C10107.0 (2)C13—C14—C15120.2 (6)
C16—P1—C10105.3 (2)C13—C14—H14119.9
C22—P1—Au112.37 (14)C15—C14—H14119.9
C16—P1—Au112.79 (15)C14—C15—C10119.8 (5)
C10—P1—Au114.24 (15)C14—C15—H15120.1
C1—O1—C8116.4 (4)C10—C15—H15120.1
C1—N1—C2121.4 (4)C17—C16—C21118.9 (4)
N1—C1—O1120.5 (4)C17—C16—P1123.7 (4)
N1—C1—S1126.7 (4)C21—C16—P1117.4 (3)
O1—C1—S1112.8 (3)C18—C17—C16120.3 (5)
C7—C2—C3118.1 (4)C18—C17—H17119.9
C7—C2—N1120.1 (4)C16—C17—H17119.9
C3—C2—N1121.6 (5)C19—C18—C17119.7 (5)
C4—C3—C2120.6 (5)C19—C18—H18120.2
C4—C3—H3119.7C17—C18—H18120.2
C2—C3—H3119.7C20—C19—C18120.7 (5)
C5—C4—C3119.8 (5)C20—C19—H19119.6
C5—C4—H4120.1C18—C19—H19119.6
C3—C4—H4120.1C19—C20—C21120.0 (5)
C6—C5—C4121.2 (5)C19—C20—H20120.0
C6—C5—Cl1119.3 (5)C21—C20—H20120.0
C4—C5—Cl1119.5 (5)C20—C21—C16120.4 (5)
C5—C6—C7118.6 (5)C20—C21—H21119.8
C5—C6—H6120.7C16—C21—H21119.8
C7—C6—H6120.7C23—C22—C27118.9 (4)
C2—C7—C6121.8 (5)C23—C22—P1122.2 (3)
C2—C7—H7119.1C27—C22—P1118.9 (3)
C6—C7—H7119.1C22—C23—C24121.0 (4)
O1—C8—C9106.3 (4)C22—C23—H23119.5
O1—C8—H8A110.5C24—C23—H23119.5
C9—C8—H8A110.5C25—C24—C23118.9 (5)
O1—C8—H8B110.5C25—C24—H24120.5
C9—C8—H8B110.5C23—C24—H24120.5
H8A—C8—H8B108.7C24—C25—C26120.9 (5)
C8—C9—H9A109.5C24—C25—H25119.5
C8—C9—H9B109.5C26—C25—H25119.5
H9A—C9—H9B109.5C25—C26—C27119.9 (5)
C8—C9—H9C109.5C25—C26—H26120.1
H9A—C9—H9C109.5C27—C26—H26120.1
H9B—C9—H9C109.5C26—C27—C22120.4 (5)
C11—C10—C15119.4 (4)C26—C27—H27119.8
C11—C10—P1122.2 (4)C22—C27—H27119.8
C15—C10—P1118.4 (4)Cl2—C28—Cl392.7 (5)
C12—C11—C10120.6 (5)Cl2—C28—H28A113.2
C12—C11—H11119.7Cl3—C28—H28A113.2
C10—C11—H11119.7Cl2—C28—H28B113.2
C11—C12—C13119.2 (6)Cl3—C28—H28B113.2
C11—C12—H12120.4H28A—C28—H28B110.5
C13—C12—H12120.4
P1—Au—S1—C1143.5 (12)C12—C13—C14—C151.0 (9)
S1—Au—P1—C22171.4 (12)C13—C14—C15—C100.1 (9)
S1—Au—P1—C1653.8 (12)C11—C10—C15—C141.4 (8)
S1—Au—P1—C1066.5 (12)P1—C10—C15—C14176.8 (4)
C2—N1—C1—O1176.1 (4)C22—P1—C16—C17114.7 (4)
C2—N1—C1—S15.2 (7)C10—P1—C16—C172.2 (5)
C8—O1—C1—N12.4 (7)Au—P1—C16—C17123.0 (4)
C8—O1—C1—S1178.8 (4)C22—P1—C16—C2167.0 (4)
Au—S1—C1—N1170.6 (4)C10—P1—C16—C21179.5 (4)
Au—S1—C1—O18.2 (4)Au—P1—C16—C2155.3 (4)
C1—N1—C2—C7121.0 (5)C21—C16—C17—C180.8 (7)
C1—N1—C2—C364.5 (7)P1—C16—C17—C18177.5 (4)
C7—C2—C3—C40.7 (8)C16—C17—C18—C190.5 (8)
N1—C2—C3—C4175.3 (5)C17—C18—C19—C200.3 (9)
C2—C3—C4—C50.3 (8)C18—C19—C20—C210.9 (9)
C3—C4—C5—C60.1 (9)C19—C20—C21—C160.6 (8)
C3—C4—C5—Cl1179.0 (5)C17—C16—C21—C200.2 (7)
C4—C5—C6—C70.1 (10)P1—C16—C21—C20178.1 (4)
Cl1—C5—C6—C7178.9 (5)C16—P1—C22—C2331.3 (4)
C3—C2—C7—C60.7 (8)C10—P1—C22—C2380.0 (4)
N1—C2—C7—C6175.4 (5)Au—P1—C22—C23153.9 (3)
C5—C6—C7—C20.4 (9)C16—P1—C22—C27146.6 (4)
C1—O1—C8—C9171.6 (5)C10—P1—C22—C27102.1 (4)
C22—P1—C10—C1135.4 (4)Au—P1—C22—C2724.0 (4)
C16—P1—C10—C1175.3 (4)C27—C22—C23—C241.9 (7)
Au—P1—C10—C11160.4 (3)P1—C22—C23—C24179.9 (4)
C22—P1—C10—C15146.5 (4)C22—C23—C24—C251.1 (7)
C16—P1—C10—C15102.9 (4)C23—C24—C25—C260.2 (8)
Au—P1—C10—C1521.4 (4)C24—C25—C26—C270.6 (9)
C15—C10—C11—C121.9 (7)C25—C26—C27—C220.3 (8)
P1—C10—C11—C12176.2 (4)C23—C22—C27—C261.5 (7)
C10—C11—C12—C131.0 (8)P1—C22—C27—C26179.5 (4)
C11—C12—C13—C140.5 (9)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C22–C27 ring.
D—H···AD—HH···AD···AD—H···A
C21—H21···N1i0.942.553.310 (6)138
C26—H26···S1ii0.942.863.738 (6)156
C7—H7···Cg1i0.942.963.784 (5)147
Symmetry codes: (i) x, y, z+1; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Au(C9H9ClNOS)(C18H15P)]·0.5CH2Cl2
Mr716.40
Crystal system, space groupMonoclinic, C2/c
Temperature (K)223
a, b, c (Å)30.5163 (16), 8.5881 (5), 21.0518 (12)
β (°) 101.054 (1)
V3)5414.8 (5)
Z8
Radiation typeMo Kα
µ (mm1)5.79
Crystal size (mm)0.15 × 0.15 × 0.13
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.672, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
18509, 6214, 5381
Rint0.031
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.092, 1.10
No. of reflections6214
No. of parameters306
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.73, 1.87

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), PATTY in DIRDIF92 (Beurskens et al., 1992), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Au—P12.2578 (11)Au—S12.3064 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C22–C27 ring.
D—H···AD—HH···AD···AD—H···A
C21—H21···N1i0.942.553.310 (6)138
C26—H26···S1ii0.942.863.738 (6)156
C7—H7···Cg1i0.942.963.784 (5)147
Symmetry codes: (i) x, y, z+1; (ii) x, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds