


Supporting information
![]() | Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807032771/hk2278sup1.cif |
![]() | Structure factor file (CIF format) https://doi.org/10.1107/S1600536807032771/hk2278Isup2.hkl |
CCDC reference: 657554
For the preparation of (I), tin metal (0.119 mg, 1 mmol) dissolved in absolute ethanol (10 ml), HBr (60%, 5 ml) and liquid Br2 (60%, 2 ml), was added dropwise to a stirred hot solution of 2,3-dimethylquinoxalinium (0.158 mg, 1 mmol) dissolved in ethanol (10 ml) and HBr (60%, 2 ml). After refluxing for 1 h, the mixture was filtered off, and then allowed to stand undisturbed at room temperature. The salt crystallized over 1 d as yellow crystals. Crystals were filtered off, washed with diethylether and dried under vacuum (yield; 0.750 mg; 92.4%).
H atoms were positioned geometrically, with O—H = 0.84–0.90 Å (for H2O), N—H = 0.86 Å (for NH) and C—H = 0.95 and 0.98 Å, for aromatic and methylene H atoms, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O,N), where x = 1.2 for NH and aromatic H atoms, and x = 1.5 for all other H atoms.
Noncovalent interactions play an important role in organizing structural units in both natural and artificial systems (Desiraju, 1997). In connection with ongoing studies (Ali et al., 2007; Ali & Al-Far, 2007; Al-Far & Ali, 2007a,b) of the structural aspects of bromo metal anions salts, we herein report the crystal structure of the title compound, (I).
The asymmetric unit of the title compound, (I), contains one cation, one anion and three water molecules, where the Sn atom has a distorted octahedral environment (Fig. 1, Table 1). The bond lengths and angles (Table 1) are generally within normal ranges (Allen et al., 1987). In the anion, the Sn1—Br1 [2.4406 (12) Å] and Sn1—Br3 [2.4605 (12) Å] bonds are shorter than the other Sn—Br bonds, in which they are within the range of Sn—Br bonds reported previously for compounds containing [SnBr6]2- anions (Ali & Al-Far, 2007; Al-Far & Ali, 2007a,b; Al-Far et al., 2007; Tudela & Khan, 1991; Willey et al., 1998). In the cation, the bond lengths and angles are in accordance with the corresponding values (Al-Far & Ali, 2007a,b; Ali et al., 2007). The cation is, of course, planar, in which C1 and C10 atoms are also coplanar.
The packing of the structure can be regarded as alternating layers of anions and cations (Fig. 2). The anions within each layer (Fig. 3) interact via Br1···Br3iv = 3.6726 (19) Å [symmetry code: (iv) x, 3/2 + y, 1/2 + z] interactions parallel to c axis. Each anionic layer further interacts via Br2···Br6v = 3.6913 (18) Å [symmetry code: (v) -x + 3, 1/2 + y, 1/2 - z] and Br4···Br4vi = 3.6517 (21) Å [symmetry code: (vi) -x + 2, -y + 1, -z] interactions to form a two-dimensional anionic network parallel to ac plane (Fig. 3).
The crystal supramolecularity is represented in the significantly short hydrogen bonds (Table 2, Fig. 4) along with Br···Br interactions that allow the formation of supramolecular assembly of the anion, cation and water molecules in three-dimensional structure, in which they may be effective in the stabilization of the crystal structure.
For related literature, see: Desiraju (1997); Ali et al. (2007); Ali & Al-Far (2007); Al-Far & Ali (2007a,b); Al-Far et al. (2007); Tudela & Khan (1991); Willey et al. (1998). For bond-length data, see: Allen et al. (1987).
Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1997); software used to prepare material for publication: SHELXTL.
(C10H12N2)[SnBr6]·3H2O | F(000) = 1504 |
Mr = 812.37 | Dx = 2.558 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71070 Å |
Hall symbol: -P 2ybc | Cell parameters from 4210 reflections |
a = 9.898 (3) Å | θ = 1.3–27.9° |
b = 13.620 (5) Å | µ = 12.59 mm−1 |
c = 16.098 (6) Å | T = 84 K |
β = 103.599 (6)° | Needle, yellow |
V = 2109.3 (13) Å3 | 0.30 × 0.20 × 0.10 mm |
Z = 4 |
Rigaku Mercury CCD diffractometer | 4633 independent reflections |
Radiation source: fine-focus sealed tube | 4210 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
Detector resolution: 14.6306 pixels mm-1 | θmax = 27.5°, θmin = 2.1° |
dtintegrate.ref scans | h = −12→11 |
Absorption correction: multi-scan Shape Tracing Software | k = −17→17 |
Tmin = 0.055, Tmax = 0.277 | l = −20→20 |
27021 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.062 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.132 | H-atom parameters constrained |
S = 1.20 | w = 1/[σ2(Fo2) + (0.0478P)2 + 7.030P] where P = (Fo2 + 2Fc2)/3 |
4633 reflections | (Δ/σ)max = 0.001 |
201 parameters | Δρmax = 1.41 e Å−3 |
0 restraints | Δρmin = −1.11 e Å−3 |
(C10H12N2)[SnBr6]·3H2O | V = 2109.3 (13) Å3 |
Mr = 812.37 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.898 (3) Å | µ = 12.59 mm−1 |
b = 13.620 (5) Å | T = 84 K |
c = 16.098 (6) Å | 0.30 × 0.20 × 0.10 mm |
β = 103.599 (6)° |
Rigaku Mercury CCD diffractometer | 4633 independent reflections |
Absorption correction: multi-scan Shape Tracing Software | 4210 reflections with I > 2σ(I) |
Tmin = 0.055, Tmax = 0.277 | Rint = 0.045 |
27021 measured reflections |
R[F2 > 2σ(F2)] = 0.062 | 0 restraints |
wR(F2) = 0.132 | H-atom parameters constrained |
S = 1.20 | Δρmax = 1.41 e Å−3 |
4633 reflections | Δρmin = −1.11 e Å−3 |
201 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Sn1 | 1.23031 (5) | 0.73783 (4) | 0.15141 (3) | 0.03598 (16) | |
Br1 | 1.17497 (9) | 0.68693 (8) | 0.28495 (5) | 0.0562 (3) | |
Br2 | 1.41637 (10) | 0.86480 (7) | 0.24513 (6) | 0.0600 (3) | |
Br3 | 1.28560 (9) | 0.79729 (8) | 0.01892 (5) | 0.0594 (3) | |
Br4 | 1.04854 (9) | 0.61509 (7) | 0.05744 (6) | 0.0573 (3) | |
Br5 | 1.02270 (9) | 0.87143 (7) | 0.11762 (6) | 0.0538 (2) | |
Br6 | 1.43853 (9) | 0.60996 (7) | 0.18886 (6) | 0.0529 (2) | |
O1W | 0.5390 (9) | 0.6748 (7) | 0.4150 (5) | 0.099 (3) | |
H1W1 | 0.5917 | 0.6271 | 0.4063 | 0.149* | |
H1W2 | 0.4568 | 0.6502 | 0.4107 | 0.149* | |
O2W | 0.7208 (12) | 0.5361 (8) | 0.4048 (8) | 0.150 (5) | |
H2W1 | 0.6941 | 0.4985 | 0.3624 | 0.226* | |
H2W2 | 0.7408 | 0.5002 | 0.4510 | 0.226* | |
O3W | 0.9249 (12) | 0.6547 (9) | 0.3909 (5) | 0.134 (4) | |
H3W1 | 0.9395 | 0.7059 | 0.4277 | 0.201* | |
H3W2 | 1.0060 | 0.6290 | 0.3961 | 0.201* | |
N1 | 0.6611 (6) | 0.7296 (5) | 0.5744 (4) | 0.0432 (15) | |
H1N | 0.6144 | 0.7109 | 0.5249 | 0.052* | |
N2 | 0.8084 (7) | 0.7870 (5) | 0.7326 (4) | 0.0457 (16) | |
H2N | 0.8534 | 0.8050 | 0.7827 | 0.055* | |
C1 | 0.6530 (10) | 0.5601 (7) | 0.6141 (7) | 0.067 (3) | |
H1A | 0.5879 | 0.5584 | 0.5579 | 0.101* | |
H1B | 0.6076 | 0.5337 | 0.6572 | 0.101* | |
H1C | 0.7349 | 0.5202 | 0.6126 | 0.101* | |
C2 | 0.6965 (8) | 0.6629 (7) | 0.6361 (6) | 0.049 (2) | |
C3 | 0.6962 (7) | 0.8271 (6) | 0.5865 (5) | 0.0399 (17) | |
C4 | 0.6556 (9) | 0.8934 (7) | 0.5197 (5) | 0.050 (2) | |
H4 | 0.6045 | 0.8736 | 0.4646 | 0.060* | |
C5 | 0.6936 (10) | 0.9891 (8) | 0.5380 (7) | 0.063 (3) | |
H5 | 0.6690 | 1.0367 | 0.4939 | 0.075* | |
C6 | 0.7682 (10) | 1.0201 (7) | 0.6201 (8) | 0.067 (3) | |
H6 | 0.7899 | 1.0878 | 0.6289 | 0.080* | |
C8 | 0.7744 (7) | 0.8569 (6) | 0.6704 (5) | 0.0399 (17) | |
C7 | 0.8110 (9) | 0.9554 (7) | 0.6884 (6) | 0.055 (2) | |
H7 | 0.8613 | 0.9766 | 0.7432 | 0.066* | |
C9 | 0.7761 (8) | 0.6942 (6) | 0.7202 (5) | 0.0453 (19) | |
C10 | 0.8231 (11) | 0.6235 (8) | 0.7927 (6) | 0.073 (3) | |
H10A | 0.7928 | 0.6469 | 0.8429 | 0.109* | |
H10B | 0.9248 | 0.6186 | 0.8064 | 0.109* | |
H10C | 0.7826 | 0.5587 | 0.7761 | 0.109* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn1 | 0.0316 (3) | 0.0490 (3) | 0.0301 (3) | −0.0024 (2) | 0.0128 (2) | −0.0062 (2) |
Br1 | 0.0512 (5) | 0.0851 (7) | 0.0392 (4) | 0.0018 (4) | 0.0247 (4) | 0.0052 (4) |
Br2 | 0.0516 (5) | 0.0684 (6) | 0.0626 (6) | −0.0193 (4) | 0.0188 (4) | −0.0240 (5) |
Br3 | 0.0540 (5) | 0.0901 (7) | 0.0412 (4) | −0.0031 (5) | 0.0252 (4) | 0.0099 (4) |
Br4 | 0.0517 (5) | 0.0687 (6) | 0.0546 (5) | −0.0196 (4) | 0.0184 (4) | −0.0223 (4) |
Br5 | 0.0447 (5) | 0.0622 (5) | 0.0588 (5) | 0.0063 (4) | 0.0210 (4) | −0.0041 (4) |
Br6 | 0.0473 (5) | 0.0622 (5) | 0.0540 (5) | 0.0130 (4) | 0.0217 (4) | 0.0009 (4) |
O1W | 0.106 (6) | 0.134 (7) | 0.054 (4) | 0.010 (6) | 0.013 (4) | −0.019 (5) |
O2W | 0.175 (11) | 0.107 (8) | 0.209 (13) | −0.005 (7) | 0.123 (10) | −0.016 (8) |
O3W | 0.151 (9) | 0.206 (11) | 0.043 (4) | 0.017 (8) | 0.016 (5) | 0.017 (6) |
N1 | 0.035 (3) | 0.056 (4) | 0.040 (3) | 0.003 (3) | 0.011 (3) | −0.004 (3) |
N2 | 0.038 (4) | 0.070 (5) | 0.032 (3) | 0.001 (3) | 0.013 (3) | 0.000 (3) |
C1 | 0.059 (6) | 0.056 (6) | 0.094 (8) | −0.003 (5) | 0.030 (5) | −0.005 (5) |
C2 | 0.031 (4) | 0.059 (5) | 0.059 (5) | −0.001 (4) | 0.016 (4) | 0.011 (4) |
C3 | 0.032 (4) | 0.049 (4) | 0.045 (4) | 0.004 (3) | 0.021 (3) | 0.002 (4) |
C4 | 0.046 (5) | 0.065 (6) | 0.042 (4) | 0.007 (4) | 0.017 (4) | 0.012 (4) |
C5 | 0.054 (6) | 0.071 (7) | 0.070 (6) | 0.013 (5) | 0.030 (5) | 0.023 (5) |
C6 | 0.065 (6) | 0.047 (5) | 0.103 (8) | 0.003 (4) | 0.049 (6) | 0.001 (5) |
C8 | 0.027 (4) | 0.061 (5) | 0.036 (4) | 0.002 (3) | 0.015 (3) | 0.001 (3) |
C7 | 0.049 (5) | 0.061 (5) | 0.065 (6) | −0.005 (4) | 0.032 (4) | −0.015 (5) |
C9 | 0.036 (4) | 0.060 (5) | 0.043 (4) | −0.001 (4) | 0.017 (3) | 0.007 (4) |
C10 | 0.063 (6) | 0.099 (8) | 0.060 (6) | 0.009 (6) | 0.023 (5) | 0.037 (6) |
Sn1—Br1 | 2.4405 (12) | C1—H1A | 0.9800 |
Sn1—Br3 | 2.4603 (12) | C1—H1B | 0.9800 |
Sn1—Br4 | 2.6534 (11) | C1—H1C | 0.9800 |
Sn1—Br6 | 2.6570 (12) | C2—C9 | 1.461 (12) |
Sn1—Br5 | 2.7026 (12) | C3—C4 | 1.391 (11) |
Sn1—Br2 | 2.7114 (11) | C3—C8 | 1.447 (11) |
O1W—H1W1 | 0.8600 | C4—C5 | 1.368 (13) |
O1W—H1W2 | 0.8700 | C4—H4 | 0.9500 |
O2W—H2W1 | 0.8400 | C5—C6 | 1.418 (14) |
O2W—H2W2 | 0.8700 | C5—H5 | 0.9500 |
O3W—H3W1 | 0.9000 | C6—C7 | 1.395 (14) |
O3W—H3W2 | 0.8600 | C6—H6 | 0.9500 |
N1—C2 | 1.330 (10) | C8—C7 | 1.403 (12) |
N1—C3 | 1.375 (10) | C7—H7 | 0.9500 |
N1—H1N | 0.8600 | C9—C10 | 1.500 (11) |
N2—C9 | 1.308 (11) | C10—H10A | 0.9800 |
N2—C8 | 1.365 (10) | C10—H10B | 0.9800 |
N2—H2N | 0.8600 | C10—H10C | 0.9800 |
C1—C2 | 1.483 (13) | ||
Br1—Sn1—Br3 | 177.29 (4) | N1—C2—C9 | 118.9 (8) |
Br1—Sn1—Br4 | 93.48 (4) | N1—C2—C1 | 117.1 (8) |
Br3—Sn1—Br4 | 88.41 (4) | C9—C2—C1 | 124.0 (8) |
Br1—Sn1—Br6 | 86.37 (4) | N1—C3—C4 | 120.0 (8) |
Br3—Sn1—Br6 | 95.38 (4) | N1—C3—C8 | 117.8 (7) |
Br4—Sn1—Br6 | 95.87 (4) | C4—C3—C8 | 122.2 (7) |
Br1—Sn1—Br5 | 92.93 (3) | C5—C4—C3 | 115.9 (8) |
Br3—Sn1—Br5 | 85.26 (4) | C5—C4—H4 | 122.0 |
Br4—Sn1—Br5 | 85.87 (4) | C3—C4—H4 | 122.0 |
Br6—Sn1—Br5 | 178.17 (3) | C4—C5—C6 | 122.7 (9) |
Br1—Sn1—Br2 | 87.41 (4) | C4—C5—H5 | 118.6 |
Br3—Sn1—Br2 | 90.69 (4) | C6—C5—H5 | 118.6 |
Br4—Sn1—Br2 | 179.08 (4) | C7—C6—C5 | 122.8 (9) |
Br6—Sn1—Br2 | 84.41 (4) | C7—C6—H6 | 118.6 |
Br5—Sn1—Br2 | 93.86 (4) | C5—C6—H6 | 118.6 |
H1W1—O1W—H1W2 | 106.70 | N2—C8—C7 | 120.5 (8) |
H2W1—O2W—H2W2 | 108.30 | N2—C8—C3 | 118.3 (7) |
H3W1—O3W—H3W2 | 104.40 | C7—C8—C3 | 121.1 (8) |
C2—N1—C3 | 122.6 (7) | C6—C7—C8 | 115.2 (9) |
C2—N1—H1N | 118.7 | C6—C7—H7 | 122.4 |
C3—N1—H1N | 118.7 | C8—C7—H7 | 122.4 |
C9—N2—C8 | 123.5 (7) | N2—C9—C2 | 118.9 (7) |
C9—N2—H2N | 118.2 | N2—C9—C10 | 118.8 (8) |
C8—N2—H2N | 118.2 | C2—C9—C10 | 122.4 (8) |
C2—C1—H1A | 109.5 | C9—C10—H10A | 109.5 |
C2—C1—H1B | 109.5 | C9—C10—H10B | 109.5 |
H1A—C1—H1B | 109.5 | H10A—C10—H10B | 109.5 |
C2—C1—H1C | 109.5 | C9—C10—H10C | 109.5 |
H1A—C1—H1C | 109.5 | H10A—C10—H10C | 109.5 |
H1B—C1—H1C | 109.5 | H10B—C10—H10C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W1···O2W | 0.86 | 1.78 | 2.640 (14) | 170.00 |
O1W—H1W2···Br3i | 0.87 | 2.79 | 3.348 (9) | 123.1 (5) |
O2W—H2W1···Br2ii | 0.84 | 2.57 | 3.401 (12) | 167.4 (7) |
O2W—H2W2···Br3ii | 0.87 | 2.83 | 3.482 (11) | 132.9 (7) |
O3W—H3W2···Br1 | 0.86 | 2.83 | 3.349 (11) | 120.00 |
N1—H1N···O1W | 0.86 | 1.82 | 2.672 (10) | 172 |
N2—H2N···O3Wiii | 0.86 | 1.81 | 2.660 (11) | 172 |
Symmetry codes: (i) x−1, −y+3/2, z+1/2; (ii) −x+2, y−1/2, −z+1/2; (iii) x, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | (C10H12N2)[SnBr6]·3H2O |
Mr | 812.37 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 84 |
a, b, c (Å) | 9.898 (3), 13.620 (5), 16.098 (6) |
β (°) | 103.599 (6) |
V (Å3) | 2109.3 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 12.59 |
Crystal size (mm) | 0.30 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Rigaku Mercury CCD diffractometer |
Absorption correction | Multi-scan Shape Tracing Software |
Tmin, Tmax | 0.055, 0.277 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 27021, 4633, 4210 |
Rint | 0.045 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.062, 0.132, 1.20 |
No. of reflections | 4633 |
No. of parameters | 201 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.41, −1.11 |
Computer programs: CrystalClear (Rigaku, 2000), CrystalClear, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1997), SHELXTL.
Sn1—Br1 | 2.4405 (12) | Sn1—Br6 | 2.6570 (12) |
Sn1—Br3 | 2.4603 (12) | Sn1—Br5 | 2.7026 (12) |
Sn1—Br4 | 2.6534 (11) | Sn1—Br2 | 2.7114 (11) |
Br1—Sn1—Br3 | 177.29 (4) | Br4—Sn1—Br5 | 85.87 (4) |
Br1—Sn1—Br4 | 93.48 (4) | Br6—Sn1—Br5 | 178.17 (3) |
Br3—Sn1—Br4 | 88.41 (4) | Br1—Sn1—Br2 | 87.41 (4) |
Br1—Sn1—Br6 | 86.37 (4) | Br3—Sn1—Br2 | 90.69 (4) |
Br3—Sn1—Br6 | 95.38 (4) | Br4—Sn1—Br2 | 179.08 (4) |
Br4—Sn1—Br6 | 95.87 (4) | Br6—Sn1—Br2 | 84.41 (4) |
Br1—Sn1—Br5 | 92.93 (3) | Br5—Sn1—Br2 | 93.86 (4) |
Br3—Sn1—Br5 | 85.26 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W1···O2W | 0.86 | 1.78 | 2.640 (14) | 170.00 |
O1W—H1W2···Br3i | 0.87 | 2.79 | 3.348 (9) | 123.1 (5) |
O2W—H2W1···Br2ii | 0.84 | 2.57 | 3.401 (12) | 167.4 (7) |
O2W—H2W2···Br3ii | 0.87 | 2.83 | 3.482 (11) | 132.9 (7) |
O3W—H3W2···Br1 | 0.86 | 2.83 | 3.349 (11) | 120.00 |
N1—H1N···O1W | 0.86 | 1.82 | 2.672 (10) | 171.6 |
N2—H2N···O3Wiii | 0.86 | 1.81 | 2.660 (11) | 172.1 |
Symmetry codes: (i) x−1, −y+3/2, z+1/2; (ii) −x+2, y−1/2, −z+1/2; (iii) x, −y+3/2, z+1/2. |
Noncovalent interactions play an important role in organizing structural units in both natural and artificial systems (Desiraju, 1997). In connection with ongoing studies (Ali et al., 2007; Ali & Al-Far, 2007; Al-Far & Ali, 2007a,b) of the structural aspects of bromo metal anions salts, we herein report the crystal structure of the title compound, (I).
The asymmetric unit of the title compound, (I), contains one cation, one anion and three water molecules, where the Sn atom has a distorted octahedral environment (Fig. 1, Table 1). The bond lengths and angles (Table 1) are generally within normal ranges (Allen et al., 1987). In the anion, the Sn1—Br1 [2.4406 (12) Å] and Sn1—Br3 [2.4605 (12) Å] bonds are shorter than the other Sn—Br bonds, in which they are within the range of Sn—Br bonds reported previously for compounds containing [SnBr6]2- anions (Ali & Al-Far, 2007; Al-Far & Ali, 2007a,b; Al-Far et al., 2007; Tudela & Khan, 1991; Willey et al., 1998). In the cation, the bond lengths and angles are in accordance with the corresponding values (Al-Far & Ali, 2007a,b; Ali et al., 2007). The cation is, of course, planar, in which C1 and C10 atoms are also coplanar.
The packing of the structure can be regarded as alternating layers of anions and cations (Fig. 2). The anions within each layer (Fig. 3) interact via Br1···Br3iv = 3.6726 (19) Å [symmetry code: (iv) x, 3/2 + y, 1/2 + z] interactions parallel to c axis. Each anionic layer further interacts via Br2···Br6v = 3.6913 (18) Å [symmetry code: (v) -x + 3, 1/2 + y, 1/2 - z] and Br4···Br4vi = 3.6517 (21) Å [symmetry code: (vi) -x + 2, -y + 1, -z] interactions to form a two-dimensional anionic network parallel to ac plane (Fig. 3).
The crystal supramolecularity is represented in the significantly short hydrogen bonds (Table 2, Fig. 4) along with Br···Br interactions that allow the formation of supramolecular assembly of the anion, cation and water molecules in three-dimensional structure, in which they may be effective in the stabilization of the crystal structure.