
Supporting information
![]() | Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010201541X/iz1022sup1.cif |
![]() | Structure factor file (CIF format) https://doi.org/10.1107/S010827010201541X/iz1022Isup2.hkl |
Crystals of NaZnFe2(PO4)3 were prepared from a stoichiometric mixture of Fe(NO3)3·9H2O, ZnO, NaH2PO4 and (NH4)2HPO4. The mixture was initially heated for 12 h at 873 K to evacuate the decomposition products (H2O, NH3, etc.), then melted for 1 h at 1253 K and finally cooled down to room temperature at the rate of 10 K h-1. Elemental analysis on crystal samples using an MEB Please define indicated the presence of Zn, Fe, P and Na in the atomic ratio 1:2:3:1.
The Zn and Fe atoms were located by direct methods, and the remaining atoms were found by successive difference Fourier maps.
Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare, 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.
NaZnFe2(PO4)3 | F(000) = 936 |
Mr = 484.97 | Dx = 3.415 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 25 reflections |
a = 5.124 (1) Å | θ = 10–15° |
b = 12.213 (5) Å | µ = 6.18 mm−1 |
c = 15.072 (9) Å | T = 293 K |
V = 943.2 (7) Å3 | Parallelepiped, brown |
Z = 4 | 0.22 × 0.10 × 0.06 mm |
Enraf-Nonius CAD-4 diffractometer | 1184 reflections with I > 2σi(I) |
Radiation source: fine-focus sealed tube | Rint = 0.020 |
Graphite monochromator | θmax = 27.0°, θmin = 2.2° |
ω/2θ scans | h = 0→6 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→15 |
Tmin = 0.529, Tmax = 0.690 | l = −1→19 |
1314 measured reflections | 2 standard reflections every 120 min |
1293 independent reflections | intensity decay: none |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0392P)2 + 0.4314P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.029 | (Δ/σ)max = 0.006 |
wR(F2) = 0.078 | Δρmax = 0.64 e Å−3 |
S = 1.24 | Δρmin = −1.05 e Å−3 |
1293 reflections | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=3DkFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
173 parameters | Extinction coefficient: 0.0038 (8) |
0 restraints | Absolute structure: Flack (1983) with 70 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.02 (3) |
NaZnFe2(PO4)3 | V = 943.2 (7) Å3 |
Mr = 484.97 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 5.124 (1) Å | µ = 6.18 mm−1 |
b = 12.213 (5) Å | T = 293 K |
c = 15.072 (9) Å | 0.22 × 0.10 × 0.06 mm |
Enraf-Nonius CAD-4 diffractometer | 1184 reflections with I > 2σi(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.020 |
Tmin = 0.529, Tmax = 0.690 | 2 standard reflections every 120 min |
1314 measured reflections | intensity decay: none |
1293 independent reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.078 | Δρmax = 0.64 e Å−3 |
S = 1.24 | Δρmin = −1.05 e Å−3 |
1293 reflections | Absolute structure: Flack (1983) with 70 Friedel pairs |
173 parameters | Absolute structure parameter: 0.02 (3) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn | 0.06981 (16) | 0.29213 (7) | 0.74255 (6) | 0.0133 (2) | |
Fe1 | 0.49416 (18) | 0.71170 (7) | 0.63627 (6) | 0.0070 (2) | |
Fe2 | 0.2579 (2) | 0.08015 (7) | 0.50767 (6) | 0.0092 (2) | |
Na | −0.5429 (7) | 0.9796 (2) | 0.7110 (2) | 0.0214 (7) | |
P1 | 0.0151 (4) | 0.54300 (13) | 0.65861 (11) | 0.0075 (3) | |
O11 | −0.0420 (11) | 0.4470 (4) | 0.7200 (3) | 0.0152 (11) | |
O12 | −0.0233 (12) | 0.5088 (4) | 0.5609 (3) | 0.0183 (11) | |
O13 | 0.2989 (9) | 0.5830 (4) | 0.6726 (3) | 0.0114 (10) | |
O14 | −0.1754 (9) | 0.6382 (4) | 0.6799 (3) | 0.0112 (10) | |
P2 | −0.0162 (4) | 0.86363 (13) | 0.57751 (11) | 0.0072 (3) | |
O21 | −0.0078 (10) | 0.8096 (4) | 0.4874 (3) | 0.0150 (10) | |
O22 | 0.0432 (10) | 0.9871 (4) | 0.5716 (3) | 0.0152 (11) | |
O23 | −0.2801 (9) | 0.8501 (4) | 0.6256 (3) | 0.0102 (10) | |
O24 | 0.1845 (9) | 0.8099 (4) | 0.6423 (3) | 0.0103 (10) | |
P3 | −0.4055 (4) | 0.23909 (13) | 0.63258 (11) | 0.0082 (4) | |
O31 | −0.1171 (10) | 0.2191 (4) | 0.6504 (3) | 0.0157 (11) | |
O32 | −0.5368 (10) | 0.1316 (4) | 0.6024 (3) | 0.0139 (11) | |
O33 | −0.4459 (11) | 0.3255 (4) | 0.5590 (3) | 0.0196 (11) | |
O34 | −0.5425 (10) | 0.2787 (4) | 0.7192 (3) | 0.0166 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn | 0.0117 (4) | 0.0142 (4) | 0.0139 (4) | 0.0003 (3) | −0.0006 (3) | −0.0005 (3) |
Fe1 | 0.0053 (4) | 0.0070 (4) | 0.0087 (4) | −0.0002 (4) | 0.0004 (4) | 0.0007 (3) |
Fe2 | 0.0102 (5) | 0.0090 (4) | 0.0084 (4) | −0.0017 (4) | 0.0001 (4) | 0.0013 (4) |
Na | 0.0205 (17) | 0.0193 (13) | 0.0245 (15) | −0.0002 (14) | 0.0051 (15) | −0.0035 (12) |
P1 | 0.0066 (7) | 0.0074 (7) | 0.0086 (8) | 0.0006 (7) | −0.0009 (7) | 0.0008 (6) |
O11 | 0.016 (3) | 0.009 (2) | 0.021 (2) | 0.003 (2) | 0.000 (2) | 0.0022 (19) |
O12 | 0.022 (3) | 0.026 (3) | 0.007 (2) | −0.004 (2) | −0.005 (2) | 0.002 (2) |
O13 | 0.007 (2) | 0.011 (2) | 0.016 (2) | 0.001 (2) | −0.003 (2) | 0.002 (2) |
O14 | 0.008 (2) | 0.008 (2) | 0.017 (2) | 0.0028 (19) | 0.003 (2) | −0.0009 (19) |
P2 | 0.0072 (8) | 0.0073 (7) | 0.0070 (7) | −0.0007 (7) | −0.0007 (7) | 0.0005 (6) |
O21 | 0.013 (2) | 0.021 (2) | 0.011 (2) | −0.001 (2) | 0.000 (2) | −0.002 (2) |
O22 | 0.016 (3) | 0.008 (2) | 0.022 (3) | −0.005 (2) | 0.009 (2) | 0.0000 (19) |
O23 | 0.009 (2) | 0.008 (2) | 0.014 (2) | −0.002 (2) | 0.002 (2) | −0.0014 (19) |
O24 | 0.010 (2) | 0.013 (2) | 0.008 (2) | 0.0029 (19) | 0.0013 (19) | 0.0007 (19) |
P3 | 0.0075 (8) | 0.0092 (7) | 0.0080 (7) | −0.0010 (7) | 0.0011 (7) | −0.0007 (6) |
O31 | 0.011 (2) | 0.020 (2) | 0.016 (2) | −0.001 (2) | −0.001 (2) | −0.006 (2) |
O32 | 0.015 (3) | 0.015 (2) | 0.012 (2) | −0.005 (2) | −0.004 (2) | −0.0024 (18) |
O33 | 0.021 (3) | 0.015 (2) | 0.023 (3) | −0.003 (2) | 0.001 (3) | 0.011 (2) |
O34 | 0.012 (2) | 0.020 (2) | 0.018 (2) | −0.006 (2) | 0.005 (2) | −0.003 (2) |
Zn—O31 | 1.908 (5) | Na—O32viii | 2.476 (6) |
Zn—O11 | 2.006 (5) | Na—O13iv | 2.497 (6) |
Zn—O34i | 2.024 (5) | Na—O24ix | 2.705 (6) |
Zn—O24ii | 2.181 (5) | Na—O34vii | 2.705 (6) |
Zn—O14ii | 2.279 (5) | Na—O14vii | 2.922 (6) |
Zn—O23ii | 2.369 (5) | Na—O22ix | 2.987 (6) |
Fe1—O21iii | 1.882 (5) | P1—O11 | 1.521 (5) |
Fe1—O13 | 1.942 (5) | P1—O12 | 1.544 (5) |
Fe1—O24 | 1.991 (5) | P1—O13 | 1.549 (5) |
Fe1—O14i | 2.026 (5) | P1—O14 | 1.552 (5) |
Fe1—O23i | 2.054 (5) | P2—O21 | 1.511 (5) |
Fe1—O34iv | 2.340 (5) | P2—O22 | 1.541 (5) |
Fe2—O22v | 1.852 (5) | P2—O23 | 1.543 (5) |
Fe2—O33vi | 1.851 (5) | P2—O24 | 1.563 (5) |
Fe2—O12vi | 1.872 (5) | P3—O31 | 1.522 (5) |
Fe2—O32i | 1.881 (5) | P3—O32 | 1.544 (5) |
Na—O11vii | 2.401 (7) | P3—O33 | 1.545 (5) |
Na—O23 | 2.444 (6) | P3—O34 | 1.559 (5) |
O31—Zn—O11 | 100.0 (2) | O32viii—Na—O13iv | 94.52 (19) |
O31—Zn—O34i | 109.1 (2) | O11vii—Na—O24ix | 65.25 (17) |
O11—Zn—O34i | 109.1 (2) | O23—Na—O24ix | 65.63 (16) |
O31—Zn—O24ii | 109.0 (2) | O32viii—Na—O24ix | 109.13 (19) |
O11—Zn—O24ii | 82.5 (2) | O13iv—Na—O24ix | 156.21 (19) |
O34i—Zn—O24ii | 137.1 (2) | O11vii—Na—O34vii | 79.91 (18) |
O31—Zn—O14ii | 96.1 (2) | O23—Na—O34vii | 61.90 (17) |
O11—Zn—O14ii | 158.9 (2) | O32viii—Na—O34vii | 159.3 (2) |
O34i—Zn—O14ii | 77.84 (19) | O13iv—Na—O34vii | 96.03 (18) |
O24ii—Zn—O14ii | 79.40 (18) | O24ix—Na—O34vii | 62.46 (16) |
O31—Zn—O23ii | 168.10 (19) | O11vii—Na—O14vii | 55.13 (15) |
O11—Zn—O23ii | 89.45 (19) | O23—Na—O14vii | 176.0 (2) |
O34i—Zn—O23ii | 73.97 (19) | O32viii—Na—O14vii | 83.18 (18) |
O24ii—Zn—O23ii | 64.82 (17) | O13iv—Na—O14vii | 61.09 (16) |
O14ii—Zn—O23ii | 73.03 (17) | O24ix—Na—O14vii | 117.90 (19) |
O21iii—Fe1—O13 | 99.5 (2) | O34vii—Na—O14vii | 117.54 (17) |
O21iii—Fe1—O24 | 97.2 (2) | O11vii—Na—O22ix | 71.37 (18) |
O13—Fe1—O24 | 93.7 (2) | O23—Na—O22ix | 92.32 (18) |
O21iii—Fe1—O14i | 105.3 (2) | O32viii—Na—O22ix | 61.35 (17) |
O13—Fe1—O14i | 88.88 (19) | O13iv—Na—O22ix | 146.51 (19) |
O24—Fe1—O14i | 156.6 (2) | O24ix—Na—O22ix | 52.23 (14) |
O21iii—Fe1—O23i | 92.2 (2) | O34vii—Na—O22ix | 114.60 (18) |
O13—Fe1—O23i | 168.0 (2) | O14vii—Na—O22ix | 91.41 (16) |
O24—Fe1—O23i | 87.52 (19) | O11—P1—O12 | 110.3 (3) |
O14i—Fe1—O23i | 85.38 (19) | O11—P1—O13 | 109.9 (3) |
O21iii—Fe1—O34iv | 166.1 (2) | O12—P1—O13 | 109.6 (3) |
O13—Fe1—O34iv | 94.29 (19) | O11—P1—O14 | 109.3 (3) |
O24—Fe1—O34iv | 80.26 (18) | O12—P1—O14 | 108.6 (3) |
O14i—Fe1—O34iv | 76.38 (18) | O13—P1—O14 | 109.0 (3) |
O23i—Fe1—O34iv | 74.09 (19) | O21—P2—O22 | 111.7 (3) |
O22v—Fe2—O33vi | 109.2 (3) | O21—P2—O23 | 113.6 (3) |
O22v—Fe2—O12vi | 106.7 (2) | O22—P2—O23 | 107.8 (3) |
O33vi—Fe2—O12vi | 113.5 (2) | O21—P2—O24 | 111.1 (3) |
O22v—Fe2—O32i | 98.2 (2) | O22—P2—O24 | 108.4 (3) |
O33vi—Fe2—O32i | 121.3 (2) | O23—P2—O24 | 103.8 (3) |
O12vi—Fe2—O32i | 106.1 (2) | O31—P3—O32 | 109.8 (3) |
O11vii—Na—O23 | 127.5 (2) | O31—P3—O33 | 111.5 (3) |
O11vii—Na—O32viii | 114.9 (2) | O32—P3—O33 | 108.1 (3) |
O23—Na—O32viii | 97.5 (2) | O31—P3—O34 | 109.8 (3) |
O11vii—Na—O13iv | 102.9 (2) | O32—P3—O34 | 108.3 (3) |
O23—Na—O13iv | 114.9 (2) | O33—P3—O34 | 109.2 (3) |
Symmetry codes: (i) x+1, y, z; (ii) −x, y−1/2, −z+3/2; (iii) x+1/2, −y+3/2, −z+1; (iv) −x, y+1/2, −z+3/2; (v) x, y−1, z; (vi) x+1/2, −y+1/2, −z+1; (vii) −x−1, y+1/2, −z+3/2; (viii) x, y+1, z; (ix) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | NaZnFe2(PO4)3 |
Mr | 484.97 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 293 |
a, b, c (Å) | 5.124 (1), 12.213 (5), 15.072 (9) |
V (Å3) | 943.2 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 6.18 |
Crystal size (mm) | 0.22 × 0.10 × 0.06 |
Data collection | |
Diffractometer | Enraf-Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.529, 0.690 |
No. of measured, independent and observed [I > 2σi(I)] reflections | 1314, 1293, 1184 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.638 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.078, 1.24 |
No. of reflections | 1293 |
No. of parameters | 173 |
Δρmax, Δρmin (e Å−3) | 0.64, −1.05 |
Absolute structure | Flack (1983) with 70 Friedel pairs |
Absolute structure parameter | 0.02 (3) |
Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SIR92 (Altomare, 1993), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 1998), SHELXL97.
Zn—O31 | 1.908 (5) | Na—O32viii | 2.476 (6) |
Zn—O11 | 2.006 (5) | Na—O13iv | 2.497 (6) |
Zn—O34i | 2.024 (5) | Na—O24ix | 2.705 (6) |
Zn—O24ii | 2.181 (5) | Na—O34vii | 2.705 (6) |
Zn—O14ii | 2.279 (5) | Na—O14vii | 2.922 (6) |
Zn—O23ii | 2.369 (5) | Na—O22ix | 2.987 (6) |
Fe1—O21iii | 1.882 (5) | P1—O11 | 1.521 (5) |
Fe1—O13 | 1.942 (5) | P1—O12 | 1.544 (5) |
Fe1—O24 | 1.991 (5) | P1—O13 | 1.549 (5) |
Fe1—O14i | 2.026 (5) | P1—O14 | 1.552 (5) |
Fe1—O23i | 2.054 (5) | P2—O21 | 1.511 (5) |
Fe1—O34iv | 2.340 (5) | P2—O22 | 1.541 (5) |
Fe2—O22v | 1.852 (5) | P2—O23 | 1.543 (5) |
Fe2—O33vi | 1.851 (5) | P2—O24 | 1.563 (5) |
Fe2—O12vi | 1.872 (5) | P3—O31 | 1.522 (5) |
Fe2—O32i | 1.881 (5) | P3—O32 | 1.544 (5) |
Na—O11vii | 2.401 (7) | P3—O33 | 1.545 (5) |
Na—O23 | 2.444 (6) | P3—O34 | 1.559 (5) |
O31—Zn—O11 | 100.0 (2) | O34i—Zn—O14ii | 77.84 (19) |
O31—Zn—O34i | 109.1 (2) | O24ii—Zn—O14ii | 79.40 (18) |
O11—Zn—O34i | 109.1 (2) | O31—Zn—O23ii | 168.10 (19) |
O31—Zn—O24ii | 109.0 (2) | O11—Zn—O23ii | 89.45 (19) |
O11—Zn—O24ii | 82.5 (2) | O34i—Zn—O23ii | 73.97 (19) |
O34i—Zn—O24ii | 137.1 (2) | O24ii—Zn—O23ii | 64.82 (17) |
O31—Zn—O14ii | 96.1 (2) | O14ii—Zn—O23ii | 73.03 (17) |
O11—Zn—O14ii | 158.9 (2) |
Symmetry codes: (i) x+1, y, z; (ii) −x, y−1/2, −z+3/2; (iii) x+1/2, −y+3/2, −z+1; (iv) −x, y+1/2, −z+3/2; (v) x, y−1, z; (vi) x+1/2, −y+1/2, −z+1; (vii) −x−1, y+1/2, −z+3/2; (viii) x, y+1, z; (ix) x−1, y, z. |
The investigation of iron phosphates during the past two decades has led to the synthesis and characterization of numerous compounds with a variety of network structures. Most of these compounds belong to the binary A3PO4—FePO4 system, where A is a monovalent cation. By contrast, the bibliographic data reveal only a small number of ternary iron phosphates of the A3PO4—M3(PO4)2-FePO4 system, where A and M are a monovalent and a divalent cation, respectively, namely, Na3Ca18Fe(PO4)14 (Strunkova et al., 1997), Na2Fe3(PO4)3 (Yakubovich et al., 1977), NaFe3(PO4)3 (Corbin et al., 1986), Na7Fe4(PO4)6 (Lii, 1996), NaFe3.67(PO4)3 (Korzenski et al., 1998), KBaFe2(PO4)3 (Battle et al., 1986) and Cu1.35Fe3(PO4)3 (Warner et al., 1993).
As part of our study of the crystal chemistry of ternary iron monophosphates belonging to the Na3PO4—M3(PO4)2-FePO4 system, we report here the synthesis and structural characterization of NaZnFe2(PO4)3. This compound features a new type of structure (Fig. 1), comprising FeO6, FeO4 and ZnO6 polyhedra connected together via the corners and edges of three crystallographically distinct PO4 tetrahedra. The resulting complex three-dimensional framework contains tunnels running along the [100] direction, in which the Na+ cations reside.
The oxygen environment around the Zn atoms in NaZnFe2(PO4)3 approximates a highly distorted octahedron, as indicated by the Zn—O bond lengths and O—Zn—O bond angles (Table 1 Do you wish to publish any angles?). The ZnO6 octahedron shares two corners, atoms O11 and O14, with two P1O4 tetrahedra, one edge, O23—O24, with one P2O4 tetrahedron, and the remaining two corners, atoms O31 and O34, with two P3O4 tetrahedra.
The Fe1 atoms also exhibit a distorted octahedral environment. The Fe1O6 octahedron shares one edge, O13—O14, with one P1O4 tetrahedron, and three corners, atoms O21, O23 and O24, with three P2O4 tetrahedra. The sixth vertex, atom O34, is shared with the P3O4 group.
The Fe2 atoms exhibit an unusual tetrahedral environment. The corresponding bond distances are close to those observed in FePO4 (Calvo, 1975). The Fe2O4 tetrahedron shares the corners O12 and O22 with P1O4 and P2O4 tetrahedra, respectively, and the other two corners, atoms O32 and O33, with two P3O4 groups.
The Na+ cations are located within tunnels running along [100]. Their environment (Fig. 2) was determined assuming Na—O distances of less than 3.0 Å. They then have an irregular eight-coordinate site, with Na—O bond distances similar to those frequently observed for Na atoms with coordination number 8.