The structure of the polymeric title compound, [CaCo(C3H2O4)2(H2O)4]n, consists of CaO8 and CoO6 polyhedra linked together by malonate groups. The Co atom lies on a centre of symmetry in an octahedral arrangement, and is coordinated by four malonate O atoms in a planar arrangement and two water molecules in a trans conformation. The geometry around the Ca atom, which lies on a twofold axis, may be described as a distorted square antiprism, which involves two water molecules and six malonate O atoms. The Co—O and Ca—O bond lengths are in the ranges 2.0711 (12)–2.1004 (14) and 2.3775 (12)–2.6329 (12) Å, respectively.
Supporting information
CCDC reference: 605658
Under continuous stirring, malonic acid (0.208 g, 2 mmol), CoCl2·6H2O (0.238 g, 1 mmol) and Ca(OH)2·8H2O (0.315 g, 1 mmol) were successively dissolved in water (100 ml). A pink solution was obtained after filtration, and the filtrate was kept at 313 K. Pink prismatic crystals were grown after several weeks.
H atoms bonded to C atoms were included in geometrically idealized positions using a riding model, with C—H distances of 0.95 Å and Uiso(H) values of 1.2Ueq(C). Those bonded to O were found by difference Fourier methods and refined isotropically.
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1993); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Poly[tetraaquadi-µ
3-malonato-cobalt(II)calcium(II)]
top
Crystal data top
[CaCo(C3H2O4)2(H2O)4] | F(000) = 764 |
Mr = 375.17 | Dx = 2.087 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 25 reflections |
a = 13.874 (2) Å | θ = 5.4–13.6° |
b = 7.531 (1) Å | µ = 1.93 mm−1 |
c = 13.615 (2) Å | T = 298 K |
β = 122.94 (2)° | Prism, pink |
V = 1193.9 (4) Å3 | 0.26 × 0.22 × 0.14 mm |
Z = 4 | |
Data collection top
Enraf–Nonius CAD-4 diffractometer | 1177 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.007 |
Graphite monochromator | θmax = 27.0°, θmin = 3.2° |
ω/2θ scans | h = 0→17 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→9 |
Tmin = 0.660, Tmax = 0.768 | l = −17→14 |
1353 measured reflections | 3 standard reflections every 60 min |
1300 independent reflections | intensity decay: 0.0% |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.020 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.050 | w = 1/[σ2(Fo2) + (0.0246P)2 + 0.8504P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max < 0.001 |
1300 reflections | Δρmax = 0.28 e Å−3 |
110 parameters | Δρmin = −0.25 e Å−3 |
0 restraints | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0020 (4) |
Crystal data top
[CaCo(C3H2O4)2(H2O)4] | V = 1193.9 (4) Å3 |
Mr = 375.17 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 13.874 (2) Å | µ = 1.93 mm−1 |
b = 7.531 (1) Å | T = 298 K |
c = 13.615 (2) Å | 0.26 × 0.22 × 0.14 mm |
β = 122.94 (2)° | |
Data collection top
Enraf–Nonius CAD-4 diffractometer | 1177 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.007 |
Tmin = 0.660, Tmax = 0.768 | 3 standard reflections every 60 min |
1353 measured reflections | intensity decay: 0.0% |
1300 independent reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.020 | 0 restraints |
wR(F2) = 0.050 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.11 | Δρmax = 0.28 e Å−3 |
1300 reflections | Δρmin = −0.25 e Å−3 |
110 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Ca | 0.5000 | −0.12268 (6) | 0.2500 | 0.01694 (12) | |
Co | 0.5000 | 0.5000 | 0.5000 | 0.01770 (11) | |
O1 | 0.37589 (10) | 0.10287 (15) | 0.24175 (10) | 0.0252 (3) | |
O2 | 0.45750 (10) | 0.26466 (15) | 0.40366 (10) | 0.0255 (3) | |
O3 | 0.43766 (10) | 0.63445 (15) | 0.34394 (9) | 0.0246 (3) | |
O4 | 0.33859 (11) | 0.67075 (16) | 0.15464 (10) | 0.0286 (3) | |
O5 | 0.33756 (11) | 0.5107 (2) | 0.47682 (13) | 0.0326 (3) | |
O6 | 0.40284 (12) | −0.03139 (19) | 0.04940 (11) | 0.0283 (3) | |
C2 | 0.31086 (13) | 0.3977 (2) | 0.22178 (13) | 0.0216 (3) | |
H2A | 0.2761 | 0.3682 | 0.1415 | 0.026* | |
H2B | 0.2511 | 0.4070 | 0.2359 | 0.026* | |
C1 | 0.38792 (12) | 0.2455 (2) | 0.29424 (13) | 0.0177 (3) | |
C3 | 0.36624 (13) | 0.5778 (2) | 0.24204 (13) | 0.0174 (3) | |
H5A | 0.283 (2) | 0.544 (3) | 0.422 (2) | 0.051 (8)* | |
H5B | 0.329 (2) | 0.459 (3) | 0.521 (2) | 0.046 (7)* | |
H6A | 0.435 (2) | 0.062 (4) | 0.047 (2) | 0.055 (8)* | |
H6B | 0.399 (2) | −0.091 (4) | 0.003 (2) | 0.052 (8)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Ca | 0.0171 (2) | 0.0144 (2) | 0.0163 (2) | 0.000 | 0.00716 (17) | 0.000 |
Co | 0.01973 (16) | 0.01414 (16) | 0.01387 (15) | −0.00079 (11) | 0.00566 (12) | −0.00127 (11) |
O1 | 0.0235 (6) | 0.0196 (6) | 0.0247 (6) | 0.0020 (5) | 0.0079 (5) | −0.0070 (5) |
O2 | 0.0305 (6) | 0.0165 (5) | 0.0183 (5) | 0.0022 (5) | 0.0060 (5) | −0.0015 (4) |
O3 | 0.0278 (6) | 0.0181 (5) | 0.0182 (5) | −0.0051 (5) | 0.0061 (5) | 0.0001 (4) |
O4 | 0.0382 (7) | 0.0230 (6) | 0.0196 (6) | −0.0044 (5) | 0.0125 (5) | 0.0027 (5) |
O5 | 0.0218 (6) | 0.0488 (9) | 0.0243 (7) | 0.0033 (6) | 0.0106 (6) | 0.0093 (6) |
O6 | 0.0322 (7) | 0.0254 (7) | 0.0211 (6) | −0.0042 (5) | 0.0105 (5) | −0.0018 (5) |
C2 | 0.0194 (7) | 0.0165 (7) | 0.0192 (7) | −0.0016 (6) | 0.0042 (6) | −0.0005 (6) |
C1 | 0.0175 (7) | 0.0159 (7) | 0.0195 (7) | −0.0018 (6) | 0.0098 (6) | −0.0017 (6) |
C3 | 0.0170 (7) | 0.0158 (7) | 0.0196 (7) | 0.0026 (6) | 0.0101 (6) | 0.0005 (6) |
Geometric parameters (Å, º) top
Ca—O1i | 2.3775 (12) | O1—C1 | 1.2500 (18) |
Ca—O1 | 2.3775 (12) | O2—C1 | 1.2681 (19) |
Ca—O6i | 2.3970 (14) | O3—C3 | 1.2623 (19) |
Ca—O6 | 2.3970 (14) | O4—C3 | 1.2476 (19) |
Ca—O4ii | 2.4410 (13) | O4—Cav | 2.4410 (13) |
Ca—O4iii | 2.4410 (13) | O5—H5A | 0.77 (3) |
Ca—O3iii | 2.6329 (12) | O5—H5B | 0.78 (3) |
Ca—O3ii | 2.6329 (12) | O6—H6A | 0.84 (3) |
Co—O3 | 2.0711 (12) | O6—H6B | 0.75 (3) |
Co—O3iv | 2.0711 (12) | C2—C3 | 1.509 (2) |
Co—O2 | 2.0900 (11) | C2—C1 | 1.511 (2) |
Co—O2iv | 2.0900 (11) | C2—H2A | 0.9500 |
Co—O5iv | 2.1004 (14) | C2—H2B | 0.9500 |
Co—O5 | 2.1004 (14) | | |
| | | |
O1i—Ca—O1 | 88.80 (6) | O6i—Ca—H6A | 132.1 (6) |
O1i—Ca—O6i | 78.29 (5) | O6—Ca—H6A | 16.8 (6) |
O1—Ca—O6i | 78.05 (5) | O4ii—Ca—H6A | 94.6 (6) |
O1i—Ca—O6 | 78.05 (5) | O4iii—Ca—H6A | 123.9 (5) |
O1—Ca—O6 | 78.29 (5) | O3iii—Ca—H6A | 83.0 (5) |
O6i—Ca—O6 | 146.66 (7) | O3ii—Ca—H6A | 144.8 (6) |
O1i—Ca—O4ii | 155.76 (4) | C3iii—Ca—H6A | 106.5 (5) |
O1—Ca—O4ii | 89.93 (4) | C3ii—Ca—H6A | 120.0 (6) |
O6i—Ca—O4ii | 125.01 (5) | O3—Co—O3iv | 180.00 (4) |
O6—Ca—O4ii | 77.99 (5) | O3—Co—O2 | 87.30 (5) |
O1i—Ca—O4iii | 89.93 (4) | O3iv—Co—O2 | 92.70 (5) |
O1—Ca—O4iii | 155.76 (4) | O3—Co—O2iv | 92.70 (5) |
O6i—Ca—O4iii | 77.99 (5) | O3iv—Co—O2iv | 87.30 (5) |
O6—Ca—O4iii | 125.01 (5) | O2—Co—O2iv | 180.0 |
O4ii—Ca—O4iii | 100.82 (6) | O3—Co—O5iv | 89.32 (6) |
O1i—Ca—O3iii | 95.65 (4) | O3iv—Co—O5iv | 90.68 (6) |
O1—Ca—O3iii | 153.40 (4) | O2—Co—O5iv | 88.59 (5) |
O6i—Ca—O3iii | 128.54 (4) | O2iv—Co—O5iv | 91.41 (5) |
O6—Ca—O3iii | 77.03 (4) | O3—Co—O5 | 90.68 (6) |
O4ii—Ca—O3iii | 75.38 (4) | O3iv—Co—O5 | 89.32 (6) |
O4iii—Ca—O3iii | 50.73 (4) | O2—Co—O5 | 91.41 (5) |
O1i—Ca—O3ii | 153.40 (4) | O2iv—Co—O5 | 88.59 (5) |
O1—Ca—O3ii | 95.65 (4) | O5iv—Co—O5 | 180.0 |
O6i—Ca—O3ii | 77.03 (4) | C1—O1—Ca | 135.95 (10) |
O6—Ca—O3ii | 128.54 (4) | C1—O2—Co | 127.49 (10) |
O4ii—Ca—O3ii | 50.73 (4) | C3—O3—Co | 127.06 (10) |
O4iii—Ca—O3ii | 75.38 (4) | C3—O3—Cav | 88.26 (9) |
O3iii—Ca—O3ii | 92.00 (6) | Co—O3—Cav | 140.69 (5) |
O1i—Ca—C3iii | 97.02 (4) | C3—O4—Cav | 97.63 (10) |
O1—Ca—C3iii | 174.17 (4) | Co—O5—H5A | 125.2 (19) |
O6i—Ca—C3iii | 103.28 (5) | Co—O5—H5B | 117.8 (18) |
O6—Ca—C3iii | 102.64 (5) | H5A—O5—H5B | 116 (3) |
O4ii—Ca—C3iii | 84.67 (5) | Ca—O6—H6A | 107.9 (17) |
O4iii—Ca—C3iii | 25.38 (4) | Ca—O6—H6B | 121 (2) |
O3iii—Ca—C3iii | 25.93 (4) | H6A—O6—H6B | 106 (3) |
O3ii—Ca—C3iii | 79.23 (4) | C3—C2—C1 | 116.97 (13) |
O1i—Ca—C3ii | 174.17 (4) | C3—C2—H2A | 108.1 |
O1—Ca—C3ii | 97.02 (4) | C1—C2—H2A | 108.1 |
O6i—Ca—C3ii | 102.64 (5) | C3—C2—H2B | 108.1 |
O6—Ca—C3ii | 103.28 (5) | C1—C2—H2B | 108.1 |
O4ii—Ca—C3ii | 25.38 (4) | H2A—C2—H2B | 107.3 |
O4iii—Ca—C3ii | 84.67 (5) | O1—C1—O2 | 123.31 (14) |
O3iii—Ca—C3ii | 79.23 (4) | O1—C1—C2 | 116.83 (13) |
O3ii—Ca—C3ii | 25.93 (4) | O2—C1—C2 | 119.81 (13) |
C3iii—Ca—C3ii | 77.16 (6) | O4—C3—O3 | 120.61 (14) |
O1i—Ca—H6A | 61.6 (6) | O4—C3—C2 | 117.91 (13) |
O1—Ca—H6A | 76.1 (5) | O3—C3—C2 | 121.47 (14) |
| | | |
O1i—Ca—O1—C1 | −44.71 (14) | O5iv—Co—O3—Cav | −37.82 (9) |
O6i—Ca—O1—C1 | 33.57 (15) | O5—Co—O3—Cav | 142.18 (9) |
O6—Ca—O1—C1 | −122.76 (16) | Ca—O1—C1—O2 | −41.1 (2) |
O4ii—Ca—O1—C1 | 159.49 (15) | Ca—O1—C1—C2 | 141.51 (12) |
