Download citation
Download citation
link to html
A proton-transfer compound, 1-phenyl­biguanidium 5-nitro-2,6-dioxo-1,2,3,6-tetra­hydro­pyrimidin-4-olate monohydrate, C8H12N5+·C4H2N3O5-·H2O, has been synthesized by a reaction between dilituric acid (5-nitro-2,4,6-trihydroxy­pyrimi­dine, Dilit) and phenyl­biguanide (N-phenyl­imido­carbonimidic diamide, Big). This compound cocrystallized as a 1:1 adduct, and the asymmetric unit consists of two dilituric amino-oxo planar tautomeric anions (Dilit-), two monoprotonated phenyl­biguanidium cations (BigH+) and two water mol­ecules of crystallization (Z' = 2). Protonation occurs at the N atom attached to the phenyl ring of Big as a result of the proton-transfer process from the acidic hydr­oxy group of Dilit. In the crystal structure, the hydrated 1:1 adduct is stabilized by 25 two- and three-center hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107005483/hj3031sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107005483/hj3031Isup2.hkl
Contains datablock I

CCDC reference: 641812

Comment top

Since Jean-Marie Lehn's famous description of supramolecular chemistry, the chemistry of molecular assemblies and the intermolecular bond, noncovalent binding interactions (i.e. hydrogen bonding, ionic interactions and ππ stacking) have attracted increasing attention in crystal engineering. In particular, it has been shown that hydrogen bonding plays a crucial role in the de novo design of self-assembled or self-associated compounds that may go by the more general title of 'supramolecule' (Desiraju, 1996). This is especially true for biological structures, and we previously demonstrated that crystalline adducts of DNA/RNA pyrimidine bases can mimic, if coupled with amino-derivatives of aromatic N-heterocycles via multiple hydrogen bonds, the base-pairing of nucleic acids. (Brunetti et al., 2000, 2002; Portalone et al., 1999, 2002; Portalone & Colapietro, 2004a, 2007).

There is a very closed relationship between hydrogen bonding and proton transfer: whenever the hydrogen-bonding associations result in complete proton transfer, an ionic compound is produced, and the non-covalent interactions between hydrogen-bonding groups are reinforced (Swift et al., 1998). As the relevance of proton transfer in DNA/RNA systems was demonstrated many years ago (Steenken, 1989), we thought it would be interesting to analyze uracil acidic derivatives coupled with aromatic N-heterocycles to obtain proton-transfer supramolecular structures. In this paper, the title compound, BigH+.Dilit-, (I), has been synthesized by a reaction between dilituric acid (5-nitro-2,4,6-trihydroxypyrimidine, Dilit), a quite strong acid (pKa = 0.77 in dimethyl sulfoxide) structurally related to 5-nitrouracil (5-nitro-2,4-dihydroxypyrimidine), and phenylbiguanide (N-phenylimidocarbonimidic diamide, Big). Big, which has been chosen as the biguanide residue, mimics the aromatic N-heterocyclic fragment of 2-aminoadenine, as a Lewis base is readily protonated at the N atom attached to the benzene ring (Portalone & Colapietro, 2004b).

The asymmetric unit of the title compound, (I), comprises two subunits, each of them consisting of a planar aminooxo tautomeric anion (Dilit-), a monoprotonated phenylbiguanidium cation (BigH+) and a water molecule (Fig. 1). Protonation occurs as a result of the proton-transfer process from the hydroxyl group of Dilit to the N atom attached to the phenyl ring of Big. The corresponding bond lengths and angles of the two independent 1:1 adducts are equal within the experimental error (Table 1). In planar Dilit- anions the release of a proton from O3 and O31 causes a redistribution of π-electron density so that the geometry of the anions approaches mirror symmetry through a mirror plane along the line joining C2 and C5, and C21 and C51. In BigH+ cations, the two biguanidinium groups are not planar. In each cation, the two halves of the biguanide residue are slightly pyrimidal and make dihedral angles of 49.2 (1) and 53.2 (1)°. Nevertheless, the equivalence of the C—N bond lengths (Table 1) suggests some degree of delocalization of π-electron density through these fragments. Concerning the conformation of the two biguanidinium moieties, the groups are slightly rotated with respect to the phenyl rings by the angles τ1 [21.1 (4)°] and τ2 [9.7 (4)°; the angle τ is defined as τ = |ω1 + ω2 ± π|/2, the torsion angles ω1 and ω2 being, respectively, C8—C7—N5—C13 and C12—C7—N5—C13 for τ1, and C81—C71—N51—C131 and C121—C71—N51—C131 for τ2], at variance with that observed for the corresponding angle, 52.4 (5)° for phenylbiguanide hydrochloride (Portalone & Colapietro, 2004b) and 29.2 (2)° for 1-(p-chlorophenyl)biguanide hydrochloride (Brown & Sengier, 1984). This change in conformation is presumably a consequence of the different hydrogen-bonding configuration caused by the nature of the counter-ions, i.e. Dilit- versus Cl-.

In the crystal structure, the hydrogen-bonding scheme is rather complex, and involves all available hydrogen donor/acceptor sites but O41, which remains partially unsaturated, and O7water, which participates unexpectedly as hydrogen donor in only one intermolecular interaction. In total, the supramolecular structure of (I) is characterized by 25 two- and three-center hydrogen bonds, namely 22 N—H···O and three Owater—H···O bonds (Table 2). In one of the four three-center N—H···O interactions, where atom N81 acts as hydrogen-bond donor via H81A, there is some uncertainty as to whether this is a hydrogen bond or not. However, as is very frequently found for bifurcated hydrogen bonds, the sum of the inter-bond angles at the H atom is close to 360° and the H···O distance can be greater than the van der Waals separation (Jeffrey & Saenger, 1991; Desiraju & Steiner, 1999; Steiner, 2002).

Compound (I) crystallizes with Z' = 2. In the crystal structure, each independent molecular adduct is linked by multiple hydrogen bonds to form a three-dimensional framework. For descriptive purposes, it is convenient to select a 'superadduct' (Gregson et al., 2000) consisting of one asymmetric unit and then analyse firstly the hydrogen bonding within this aggregate and secondly the hydrogen-bonding patterns between neighbouring individual superadducts.

As previously mentioned, in the superadduct, one Big molecule forms a cation as a result of the incorporation of an H atom from one Dilit molecule (Fig. 1). Thus, the Dilit- anion acts as an acceptor of bifurcated hydrogen bonds of descriptor R12(6) and R21(6) (Etter, 1990; Bernstein et al., 1995; Motherwell et al., 1999) through the hydroxy O atom and one O atom of the nitro group. The BigH+ cation then links a solvent molecule through a bifurcated R12(6) hydrogen bond. The two subunits are interconnected via N—H···O triple intermolecular hydrogen bonds, forming two adjoining hydrogen-bonded rings with graph-set motifs R22(8) and R23(8).

In addition to the 13 hydrogen bonds within the asymmetric unit, there are a further five distinct interactions which link, by translation along the b axis, neighbouring superadducts into sheets parallel to the ab plane (Fig. 2). N—H···O triple intermolecular hydrogen bonds, forming two adjoining hydrogen-bonded rings of R22(8) and R23(8) motif, connects two Dilit- anions. The formation of this two-dimensional array is then reinforced by two water molecules, which act as bridges between Dilit- anions and BigH+ cations to form two R44(18) hydrogen-bond rings. Overall, adjacent superadducts form a two-dimensional substructure built from a combination of 18 N—H···O and Owater—H···O interactions, and hydrogen bonds delineate patterns in which rings are the most prominent features.

The (010)-nets thus formed are themselves linked into a three-dimensional network by means of a further series of seven hydrogen bonds, all but one (O6water—H614···O1vi) of N—H···O type, generated by translation from the superadduct at (x, y, z) to the adjacent sheets in the [001] direction (Fig. 3).

Related literature top

For related literature, see: Bernstein et al. (1995); Brown & Sengier (1984); Brunetti et al. (2000, 2002); Desiraju (1996); Desiraju & Steiner (1999); Etter (1990); Gregson et al. (2000); Jeffrey & Saenger (1991); Motherwell et al. (1999); Portalone & Colapietro (2004a, 2004b, 2007); Portalone et al. (1999, 2002); Steenken (1989); Steiner (2002); Swift et al. (1998).

Experimental top

BigH+.Dilit- was obtained as a white powder from an equimolar mixture of dilituric acid and phenylbiguanide (Sigma Aldrich, 99% purity, 1 mmol each compound) in an ethanol solution (20 ml). The 1:1 molecular adduct was recrystallized from water by slow evaporation of the solvent.

Refinement top

All H atoms were found in a difference map. Positional parameters of all H atoms but those from the benzene rings and N81 were refined. The latter H atoms were positioned with idealized geometry and refined isotropically using a riding model (C—H = 0.98 Å, N—H = 0.91 Å). The Uiso values of the H atoms were kept equal to 1.2Ueq(C,N) and 1.5Ueq(O) [please check treatment for water H atoms].

Computing details top

Data collection: XCS (Colapietro et al., 1992); cell refinement: XCS; data reduction: XCS; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view, down c, of the independent components of (I), showing the atom-labelling scheme and hydrogen bonding (dashed lines) within the selected asymmetric unit. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A part of the crystal structure of (I), viewed down c, showing the formation of a (010) two-dimensional network of hydrogen-bonded BigH+.Dilit- and water molecules. Displacements ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonding is indicated by dashed lines.
[Figure 3] Fig. 3. The packing of (I), viewed down c. All atoms are shown as small spheres of arbitrary radii. Hydrogen bonding is indicated by dashed lines.
1-phenylbiguanidium 5-nitro-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate monohydrate top
Crystal data top
C8H12N5+·C4H2N3O5·H2OZ = 4
Mr = 368.33F(000) = 768
Triclinic, P1Dx = 1.563 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.710689 Å
a = 11.387 (2) ÅCell parameters from 95 reflections
b = 12.135 (3) Åθ = 10–20°
c = 13.804 (3) ŵ = 0.13 mm1
α = 97.48 (3)°T = 298 K
β = 106.37 (3)°Tablet, colourless
γ = 116.39 (4)°0.20 × 0.20 × 0.10 mm
V = 1565.3 (10) Å3
Data collection top
Huber CS four-circle
diffractometer
Rint = 0.032
Radiation source: X-ray tubeθmax = 26.0°, θmin = 2.1°
Graphite monochromatorh = 013
ω scansk = 1414
6392 measured reflectionsl = 1717
6002 independent reflections3 standard reflections every 97 reflections
5586 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.136P)2 + 0.5189P]
where P = (Fo2 + 2Fc2)/3
6002 reflections(Δ/σ)max < 0.001
529 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C8H12N5+·C4H2N3O5·H2Oγ = 116.39 (4)°
Mr = 368.33V = 1565.3 (10) Å3
Triclinic, P1Z = 4
a = 11.387 (2) ÅMo Kα radiation
b = 12.135 (3) ŵ = 0.13 mm1
c = 13.804 (3) ÅT = 298 K
α = 97.48 (3)°0.20 × 0.20 × 0.10 mm
β = 106.37 (3)°
Data collection top
Huber CS four-circle
diffractometer
Rint = 0.032
6392 measured reflections3 standard reflections every 97 reflections
6002 independent reflections intensity decay: 3%
5586 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.191H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.31 e Å3
6002 reflectionsΔρmin = 0.31 e Å3
529 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.18953 (17)0.69889 (16)0.42246 (16)0.0555 (5)
O20.79039 (17)0.30877 (14)0.29188 (14)0.0473 (4)
O30.78012 (16)0.69715 (14)0.27764 (13)0.0435 (4)
O40.55338 (17)0.29896 (14)0.19354 (14)0.0488 (4)
O50.55813 (19)0.46928 (18)0.15946 (18)0.0649 (6)
N10.98064 (18)0.69260 (17)0.35069 (14)0.0386 (4)
N30.98463 (19)0.50534 (17)0.36151 (15)0.0409 (4)
N40.61940 (18)0.41711 (16)0.20522 (14)0.0381 (4)
C21.0587 (2)0.63662 (19)0.38038 (17)0.0399 (5)
C40.8397 (2)0.42679 (18)0.30602 (16)0.0363 (4)
C50.7637 (2)0.49055 (18)0.26890 (15)0.0345 (4)
C60.8341 (2)0.63028 (19)0.29612 (15)0.0341 (4)
H11.027 (3)0.781 (3)0.368 (2)0.046*
H31.025 (3)0.466 (3)0.388 (2)0.049*
O110.72780 (19)0.98749 (17)0.25228 (18)0.0714 (6)
O211.11466 (16)0.96282 (14)0.42248 (13)0.0449 (4)
O311.11980 (16)1.36359 (13)0.45811 (12)0.0425 (4)
O411.32533 (17)1.17208 (16)0.57376 (14)0.0514 (4)
O511.35341 (17)1.35278 (14)0.54834 (15)0.0531 (4)
N110.92758 (19)1.17249 (17)0.36030 (15)0.0420 (4)
N310.92461 (19)0.97923 (17)0.34010 (15)0.0421 (4)
N411.27818 (18)1.23434 (16)0.52942 (14)0.0377 (4)
C210.8525 (2)1.0425 (2)0.31422 (19)0.0454 (5)
C411.0646 (2)1.03439 (18)0.40932 (16)0.0351 (4)
C511.1368 (2)1.17169 (18)0.45673 (15)0.0343 (4)
C611.0692 (2)1.24560 (18)0.42800 (15)0.0345 (4)
H110.885 (3)1.212 (3)0.339 (2)0.050*
H310.885 (3)0.890 (3)0.317 (2)0.051*
N50.3395 (2)0.50835 (18)0.04211 (16)0.0438 (4)
N60.5300 (2)0.7077 (2)0.13517 (18)0.0516 (5)
N70.3327 (2)0.68254 (17)0.00397 (15)0.0442 (4)
N80.3986 (2)0.8748 (2)0.11813 (18)0.0542 (5)
N90.3436 (2)0.8557 (2)0.05896 (18)0.0516 (5)
C70.2025 (2)0.4081 (2)0.02590 (17)0.0406 (5)
C80.1865 (3)0.2855 (2)0.0504 (2)0.0558 (6)
H80.26860.27410.02470.067*
C90.0530 (4)0.1799 (3)0.1115 (3)0.0694 (9)
H90.04150.09380.12870.083*
C100.0627 (3)0.1942 (3)0.1480 (2)0.0683 (9)
H100.15640.11900.19100.082*
C110.0467 (3)0.3146 (3)0.1240 (2)0.0622 (7)
H11A0.12990.32440.14980.075*
C120.0855 (2)0.4231 (2)0.0638 (2)0.0498 (6)
H120.09590.50880.04840.060*
C130.4002 (2)0.6374 (2)0.05911 (17)0.0403 (5)
C140.3610 (2)0.8042 (2)0.02028 (17)0.0418 (5)
H50.391 (3)0.483 (3)0.076 (2)0.053*
H610.574 (3)0.803 (3)0.149 (2)0.062*
H620.568 (4)0.671 (3)0.170 (3)0.062*
H8110.400 (3)0.836 (3)0.172 (3)0.065*
H8120.400 (4)0.944 (3)0.121 (3)0.065*
H9110.310 (3)0.810 (3)0.125 (3)0.062*
H9120.336 (3)0.927 (3)0.054 (2)0.062*
O70.3181 (3)1.0752 (3)0.0459 (3)0.1111 (13)
H7110.384 (7)1.145 (6)0.074 (5)0.142*
H7120.266 (7)1.094 (6)0.047 (5)0.142*
N511.5692 (2)1.61335 (18)0.65324 (15)0.0421 (4)
N611.3751 (2)1.61569 (19)0.54975 (16)0.0455 (5)
N711.59544 (19)1.80863 (17)0.63508 (16)0.0423 (4)
N811.4436 (2)1.88339 (19)0.65789 (18)0.0507 (5)
H81A1.42061.94620.65700.061*
H81B1.39501.81470.67890.061*
N911.6186 (2)1.99329 (19)0.59798 (18)0.0483 (5)
C711.7076 (2)1.6528 (2)0.72202 (17)0.0394 (5)
C811.8137 (3)1.7786 (2)0.7774 (2)0.0586 (7)
H811.79681.85030.77170.070*
C911.9461 (3)1.8005 (3)0.8418 (3)0.0751 (9)
H912.02261.88930.88060.090*
C1011.9725 (3)1.7032 (4)0.8523 (3)0.0697 (9)
H1012.06641.72170.89800.084*
C1111.8662 (4)1.5789 (4)0.7982 (3)0.0683 (8)
H1111.88331.50750.80580.082*
C1211.7363 (3)1.5544 (3)0.7337 (2)0.0570 (6)
H1211.66151.46500.69470.068*
C1311.5123 (2)1.68276 (19)0.61418 (16)0.0369 (4)
C1411.5486 (2)1.89194 (19)0.62851 (16)0.0389 (5)
H511.519 (3)1.538 (3)0.634 (2)0.050*
H6111.336 (3)1.659 (3)0.521 (2)0.054*
H6121.330 (3)1.531 (3)0.541 (2)0.054*
H9131.605 (3)2.056 (3)0.606 (2)0.058*
H9141.692 (3)1.997 (3)0.585 (2)0.058*
O61.5985 (2)2.2172 (2)0.68223 (17)0.0602 (5)
H6131.522 (5)2.227 (4)0.654 (3)0.095*
H6141.658 (5)2.267 (4)0.652 (3)0.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0313 (8)0.0326 (8)0.0744 (12)0.0076 (6)0.0023 (7)0.0037 (7)
O20.0364 (8)0.0236 (7)0.0646 (10)0.0106 (6)0.0078 (7)0.0038 (6)
O30.0373 (8)0.0278 (7)0.0507 (9)0.0130 (6)0.0080 (6)0.0003 (6)
O40.0355 (8)0.0267 (7)0.0593 (10)0.0050 (6)0.0080 (7)0.0007 (6)
O50.0377 (9)0.0407 (10)0.0859 (14)0.0141 (7)0.0040 (9)0.0107 (9)
N10.0313 (8)0.0223 (8)0.0451 (9)0.0065 (6)0.0077 (7)0.0006 (6)
N30.0325 (9)0.0239 (8)0.0519 (10)0.0114 (7)0.0054 (7)0.0024 (7)
N40.0303 (8)0.0263 (8)0.0414 (9)0.0081 (6)0.0066 (7)0.0005 (6)
C20.0306 (10)0.0274 (10)0.0443 (11)0.0075 (8)0.0071 (8)0.0014 (8)
C40.0302 (9)0.0257 (9)0.0391 (10)0.0086 (7)0.0078 (7)0.0008 (7)
C50.0279 (9)0.0243 (9)0.0374 (9)0.0081 (7)0.0064 (7)0.0003 (7)
C60.0315 (9)0.0258 (9)0.0335 (9)0.0100 (7)0.0081 (7)0.0005 (7)
O110.0383 (9)0.0316 (9)0.0928 (15)0.0084 (7)0.0177 (9)0.0064 (9)
O210.0327 (7)0.0232 (7)0.0600 (9)0.0084 (6)0.0080 (6)0.0009 (6)
O310.0374 (8)0.0210 (7)0.0496 (8)0.0085 (6)0.0067 (6)0.0027 (6)
O410.0383 (8)0.0388 (9)0.0552 (10)0.0145 (7)0.0016 (7)0.0032 (7)
O510.0346 (8)0.0229 (7)0.0673 (11)0.0008 (6)0.0037 (7)0.0038 (7)
N110.0305 (9)0.0229 (8)0.0503 (10)0.0078 (6)0.0008 (7)0.0014 (7)
N310.0312 (8)0.0204 (8)0.0502 (10)0.0057 (6)0.0014 (7)0.0045 (7)
N410.0298 (8)0.0255 (8)0.0401 (9)0.0069 (6)0.0074 (7)0.0029 (6)
C210.0329 (10)0.0252 (10)0.0517 (12)0.0071 (8)0.0010 (9)0.0016 (8)
C410.0284 (9)0.0210 (8)0.0403 (10)0.0053 (7)0.0093 (7)0.0015 (7)
C510.0267 (9)0.0226 (8)0.0359 (9)0.0057 (7)0.0046 (7)0.0026 (7)
C610.0295 (9)0.0242 (9)0.0358 (9)0.0074 (7)0.0079 (7)0.0002 (7)
N50.0318 (9)0.0312 (9)0.0495 (11)0.0101 (7)0.0032 (7)0.0041 (7)
N60.0341 (10)0.0355 (11)0.0585 (12)0.0111 (8)0.0004 (8)0.0011 (8)
N70.0404 (9)0.0272 (9)0.0430 (9)0.0105 (7)0.0027 (7)0.0014 (7)
N80.0549 (13)0.0359 (11)0.0521 (12)0.0192 (9)0.0084 (9)0.0051 (9)
N90.0505 (12)0.0296 (10)0.0529 (12)0.0134 (9)0.0060 (9)0.0030 (8)
C70.0371 (10)0.0300 (10)0.0377 (10)0.0078 (8)0.0106 (8)0.0012 (7)
C80.0553 (15)0.0328 (11)0.0687 (16)0.0162 (10)0.0251 (12)0.0031 (10)
C90.0712 (19)0.0298 (12)0.0751 (19)0.0058 (12)0.0287 (16)0.0075 (11)
C100.0548 (16)0.0451 (15)0.0510 (14)0.0049 (12)0.0067 (12)0.0038 (11)
C110.0381 (12)0.0524 (15)0.0572 (15)0.0042 (11)0.0007 (11)0.0091 (12)
C120.0364 (11)0.0354 (11)0.0540 (13)0.0094 (9)0.0040 (9)0.0048 (9)
C130.0340 (10)0.0321 (10)0.0389 (10)0.0106 (8)0.0081 (8)0.0014 (8)
C140.0268 (9)0.0277 (10)0.0470 (11)0.0057 (7)0.0017 (8)0.0026 (8)
O70.0658 (16)0.0449 (13)0.158 (3)0.0227 (11)0.0113 (17)0.0243 (15)
N510.0352 (9)0.0220 (8)0.0482 (10)0.0074 (7)0.0047 (7)0.0011 (7)
N610.0349 (9)0.0272 (9)0.0486 (10)0.0074 (7)0.0012 (8)0.0020 (7)
N710.0321 (9)0.0254 (8)0.0543 (11)0.0081 (7)0.0107 (7)0.0036 (7)
N810.0405 (10)0.0314 (9)0.0700 (13)0.0140 (8)0.0202 (9)0.0019 (8)
N910.0426 (11)0.0297 (9)0.0660 (13)0.0157 (8)0.0185 (9)0.0096 (8)
C710.0356 (10)0.0324 (10)0.0380 (10)0.0117 (8)0.0104 (8)0.0026 (8)
C810.0442 (13)0.0346 (12)0.0646 (16)0.0096 (10)0.0004 (11)0.0044 (10)
C910.0420 (14)0.0663 (19)0.0680 (18)0.0025 (13)0.0012 (12)0.0167 (15)
C1010.0459 (15)0.099 (3)0.0690 (18)0.0370 (16)0.0210 (13)0.0393 (18)
C1110.0679 (19)0.086 (2)0.0646 (17)0.0529 (18)0.0202 (15)0.0210 (16)
C1210.0630 (16)0.0478 (14)0.0541 (14)0.0325 (13)0.0110 (12)0.0052 (11)
C1310.0324 (9)0.0270 (9)0.0370 (9)0.0084 (7)0.0093 (7)0.0006 (7)
C1410.0296 (9)0.0246 (9)0.0411 (10)0.0069 (7)0.0023 (8)0.0036 (7)
O60.0510 (11)0.0492 (11)0.0694 (12)0.0256 (9)0.0122 (9)0.0075 (9)
Geometric parameters (Å, º) top
O1—C21.235 (3)N9—H9120.91 (3)
O2—C41.247 (3)C7—C121.388 (4)
O3—C61.229 (3)C7—C81.398 (3)
O4—N41.249 (2)C8—C91.388 (4)
