Download citation
Download citation
link to html
Varying atomic short-range order is correlated with the ratio of the monoclinic (m) to tetragonal (t) phase in ZrO2 nanoparticle formation by solvothermal methods. Reactions from Zr oxynitrate in supercritical methanol and Zr acetate in water (hydrothermal route) were studied in situ by X-ray total scattering. Irrespective of the Zr source and solvent, the structure of the precursor in solution consists of edge-shared tetramer chains. Upon heating, the nearest-neighbor Zr—O and Zr—Zr distances shorten initially while the medium-range connectivity is broken. Depending on the reaction conditions, the disordered intermediate transforms either rapidly into m-ZrO2, or more gradually into mixed m- and t-ZrO2 with a concurrent increase of the shortest Zr—Zr distance. In the hydrothermal case, the structural similarity of the amorphous intermediate and m-ZrO2 favors the formation of almost phase-pure m-ZrO2 nanoparticles with a size of 5 nm, considerably smaller than the often-cited critical size below which the tetragonal is assumed to be favoured. Pair distribution function analysis thus unravels ZrO2 phase formation on the atomic scale and in this way provides a major step towards understanding polymorphism of ZrO2 beyond empirical approaches.

Supporting information


Portable Document Format (PDF) file
Additional figures and tables

Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds