Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807042341/hk2322sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536807042341/hk2322Isup2.hkl |
CCDC reference: 664183
For the preparation of the title compound, (I), a solution of 1,10-diaza-18 -crown-6 (0.10 g, 0.37 mmol) in water (50 ml) was added to a solution of H2PtCl6·2H2O (0.20 g, 0.37 mmol) in water (30 ml) and the resulting yellow solution was stirred for 30 min at 333 K. Then, it was left to evaporate slowly at room temperature. After 24 h, yellow prismatic crystals of (I) were isolated (yield; 0.22 g, 84%, m.p. 470–472 K).
H3C and H3D (for OH2) were located in difference syntheses and refined isotropically [O—H = 0.69 (10) and 0.79 (7) Å and Uiso(H) = 0.062 (19) and 0.08 (3) Å2]. The remaining H atoms were positioned geometrically, with N—H = 0.90 Å and C—H = 0.97 Å for methylene H, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).
Recently, we reported the synthesis and crystal structure of [(H2DA18C6)Cl2], (II), (Yousefi et al., 2007) [where H2DA18C6 is 1,10 –Diazonia-18-crown-6]. Several proton transfer systems using 1,10-diaza-18 -crown-6, with proton donor molecules,such as [(H2DA18C6)I2·2H2O], (III), (Chekhlov, 2005), [(H2DA18C6)(C2HO4)2], (IV), and [(H2DA18C6)2(C2O4)2·2H2O], (V), (Chekhlov, 2000), [(H2DA18C6)(picrate)2], (VI), (Chekhlov, 2001), [(H2DA18C6)(HPTD)2], (VII), (Simonov et al., 2003), [(H2DA18C6)(PD)2·(H2O)4], (VIII), and [(H2DA18C6)(PS)2·(H2O)2], (IX), (Fonari et al., 2004), [(H2DA18C6)(CCl3COO)2(CCl3COOH)2], (X), (Chekhlov et al., 1994), [(H2DA18C6)(CCl3COO)2], (XI), (Chekhlov & Martynov, 1998), and {[H2DA18C6][(ArSO2)2N]2}, (XII), (Moers et al., 2000) [where H2DA18C6 is 1,10-Diazonia-18-crown-6, C2O4 is oxalate, HPTD is (4Z,5E)-pyrimidine-2,4,5,6(1H,3H)-tetraone 4,5-dioxime anion, PD is 2-(2-methylphenyl)-2H-[1,2,3]triazolo[4,5-d] pyrimidine-5,7(4H,6H)-dione 3-oxide anion, PS is 6-amino-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl- sulfamate and (ArSO2)2N is bis(4-chlorobenzenesulfonyl)imide] have been synthesized and characterized by single-crystal X-ray diffraction methods.
There are also several proton transfer systems using H2[PtCl6] with proton acceptor molecules, such as [HpyBr-3]2[PtCl6]·2H2O, (XIII), and [HpyI-3]2[PtCl6]·2H2O, (XIV), (Zordan & Brammer, 2004), [BMIM]2[PtCl6], (XV), and [EMIM]2[PtCl6], (XVI), (Hasan et al., 2001), {(DABCO)H2[PtCl6]}, (XVI), (Juan et al., 1998), {p-C6H4 (CH2ImMe)2[PtCl6]}, (XVIII), (Li & Liu, 2003), [het][PtCl6]·2H2O, (XIX), (Hu et al., 2003), [9-MeGuaH]2[PtCl6]·2H2O, (XX), (Terzis & Mentzafos, 1983) and [H10[30]aneN10][PtCl6]2Cl6·2H2O, (XXI), (Bencini et al., 1992) [Where BMIM+ is 1-n-butyl-3-methylimidazolium, EMIM+ is 1-ethyl-3-methyl- imidazolium, DABCO is 1,4-diazabicyclooctane, het is 2-(?-hydroxyethyl) thiamine and 9-MeGuaH is 9-methylguaninium] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).
The asymmetric unit of (I), (Fig. 1), contains one half-cation, one half-anion and one water molecule. The Pt ion has an octahedral coordination. The bond lengths and angles, in cation, are in good agreement with the corresponding values in (II) and (III). Also, the Pt—Cl bond lengths and angles (Table 1) are within normal ranges, as in [H10[30]ane][PtCl6]2Cl6·2H2O, (XXII), (Bencini et al., 1992).
In the crystal structure, the intermolecular O—H···Cl, N—H···O and O—H···O hydrogen bonds (Table 2) seem to be effective in the stabilization of the crystal structure, resulting in the formation of a supramolecular structure (Fig. 2).
For related literature, see: Bencini et al. (1992); Chekhlov (2000, 2001, 2005); Chekhlov & Martynov (1998); Chekhlov et al. (1994); Fonari et al. (2004); Hasan et al. (2001); Hu et al. (2003); Juan et al. (1998); Li & Liu (2003); Moers et al. (2000); Simonov et al. (2003); Terzis & Mentzafos (1983); Yousefi et al. (2007); Zordan & Brammer (2004).
Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-RED (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
(C12H28N2O4)[PtCl6]·2H2O | F(000) = 692 |
Mr = 708.18 | Dx = 1.972 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2000 reflections |
a = 9.3668 (12) Å | θ = 2.4–29.3° |
b = 12.5688 (11) Å | µ = 6.59 mm−1 |
c = 10.9546 (15) Å | T = 298 K |
β = 112.384 (9)° | Prism, yellow |
V = 1192.5 (3) Å3 | 0.25 × 0.18 × 0.10 mm |
Z = 2 |
Stoe IPDS II diffractometer | 3168 independent reflections |
Radiation source: fine-focus sealed tube | 2493 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
Detector resolution: 0.15 mm pixels mm-1 | θmax = 29.3°, θmin = 2.4° |
rotation method scans | h = −12→12 |
Absorption correction: numerical (X-RED; Stoe & Cie, 2005) | k = −17→13 |
Tmin = 0.250, Tmax = 0.510 | l = −10→15 |
8277 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.085 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.22 | w = 1/[σ2(Fo2) + (0.0394P)2 + 0.839P] where P = (Fo2 + 2Fc2)/3 |
3168 reflections | (Δ/σ)max = 0.011 |
132 parameters | Δρmax = 1.27 e Å−3 |
0 restraints | Δρmin = −0.66 e Å−3 |
(C12H28N2O4)[PtCl6]·2H2O | V = 1192.5 (3) Å3 |
Mr = 708.18 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.3668 (12) Å | µ = 6.59 mm−1 |
b = 12.5688 (11) Å | T = 298 K |
c = 10.9546 (15) Å | 0.25 × 0.18 × 0.10 mm |
β = 112.384 (9)° |
Stoe IPDS II diffractometer | 3168 independent reflections |
Absorption correction: numerical (X-RED; Stoe & Cie, 2005) | 2493 reflections with I > 2σ(I) |
Tmin = 0.250, Tmax = 0.510 | Rint = 0.036 |
8277 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.085 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.22 | Δρmax = 1.27 e Å−3 |
3168 reflections | Δρmin = −0.66 e Å−3 |
132 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3080 (7) | 0.8830 (6) | −0.0359 (7) | 0.074 (2) | |
H1A | 0.3526 | 0.9281 | 0.0412 | 0.089* | |
H1B | 0.3907 | 0.8576 | −0.0611 | 0.089* | |
C2 | 0.2280 (7) | 0.7913 (5) | −0.0044 (7) | 0.0660 (17) | |
H2A | 0.1829 | 0.7470 | −0.0822 | 0.079* | |
H2B | 0.3025 | 0.7486 | 0.0643 | 0.079* | |
C3 | 0.0327 (10) | 0.7382 (5) | 0.0851 (8) | 0.086 (2) | |
H3A | 0.1064 | 0.7091 | 0.1667 | 0.103* | |
H3B | 0.0038 | 0.6822 | 0.0192 | 0.103* | |
C4 | −0.1087 (10) | 0.7764 (6) | 0.1067 (9) | 0.088 (2) | |
H4A | −0.1832 | 0.8060 | 0.0257 | 0.105* | |
H4B | −0.1569 | 0.7178 | 0.1342 | 0.105* | |
C5 | −0.1737 (10) | 0.8963 (8) | 0.2511 (10) | 0.097 (3) | |
H5B | −0.2307 | 0.8373 | 0.2676 | 0.116* | |
H5A | −0.1197 | 0.9316 | 0.3348 | 0.116* | |
C6 | −0.2797 (11) | 0.9680 (9) | 0.1662 (12) | 0.108 (3) | |
H6A | −0.3505 | 0.9919 | 0.2061 | 0.130* | |
H6B | −0.3393 | 0.9326 | 0.0838 | 0.130* | |
N1 | 0.1050 (5) | 0.8269 (3) | 0.0404 (5) | 0.0515 (10) | |
H1C | 0.1456 | 0.8735 | 0.1072 | 0.062* | |
H1D | 0.0317 | 0.8612 | −0.0264 | 0.062* | |
O1 | 0.2010 (5) | 0.9412 (4) | −0.1400 (5) | 0.0696 (12) | |
O2 | −0.0603 (5) | 0.8538 (4) | 0.2044 (5) | 0.0697 (11) | |
O3 | 0.1170 (5) | 1.0429 (4) | 0.1461 (4) | 0.0531 (9) | |
H3C | 0.199 (8) | 1.060 (6) | 0.197 (7) | 0.062 (19)* | |
H3D | 0.076 (12) | 1.015 (6) | 0.176 (11) | 0.08 (3)* | |
Pt1 | 0.5000 | 1.0000 | 0.5000 | 0.03249 (8) | |
Cl1 | 0.54112 (16) | 1.13900 (10) | 0.64977 (13) | 0.0528 (3) | |
Cl2 | 0.45210 (13) | 1.12134 (10) | 0.32866 (12) | 0.0489 (3) | |
Cl3 | 0.23954 (13) | 0.99812 (10) | 0.46689 (13) | 0.0476 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.051 (3) | 0.095 (5) | 0.075 (4) | 0.013 (3) | 0.023 (3) | −0.023 (4) |
C2 | 0.067 (4) | 0.061 (3) | 0.060 (4) | 0.030 (3) | 0.013 (3) | 0.000 (3) |
C3 | 0.165 (8) | 0.035 (3) | 0.073 (4) | −0.007 (4) | 0.064 (5) | −0.004 (3) |
C4 | 0.113 (6) | 0.075 (5) | 0.080 (5) | −0.045 (4) | 0.043 (5) | −0.011 (4) |
C5 | 0.103 (6) | 0.115 (7) | 0.103 (6) | −0.013 (5) | 0.074 (6) | 0.014 (6) |
C6 | 0.072 (5) | 0.143 (8) | 0.131 (9) | 0.000 (5) | 0.063 (6) | 0.036 (7) |
N1 | 0.065 (3) | 0.038 (2) | 0.050 (2) | 0.0104 (18) | 0.019 (2) | −0.0004 (18) |
O1 | 0.061 (2) | 0.071 (3) | 0.092 (3) | 0.012 (2) | 0.044 (2) | 0.007 (3) |
O2 | 0.082 (3) | 0.053 (2) | 0.090 (3) | −0.005 (2) | 0.051 (3) | 0.000 (2) |
O3 | 0.044 (2) | 0.063 (2) | 0.046 (2) | −0.0040 (18) | 0.0101 (17) | −0.002 (2) |
Pt1 | 0.03113 (11) | 0.03264 (11) | 0.03280 (11) | −0.00666 (8) | 0.01116 (8) | −0.00084 (10) |
Cl1 | 0.0654 (7) | 0.0460 (6) | 0.0518 (7) | −0.0157 (5) | 0.0276 (6) | −0.0151 (5) |
Cl2 | 0.0440 (6) | 0.0511 (7) | 0.0459 (6) | −0.0080 (5) | 0.0106 (5) | 0.0102 (5) |
Cl3 | 0.0354 (5) | 0.0533 (6) | 0.0552 (6) | −0.0044 (4) | 0.0183 (4) | 0.0045 (6) |
Pt1—Cl2i | 2.3257 (12) | C2—H2A | 0.9700 |
Pt1—Cl2 | 2.3257 (12) | C2—H2B | 0.9700 |
Pt1—Cl3 | 2.3259 (12) | C3—N1 | 1.482 (8) |
Pt1—Cl3i | 2.3259 (12) | C3—C4 | 1.509 (12) |
Pt1—Cl1i | 2.3262 (12) | C3—H3A | 0.9700 |
Pt1—Cl1 | 2.3262 (12) | C3—H3B | 0.9700 |
O1—C6ii | 1.444 (11) | C4—O2 | 1.389 (9) |
O3—H3C | 0.79 (7) | C4—H4A | 0.9700 |
O3—H3D | 0.69 (10) | C4—H4B | 0.9700 |
N1—H1C | 0.9000 | C5—C6 | 1.400 (13) |
N1—H1D | 0.9000 | C5—O2 | 1.446 (9) |
C1—O1 | 1.404 (8) | C5—H5B | 0.9700 |
C1—C2 | 1.485 (10) | C5—H5A | 0.9700 |
C1—H1A | 0.9700 | C6—O1ii | 1.444 (11) |
C1—H1B | 0.9700 | C6—H6A | 0.9700 |
C2—N1 | 1.483 (8) | C6—H6B | 0.9700 |
Cl2i—Pt1—Cl2 | 180 | N1—C2—C1 | 111.5 (5) |
Cl2i—Pt1—Cl3 | 89.30 (4) | N1—C2—H2A | 109.3 |
Cl2—Pt1—Cl3 | 90.70 (4) | C1—C2—H2A | 109.3 |
Cl2i—Pt1—Cl3i | 90.70 (4) | N1—C2—H2B | 109.3 |
Cl2—Pt1—Cl3i | 89.30 (4) | C1—C2—H2B | 109.3 |
Cl3—Pt1—Cl3i | 180 | H2A—C2—H2B | 108.0 |
Cl2i—Pt1—Cl1i | 90.34 (5) | N1—C3—C4 | 110.6 (5) |
Cl2—Pt1—Cl1i | 89.66 (5) | N1—C3—H3A | 109.5 |
Cl3—Pt1—Cl1i | 90.02 (5) | C4—C3—H3A | 109.5 |
Cl3i—Pt1—Cl1i | 89.98 (5) | N1—C3—H3B | 109.5 |
Cl2i—Pt1—Cl1 | 89.66 (5) | C4—C3—H3B | 109.5 |
Cl2—Pt1—Cl1 | 90.34 (5) | H3A—C3—H3B | 108.1 |
Cl3—Pt1—Cl1 | 89.98 (5) | O2—C4—C3 | 107.2 (6) |
Cl3i—Pt1—Cl1 | 90.02 (5) | O2—C4—H4A | 110.3 |
Cl1i—Pt1—Cl1 | 180 | C3—C4—H4A | 110.3 |
C1—O1—C6ii | 108.3 (6) | O2—C4—H4B | 110.3 |
C4—O2—C5 | 117.6 (6) | C3—C4—H4B | 110.3 |
H3C—O3—H3D | 112 (10) | H4A—C4—H4B | 108.5 |
C3—N1—C2 | 113.1 (5) | C6—C5—O2 | 115.7 (7) |
C3—N1—H1C | 109.0 | C6—C5—H5B | 108.4 |
C2—N1—H1C | 109.0 | O2—C5—H5B | 108.4 |
C3—N1—H1D | 109.0 | C6—C5—H5A | 108.4 |
C2—N1—H1D | 109.0 | O2—C5—H5A | 108.4 |
H1C—N1—H1D | 107.8 | H5B—C5—H5A | 107.4 |
O1—C1—C2 | 109.1 (5) | C5—C6—O1ii | 110.8 (7) |
O1—C1—H1A | 109.9 | C5—C6—H6A | 109.5 |
C2—C1—H1A | 109.9 | O1ii—C6—H6A | 109.5 |
O1—C1—H1B | 109.9 | C5—C6—H6B | 109.5 |
C2—C1—H1B | 109.9 | O1ii—C6—H6B | 109.5 |
H1A—C1—H1B | 108.3 | H6A—C6—H6B | 108.1 |
O1—C1—C2—N1 | −62.0 (7) | C1—C2—N1—C3 | −174.4 (6) |
N1—C3—C4—O2 | −61.1 (8) | C2—C1—O1—C6ii | 178.1 (7) |
O2—C5—C6—O1ii | −59.2 (13) | C3—C4—O2—C5 | −174.7 (6) |
C4—C3—N1—C2 | −170.2 (6) | C6—C5—O2—C4 | −75.3 (10) |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x, −y+2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1C···O2 | 0.90 | 2.55 | 2.803 (9) | 97 |
N1—H1C···O3 | 0.90 | 2.21 | 2.936 (7) | 138 |
N1—H1D···O1 | 0.90 | 2.57 | 2.852 (8) | 99 |
O3—H3C···Cl2 | 0.79 (6) | 2.39 (6) | 3.169 (4) | 173 (7) |
O3—H3D···O2 | 0.69 (13) | 2.48 (10) | 3.103 (7) | 152 (10) |
N1—H1D···O3ii | 0.90 | 1.93 | 2.817 (6) | 169 |
O3—H3D···O1ii | 0.69 (13) | 2.53 (12) | 2.961 (7) | 123 (12) |
Symmetry code: (ii) −x, −y+2, −z. |
Experimental details
Crystal data | |
Chemical formula | (C12H28N2O4)[PtCl6]·2H2O |
Mr | 708.18 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 9.3668 (12), 12.5688 (11), 10.9546 (15) |
β (°) | 112.384 (9) |
V (Å3) | 1192.5 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 6.59 |
Crystal size (mm) | 0.25 × 0.18 × 0.10 |
Data collection | |
Diffractometer | Stoe IPDS II |
Absorption correction | Numerical (X-RED; Stoe & Cie, 2005) |
Tmin, Tmax | 0.250, 0.510 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8277, 3168, 2493 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.688 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.085, 1.22 |
No. of reflections | 3168 |
No. of parameters | 132 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.27, −0.66 |
Computer programs: X-AREA (Stoe & Cie, 2005), X-RED (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Pt1—Cl2i | 2.3257 (12) | Pt1—Cl3i | 2.3259 (12) |
Pt1—Cl2 | 2.3257 (12) | Pt1—Cl1i | 2.3262 (12) |
Pt1—Cl3 | 2.3259 (12) | Pt1—Cl1 | 2.3262 (12) |
Cl2i—Pt1—Cl2 | 180 | Cl3—Pt1—Cl1i | 90.02 (5) |
Cl2i—Pt1—Cl3 | 89.30 (4) | Cl3i—Pt1—Cl1i | 89.98 (5) |
Cl2i—Pt1—Cl3i | 90.70 (4) | Cl2i—Pt1—Cl1 | 89.66 (5) |
Cl2—Pt1—Cl3i | 89.30 (4) | Cl2—Pt1—Cl1 | 90.34 (5) |
Cl3—Pt1—Cl3i | 180 | Cl3—Pt1—Cl1 | 89.98 (5) |
Cl2i—Pt1—Cl1i | 90.34 (5) | Cl3i—Pt1—Cl1 | 90.02 (5) |
Cl2—Pt1—Cl1i | 89.66 (5) | Cl1i—Pt1—Cl1 | 180 |
Symmetry code: (i) −x+1, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1C···O2 | 0.90 | 2.55 | 2.803 (9) | 97 |
N1—H1C···O3 | 0.90 | 2.21 | 2.936 (7) | 138 |
N1—H1D···O1 | 0.90 | 2.57 | 2.852 (8) | 99 |
O3—H3C···Cl2 | 0.79 (6) | 2.39 (6) | 3.169 (4) | 173 (7) |
O3—H3D···O2 | 0.69 (13) | 2.48 (10) | 3.103 (7) | 152 (10) |
N1—H1D···O3ii | 0.90 | 1.93 | 2.817 (6) | 169 |
O3—H3D···O1ii | 0.69 (13) | 2.53 (12) | 2.961 (7) | 123 (12) |
Symmetry code: (ii) −x, −y+2, −z. |
Recently, we reported the synthesis and crystal structure of [(H2DA18C6)Cl2], (II), (Yousefi et al., 2007) [where H2DA18C6 is 1,10 –Diazonia-18-crown-6]. Several proton transfer systems using 1,10-diaza-18 -crown-6, with proton donor molecules,such as [(H2DA18C6)I2·2H2O], (III), (Chekhlov, 2005), [(H2DA18C6)(C2HO4)2], (IV), and [(H2DA18C6)2(C2O4)2·2H2O], (V), (Chekhlov, 2000), [(H2DA18C6)(picrate)2], (VI), (Chekhlov, 2001), [(H2DA18C6)(HPTD)2], (VII), (Simonov et al., 2003), [(H2DA18C6)(PD)2·(H2O)4], (VIII), and [(H2DA18C6)(PS)2·(H2O)2], (IX), (Fonari et al., 2004), [(H2DA18C6)(CCl3COO)2(CCl3COOH)2], (X), (Chekhlov et al., 1994), [(H2DA18C6)(CCl3COO)2], (XI), (Chekhlov & Martynov, 1998), and {[H2DA18C6][(ArSO2)2N]2}, (XII), (Moers et al., 2000) [where H2DA18C6 is 1,10-Diazonia-18-crown-6, C2O4 is oxalate, HPTD is (4Z,5E)-pyrimidine-2,4,5,6(1H,3H)-tetraone 4,5-dioxime anion, PD is 2-(2-methylphenyl)-2H-[1,2,3]triazolo[4,5-d] pyrimidine-5,7(4H,6H)-dione 3-oxide anion, PS is 6-amino-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl- sulfamate and (ArSO2)2N is bis(4-chlorobenzenesulfonyl)imide] have been synthesized and characterized by single-crystal X-ray diffraction methods.
There are also several proton transfer systems using H2[PtCl6] with proton acceptor molecules, such as [HpyBr-3]2[PtCl6]·2H2O, (XIII), and [HpyI-3]2[PtCl6]·2H2O, (XIV), (Zordan & Brammer, 2004), [BMIM]2[PtCl6], (XV), and [EMIM]2[PtCl6], (XVI), (Hasan et al., 2001), {(DABCO)H2[PtCl6]}, (XVI), (Juan et al., 1998), {p-C6H4 (CH2ImMe)2[PtCl6]}, (XVIII), (Li & Liu, 2003), [het][PtCl6]·2H2O, (XIX), (Hu et al., 2003), [9-MeGuaH]2[PtCl6]·2H2O, (XX), (Terzis & Mentzafos, 1983) and [H10[30]aneN10][PtCl6]2Cl6·2H2O, (XXI), (Bencini et al., 1992) [Where BMIM+ is 1-n-butyl-3-methylimidazolium, EMIM+ is 1-ethyl-3-methyl- imidazolium, DABCO is 1,4-diazabicyclooctane, het is 2-(?-hydroxyethyl) thiamine and 9-MeGuaH is 9-methylguaninium] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).
The asymmetric unit of (I), (Fig. 1), contains one half-cation, one half-anion and one water molecule. The Pt ion has an octahedral coordination. The bond lengths and angles, in cation, are in good agreement with the corresponding values in (II) and (III). Also, the Pt—Cl bond lengths and angles (Table 1) are within normal ranges, as in [H10[30]ane][PtCl6]2Cl6·2H2O, (XXII), (Bencini et al., 1992).
In the crystal structure, the intermolecular O—H···Cl, N—H···O and O—H···O hydrogen bonds (Table 2) seem to be effective in the stabilization of the crystal structure, resulting in the formation of a supramolecular structure (Fig. 2).