O5—N41.239 (3)C8—H80.9800
N1—C21.350 (3)C9—C101.369 (5)
N1—C61.395 (3)C9—H90.9800
N1—H10.92 (3)C10—C111.371 (5)
N3—C21.375 (3)C10—H100.9800
N3—C41.385 (3)C11—C121.393 (3)
N3—H30.84 (3)C11—H11A0.9800
N4—C51.395 (3)C12—H120.9800
C4—C51.435 (3)O7—H7110.79 (7)
C5—C61.454 (3)O7—H7120.72 (6)
O11—C211.232 (3)N51—C1311.351 (3)
O21—C411.239 (3)N51—C711.408 (3)
O31—C611.238 (2)N51—H510.79 (3)
O41—N411.237 (3)N61—C1311.339 (3)
O51—N411.245 (2)N61—H6110.89 (3)
N11—C211.362 (3)N61—H6120.90 (3)
N11—C611.387 (3)N71—C1311.326 (3)
N11—H110.85 (3)N71—C1411.339 (3)
N31—C211.363 (3)N81—C1411.333 (3)
N31—C411.389 (3)N81—H81A0.9100
N31—H310.93 (3)N81—H81B0.9100
N41—C511.407 (3)N91—C1411.334 (3)
C41—C511.441 (3)N91—H9130.84 (3)
C51—C611.445 (3)N91—H9140.89 (3)
N5—C131.355 (3)C71—C811.382 (3)
N5—C71.409 (3)C71—C1211.389 (4)
N5—H50.83 (3)C81—C911.401 (4)
N6—C131.336 (3)C81—H810.9800
N6—H611.00 (3)C91—C1011.356 (5)
N6—H620.86 (3)C91—H910.9800
N7—C131.331 (3)C101—C1111.368 (5)
N7—C141.335 (3)C101—H1010.9800
N8—C141.338 (3)C111—C1211.366 (4)
N8—H8110.94 (3)C111—H1110.9800
N8—H8120.83 (3)C121—H1210.9800
N9—C141.339 (3)O6—H6130.92 (5)
N9—H9110.87 (3)O6—H6140.92 (4)
C2—N1—C6126.80 (18)C9—C8—H8120.3
C2—N1—H1118.1 (17)C7—C8—H8120.3
C6—N1—H1115.1 (17)C10—C9—C8121.0 (3)
C2—N3—C4124.9 (2)C10—C9—H9119.5
C2—N3—H3121 (2)C8—C9—H9119.5
C4—N3—H3114 (2)C9—C10—C11119.5 (2)
O5—N4—O4120.45 (18)C9—C10—H10120.2
O5—N4—C5119.73 (18)C11—C10—H10120.2
O4—N4—C5119.81 (19)C10—C11—C12121.3 (3)
O1—C2—N1122.4 (2)C10—C11—H11A119.4
O1—C2—N3121.2 (2)C12—C11—H11A119.4
N1—C2—N3116.38 (19)C7—C12—C11119.1 (3)
O2—C4—N3116.6 (2)C7—C12—H12120.5
O2—C4—C5127.31 (19)C11—C12—H12120.5
N3—C4—C5116.05 (18)N7—C13—N6125.8 (2)
N4—C5—C4119.39 (17)N7—C13—N5118.86 (19)
N4—C5—C6119.31 (19)N6—C13—N5115.2 (2)
C4—C5—C6121.30 (18)N7—C14—N8123.7 (2)
O3—C6—N1117.96 (18)N7—C14—N9117.8 (2)
O3—C6—C5127.99 (19)N8—C14—N9118.3 (2)
N1—C6—C5114.05 (19)H711—O7—H71295 (6)
C21—N11—C61126.5 (2)C131—N51—C71130.64 (19)
C21—N11—H11115 (2)C131—N51—H51116 (2)
C61—N11—H11118 (2)C71—N51—H51113 (2)
C21—N31—C41126.22 (18)C131—N61—H611118 (2)
C21—N31—H31124.7 (18)C131—N61—H612116.1 (19)
C41—N31—H31109.0 (17)H611—N61—H612126 (3)
O41—N41—O51121.20 (18)C131—N71—C141124.20 (19)
O41—N41—C51120.07 (17)C141—N81—H81A120.0
O51—N41—C51118.72 (19)C141—N81—H81B120.0
O11—C21—N11121.3 (2)H81A—N81—H81B120.0
O11—C21—N31122.9 (2)C141—N91—H913120 (2)
N11—C21—N31115.81 (19)C141—N91—H914115 (2)
O21—C41—N31117.85 (17)H913—N91—H914124 (3)
O21—C41—C51127.12 (18)C81—C71—C121118.8 (2)
N31—C41—C51115.02 (19)C81—C71—N51125.7 (2)
N41—C51—C41118.42 (19)C121—C71—N51115.5 (2)
N41—C51—C61120.01 (17)C71—C81—C91118.1 (3)
C41—C51—C61121.52 (17)C71—C81—H81121.0
O31—C61—N11116.7 (2)C91—C81—H81121.0
O31—C61—C51128.64 (18)C101—C91—C81122.4 (3)
N11—C61—C51114.64 (17)C101—C91—H91118.8
C13—N5—C7130.1 (2)C81—C91—H91118.8
C13—N5—H5116 (2)C91—C101—C111119.1 (3)
C7—N5—H5114 (2)C91—C101—H101120.5
C13—N6—H61115.4 (18)C111—C101—H101120.5
C13—N6—H62120 (2)C121—C111—C101120.0 (3)
H61—N6—H62124 (3)C121—C111—H111120.0
C13—N7—C14123.86 (18)C101—C111—H111120.0
C14—N8—H811119 (2)C111—C121—C71121.7 (3)
C14—N8—H812114 (2)C111—C121—H121119.2
H811—N8—H812126 (3)C71—C121—H121119.2