O4iii—Ca—O1—C1 | 42.5 (2) | Co—O2—C1—O1 | 172.61 (11) |
O3iii—Ca—O1—C1 | −144.98 (14) | Co—O2—C1—C2 | −10.0 (2) |
O3ii—Ca—O1—C1 | 109.00 (15) | C3—C2—C1—O1 | −135.66 (15) |
C3ii—Ca—O1—C1 | 135.06 (15) | C3—C2—C1—O2 | 46.8 (2) |
O3—Co—O2—C1 | −19.46 (13) | Cav—O4—C3—O3 | 17.75 (16) |
O3iv—Co—O2—C1 | 160.54 (13) | Cav—O4—C3—C2 | −162.82 (12) |
O5iv—Co—O2—C1 | −108.85 (13) | Co—O3—C3—O4 | −177.58 (11) |
O5—Co—O2—C1 | 71.15 (13) | Cav—O3—C3—O4 | −16.28 (15) |
O2—Co—O3—C3 | 23.17 (13) | Co—O3—C3—C2 | 3.0 (2) |
O2iv—Co—O3—C3 | −156.83 (13) | Cav—O3—C3—C2 | 164.32 (13) |
O5iv—Co—O3—C3 | 111.79 (13) | Co—O3—C3—Cav | −161.30 (12) |
O5—Co—O3—C3 | −68.21 (13) | C1—C2—C3—O4 | 137.15 (15) |
O2—Co—O3—Cav | −126.44 (9) | C1—C2—C3—O3 | −43.4 (2) |
O2iv—Co—O3—Cav | 53.56 (9) | C1—C2—C3—Cav | 70.4 (4) |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) x, y−1, z; (iii) −x+1, y−1, −z+1/2; (iv) −x+1, −y+1, −z+1; (v) x, y+1, z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O1vi | 0.77 (3) | 2.16 (3) | 2.920 (2) | 173 (3) |
O5—H5B···O4vii | 0.78 (3) | 2.00 (3) | 2.773 (2) | 169 (3) |
O6—H6A···O2i | 0.84 (3) | 1.98 (3) | 2.7905 (18) | 161 (2) |
O6—H6B···O2viii | 0.75 (3) | 2.33 (3) | 3.0388 (19) | 159 (3) |
Symmetry codes: (i) −x+1, y, −z+1/2; (vi) −x+1/2, y+1/2, −z+1/2; (vii) x, −y+1, z+1/2; (viii) x, −y, z−1/2. |
Experimental details
Crystal data |
Chemical formula | [CaCo(C3H2O4)2(H2O)4] |
Mr | 375.17 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 298 |
a, b, c (Å) | 13.874 (2), 7.531 (1), 13.615 (2) |
β (°) | 122.94 (2) |
V (Å3) | 1193.9 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.93 |
Crystal size (mm) | 0.26 × 0.22 × 0.14 |
|
Data collection |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.660, 0.768 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1353, 1300, 1177 |
Rint | 0.007 |
(sin θ/λ)max (Å−1) | 0.638 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.020, 0.050, 1.11 |
No. of reflections | 1300 |
No. of parameters | 110 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.28, −0.25 |
Selected geometric parameters (Å, º) topCa—O1 | 2.3775 (12) | O3—C3 | 1.2623 (19) |
Ca—O6 | 2.3970 (14) | O4—C3 | 1.2476 (19) |
Ca—O4i | 2.4410 (13) | O5—H5A | 0.77 (3) |
Ca—O3i | 2.6329 (12) | O5—H5B | 0.78 (3) |
Co—O3 | 2.0711 (12) | O6—H6A | 0.84 (3) |
Co—O2 | 2.0900 (11) | O6—H6B | 0.75 (3) |
Co—O5 | 2.1004 (14) | C2—C3 | 1.509 (2) |
O1—C1 | 1.2500 (18) | C2—C1 | 1.511 (2) |
O2—C1 | 1.2681 (19) | | |
| | | |
O1ii—Ca—O1 | 88.80 (6) | O3—Co—O5 | 90.68 (6) |
O1ii—Ca—O6 | 78.05 (5) | O2—Co—O5 | 91.41 (5) |
O1—Ca—O6 | 78.29 (5) | C1—O1—Ca | 135.95 (10) |
O6ii—Ca—O6 | 146.66 (7) | C1—O2—Co | 127.49 (10) |
O1—Ca—O4i | 89.93 (4) | C3—O3—Co | 127.06 (10) |
O6—Ca—O4i | 77.99 (5) | C3—O3—Cav | 88.26 (9) |
O1—Ca—O4iii | 155.76 (4) | Co—O3—Cav | 140.69 (5) |
O6—Ca—O4iii | 125.01 (5) | C3—O4—Cav | 97.63 (10) |
O4i—Ca—O4iii | 100.82 (6) | Co—O5—H5A | 125.2 (19) |
O1—Ca—O3iii | 153.40 (4) | Co—O5—H5B | 117.8 (18) |
O6—Ca—O3iii | 77.03 (4) | Ca—O6—H6A | 107.9 (17) |
O4i—Ca—O3iii | 75.38 (4) | Ca—O6—H6B | 121 (2) |
O4iii—Ca—O3iii | 50.73 (4) | H6A—O6—H6B | 106 (3) |
O1ii—Ca—O3i | 153.40 (4) | C3—C2—C1 | 116.97 (13) |
O1—Ca—O3i | 95.65 (4) | O1—C1—O2 | 123.31 (14) |
O6—Ca—O3i | 128.54 (4) | O1—C1—C2 | 116.83 (13) |
O3iii—Ca—O3i | 92.00 (6) | O2—C1—C2 | 119.81 (13) |
O3—Co—O2 | 87.30 (5) | O4—C3—O3 | 120.61 (14) |
O3iv—Co—O2 | 92.70 (5) | O4—C3—C2 | 117.91 (13) |
O3—Co—O5iv | 89.32 (6) | O3—C3—C2 | 121.47 (14) |
O2—Co—O5iv | 88.59 (5) | | |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, y, −z+1/2; (iii) −x+1, y−1, −z+1/2; (iv) −x+1, −y+1, −z+1; (v) x, y+1, z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O1vi | 0.77 (3) | 2.16 (3) | 2.920 (2) | 173 (3) |
O5—H5B···O4vii | 0.78 (3) | 2.00 (3) | 2.773 (2) | 169 (3) |
O6—H6A···O2ii | 0.84 (3) | 1.98 (3) | 2.7905 (18) | 161 (2) |
O6—H6B···O2viii | 0.75 (3) | 2.33 (3) | 3.0388 (19) | 159 (3) |
Symmetry codes: (ii) −x+1, y, −z+1/2; (vi) −x+1/2, y+1/2, −z+1/2; (vii) x, −y+1, z+1/2; (viii) x, −y, z−1/2. |
The most commonly employed synthetic design strategy that is used to assemble coordination frameworks is the building-block methodology, which relies upon utilizing the specific geometries of both metal cations and ligands. Typically, dicarboxylate ligands, such as malonate, have been used to construct coordination polymers by acting as chelating bidentate ligands or as simple bridges between metal centers. Consequently, a great number of homonuclear or heteronuclear malonate complexes are well known and structurally characterized (Alderighi et al., 1999; Barbaro et al., 1997; Benmerad et al., 2000; Filippova et al., 2000; Gil de Muro et al., 1998, 1999, 2000; Hodgson & Asplund, 1991; Rodriguez-Martin et al., 2002; Ruiz-Perez, Hernandez-Molina et al., 2000; Ruiz-Perez, Sanchiz et al., 2000; Tapparo et al., 1996; Zhang et al., 2000). In the course of our study of heterobimetallic malonate complexes involving transition and alkaline-earth metals, we have synthesized the complex [CaCo(C3H2O4)2(H2O)4], (I), which has already been reported (Gil de Muro et al., 2000), but its crystal structure was not determined until now. The single-crystal X-ray diffraction study reveals that the title compound consists of a honeycomb framework built up from calcium(II), cobalt(II) malonate and water molecules. A view of the coordination around the two metal centres is shown in Fig. 1. The Co atom lies on a crystallographic inversion centre and has an octahedral coordination, involving four O atoms from two bidentate malonate ligands in a planar arrangement, and two water O atoms in axial positions. The bond lengths in the coordination sphere of the CoII atoms are quite similar. The Co—O equatorial bonds, ranging from 2.0711 (12) to 2.0900 (11) Å, have a mean value of 2.081 (9) Å, while the axial Co—O distances are 2.1004 (14) Å (Table 1). The O—Co—O bond angles range from 87.30 (5) to 92.70 (5)° and vary little from ideal octahedral geometry. These bond lengths and angles agree well with those previously reported for other cobalt(II) complexes containing carboxylate ligands (Gil de Muro et al., 1998, 1999; Livage et al.,1998,1999; Suresh et al., 1997; Zheng et al., 2000). The six-membered chelate rings Co/O2 /C1/C2 /C3/O3 and Co/O2ii/C1ii/C2ii/C3ii/O3ii [symmetry code: (ii) −x, −y, −z] have boat conformations, with atoms Co and C2 lying 0.44 and 0.48 Å out of the C1/O2/C3/O3 mean plane. The Ca atom, lying on a twofold axis, is coordinated by two water molecules (O6 and O6i), two bridging carboxyl O atoms (O1 and O1i) [symmetry code: (i) −x, y, −z + 1/2] and the O atoms of two chelated carboxyl groups (O3/C3/O4 and O3i/C3i/O4i). The geometry around the CaII atom may be described as a distorted square antiprism. The four-membered chelate rings linked to the Ca atom, are bonded to the six-membered rings surrounding the Co atom via the C3—O3 bond. The Ca—O bond lengths display different value in the chelating and bridging malonate groups. While the bridging carboxylate Ca—O1 bond lengths [2.3775 (12) Å] are similar to the Ca—Owater distances [Ca—O6 = 2.3970 (14) Å], the Ca—O bonds of the chelating malonate ligands are quite different [2.4410 (13) to 2.6329 (12) Å]. The longest Ca—O distance is observed for the Ca—O3 bond, atom O3 being three-coordinated to one Ca atom, one Co atom and one C atom. The increase of these bond lengths is related to the requirements of the conformation of the fused-ring system. Each Ca atom is connected to two Ca atoms through bis-carboxylate bridges, defining infinite chains of CaO8 polyhedra, running parallel to the [010] axis and forming 12-membered binuclear rings [Ca/O1/C1–C3/O4]2. The Ca···Ca separation within these rings is 7.531 (12) Å. The same carboxylate bridges bind each Ca atom to four Co atoms, leading to the formation of 12-membered tetranuclear rings [Ca/Co/O1/C1/O2/O3]2. The Ca···Ca and Co···Co separations within these rings are, respectively, 7.054 and 7.531 Å, while the Ca···Co distances are shorter, at 5.794 and 4.434 Å. The two carboxylate groups have the same dimensions, with a mean value of 1.257 (2) Å, and are inclined at 40.4 (1)° to each other. The crystal structure may be described as a three-dimensionnel network. The two different 12-membered rings create wide channels. The two crystallography independent water molecules are hydrogen bonded to the carboxyl O atoms, and the supramolecular assembly of this heterobinuclear complex is realised by this hydrogen bonding (Table 2 and Fig. 1).