C14—N9—H911121 (2)N71—C131—N61124.4 (2)
C14—N9—H912123.9 (19)N71—C131—N51119.2 (2)
H911—N9—H912112 (3)N61—C131—N51116.15 (19)
C12—C7—C8119.8 (2)N81—C141—N91119.1 (2)
C12—C7—N5124.6 (2)N81—C141—N71123.5 (2)
C8—C7—N5115.5 (2)N91—C141—N71117.2 (2)
C9—C8—C7119.4 (3)H613—O6—H614100 (4)
C6—N1—C2—O1175.1 (2)N41—C51—C61—O311.1 (3)
C6—N1—C2—N35.1 (3)C41—C51—C61—O31176.3 (2)
C4—N3—C2—O1173.6 (2)N41—C51—C61—N11176.61 (18)
C4—N3—C2—N16.5 (3)C41—C51—C61—N116.0 (3)
C2—N3—C4—O2176.8 (2)C13—N5—C7—C1222.8 (4)
C2—N3—C4—C51.7 (3)C13—N5—C7—C8160.6 (2)
O5—N4—C5—C4168.8 (2)C12—C7—C8—C90.8 (4)
O4—N4—C5—C410.2 (3)N5—C7—C8—C9176.0 (2)
O5—N4—C5—C611.1 (3)C7—C8—C9—C100.1 (5)
O4—N4—C5—C6169.92 (19)C8—C9—C10—C110.0 (5)
O2—C4—C5—N43.4 (3)C9—C10—C11—C120.5 (5)
N3—C4—C5—N4174.91 (18)C8—C7—C12—C111.3 (4)
O2—C4—C5—C6176.8 (2)N5—C7—C12—C11175.1 (2)
N3—C4—C5—C64.9 (3)C10—C11—C12—C71.2 (4)
C2—N1—C6—O3178.4 (2)C14—N7—C13—N623.4 (4)
C2—N1—C6—C51.0 (3)C14—N7—C13—N5161.7 (2)
N4—C5—C6—O37.0 (3)C7—N5—C13—N79.2 (4)
C4—C5—C6—O3173.2 (2)C7—N5—C13—N6175.4 (2)
N4—C5—C6—N1173.68 (17)C13—N7—C14—N835.7 (4)
C4—C5—C6—N16.2 (3)C13—N7—C14—N9148.0 (2)
C61—N11—C21—O11177.6 (2)C131—N51—C71—C819.6 (4)
C61—N11—C21—N311.7 (4)C131—N51—C71—C121170.5 (2)
C41—N31—C21—O11179.7 (3)C121—C71—C81—C910.8 (4)
C41—N31—C21—N111.1 (4)N51—C71—C81—C91179.4 (3)
C21—N31—C41—O21178.7 (2)C71—C81—C91—C1010.8 (5)
C21—N31—C41—C510.1 (3)C81—C91—C101—C1110.0 (5)
O41—N41—C51—C4120.2 (3)C91—C101—C111—C1210.8 (5)
O51—N41—C51—C41160.34 (19)C101—C111—C121—C710.8 (5)
O41—N41—C51—C61162.32 (19)C81—C71—C121—C1110.0 (4)
O51—N41—C51—C6117.1 (3)N51—C71—C121—C111179.8 (3)
O21—C41—C51—N412.6 (3)C141—N71—C131—N6125.4 (4)
N31—C41—C51—N41178.77 (18)C141—N71—C131—N51159.6 (2)
O21—C41—C51—C61174.9 (2)C71—N51—C131—N714.8 (4)
N31—C41—C51—C613.8 (3)C71—N51—C131—N61179.8 (2)
C21—N11—C61—O31177.0 (2)C131—N71—C141—N8138.6 (3)
C21—N11—C61—C515.0 (3)C131—N71—C141—N91146.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O210.92 (3)1.90 (3)2.814 (3)171 (2)
N3—H3···O31i0.84 (3)2.14 (3)2.983 (3)177 (3)
N11—H11···O2ii0.85 (3)1.97 (3)2.818 (3)178 (3)
N31—H31···O30.93 (3)2.01 (3)2.932 (3)171 (2)
N5—H5···O50.83 (3)2.02 (3)2.832 (3)164 (3)
N6—H61···O111.00 (3)2.09 (3)2.989 (3)148 (3)
N6—H62···O30.86 (3)2.30 (3)3.038 (3)144 (3)
N6—H62···O50.86 (3)2.38 (3)3.099 (3)142 (3)
N8—H811···O6iii0.94 (3)2.18 (3)3.103 (4)167 (3)
N8—H812···O70.83 (3)2.38 (3)3.137 (4)152 (3)
N9—H911···O2iv0.87 (3)2.21 (3)3.083 (3)175 (3)
N9—H912···O70.91 (3)2.23 (3)3.033 (4)147 (3)
N51—H51···O510.79 (3)2.07 (3)2.834 (3)163 (3)
N61—H611···O1ii0.89 (3)2.12 (3)2.973 (3)161 (3)
N61—H612···O310.90 (3)2.17 (3)2.903 (3)139 (3)
N61—H612···O510.90 (3)2.30 (3)3.086 (3)146 (3)
N81—H81A···O60.912.903.549 (3)129
N81—H81A···O11iii0.912.693.374 (3)133
N81—H81B···O2v0.912.172.993 (3)151
N81—H81B···O4v0.912.473.211 (3)138
N91—H913···O60.84 (3)2.14 (3)2.945 (3)160 (3)
N91—H914···O21vi0.89 (3)2.07 (3)2.945 (3)169 (3)
O6—H613···O41ii0.92 (5)1.94 (5)2.804 (3)156 (4)
O6—H614···O1vi0.92 (4)2.18 (4)3.019 (3)151 (4)
O7—H711···O4ii0.79 (7)2.03 (7)2.778 (4)158 (6)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+2, y+3, z+1; (iv) x+1, y+1, z; (v) x+2, y+2, z+1; (vi) x+3, y+3, z+1.

Experimental details

Crystal data
Chemical formulaC8H12N5+·C4H2N3O5·H2O
Mr368.33
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)11.387 (2), 12.135 (3), 13.804 (3)
α, β, γ (°)97.48 (3), 106.37 (3), 116.39 (4)
V3)1565.3 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerHuber CS four-circle
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6392, 6002, 5586
Rint0.032
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.191, 1.07
No. of reflections6002
No. of parameters529
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.31

Computer programs: XCS (Colapietro et al., 1992), XCS, SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O210.92 (3)1.90 (3)2.814 (3)171 (2)
N3—H3···O31i0.84 (3)2.14 (3)2.983 (3)177 (3)
N11—H11···O2ii0.85 (3)1.97 (3)2.818 (3)178 (3)
N31—H31···O30.93 (3)2.01 (3)2.932 (3)171 (2)
N5—H5···O50.83 (3)2.02 (3)2.832 (3)164 (3)
N6—H61···O111.00 (3)2.09 (3)2.989 (3)148 (3)
N6—H62···O30.86 (3)2.30 (3)3.038 (3)144 (3)
N6—H62···O50.86 (3)2.38 (3)3.099 (3)142 (3)
N8—H811···O6iii0.94 (3)2.18 (3)3.103 (4)167 (3)
N8—H812···O70.83 (3)2.38 (3)3.137 (4)152 (3)
N9—H911···O2iv0.87 (3)2.21 (3)3.083 (3)175 (3)
N9—H912···O70.91 (3)2.23 (3)3.033 (4)147 (3)
N51—H51···O510.79 (3)2.07 (3)2.834 (3)163 (3)
N61—H611···O1ii0.89 (3)2.12 (3)2.973 (3)161 (3)
N61—H612···O310.90 (3)2.17 (3)2.903 (3)139 (3)
N61—H612···O510.90 (3)2.30 (3)3.086 (3)146 (3)
N81—H81A···O60.912.903.549 (3)129.3
N81—H81A···O11iii0.912.693.374 (3)133.1
N81—H81B···O2v0.912.172.993 (3)150.8
N81—H81B···O4v0.912.473.211 (3)138.4
N91—H913···O60.84 (3)2.14 (3)2.945 (3)160 (3)
N91—H914···O21vi0.89 (3)2.07 (3)2.945 (3)169 (3)
O6—H613···O41ii0.92 (5)1.94 (5)2.804 (3)156 (4)
O6—H614···O1vi0.92 (4)2.18 (4)3.019 (3)151 (4)
O7—H711···O4ii0.79 (7)2.03 (7)2.778 (4)158 (6)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+2, y+3, z+1; (iv) x+1, y+1, z; (v) x+2, y+2, z+1; (vi) x+3, y+3, z+1.
Selected geometric parameters (Å, °) for (I) top
n = niln = 1n = niln = 1
O1n—C2n1.235 (3)1.232 (3)N5n-C7n1.409 (3)1.408 (3)
O2n—C4n1.247 (3)1.239 (3)N5n-C13n1.355 (3)1.351 (3)
O3n—C6n1.229 (3)1.238 (2)N6n-C13n1.336 (3)1.339 (3)
O4n—N4n1.249 (2)1.237 (3)N7n-C13n1.331 (3)1.326 (3)
O5n—N4n1.239 (3)1.245 (2)N7n-C14n1.335 (3)1.339 (3)
N1n—C2n1.350 (3)1.362 (3)N8n-C14n1.338 (3)1.333 (3)
N1n—C6n1.395 (3)1.387 (3)N9n-C14n1.339 (3)1.334 (3)
N3n—C2n1.375 (3)1.363 (3)C7n-C8n1.398 (3)1.382 (3)
N3n—C4n1.385 (3)1.389 (3)C7n-C12n1.388 (4)1.389 (4)
N4n—C5n1.395 (3)1.407 (3)C8n-C9n1.388 (4)1.401 (4)
C4n—C5n1.435 (3)1.441 (3)C9n-C10n1.369 (5)1.356 (5)
C5n—C6n1.454 (3)1.445 (3)C10n-C11n1.371 (5)1.368 (5)
C11n-C12n1.393 (3)1.366 (4)
C8n—C7n–N5n—C13n160.6 (2)-170.5 (2)
C12n—C7n—N5n—C13n-22.8 (4)9.6 (4)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds