Download citation
Download citation
link to html
The title compound, [RuH(C6H8BN4)(C21H21P)2(CO)], possesses two trans-disposed tri-p-tolyl­phosphines in axial positions and the remaining ligands in equatorial positions. The overall geometry of the RuII ion is a distorted octahedral structure. The P—Ru—P axis deviates from linearity by about 13°. This distortion arises mainly from the steric congestion between the bulky phosphine moieties and the tetrahedral di­hydro­bis­(pyrazol-1-yl)­borate ligands.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199016649/ja1005sup1.cif
Contains datablocks ru104, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199016649/ja1005Isup2.hkl
Contains datablock I

CCDC reference: 144610

Comment top

Our recent structural investigations of several hydridocarbonyl RuII complexes containing bidentate anionic dihydrobis(pyrazol-1-yl)borates, [H2B(pz*)2]- (pz* = pyrazol-1-yl rings with various substituents), have revealed that these compounds often form novel cyclic dimers consisting of mutual intermolecular hydrogen bonds, namely Ru—CO···H, where H belongs to a phenyl or pyrazolyl ring of a neighbouring molecule. We have been interested in this type of hydrogen bonding because this motif can be a good candidate for crystal engineering of organometallic compounds. Both [RuH(CO)(PPh3)2(η2-H2Bpz2)], (II), and [RuH(CO)(PPh3)2(η2-H2B(4-Brpz)2)], (III), display respective intermolecular hydrogen-bond dimensions of Ru—CO···HPh 2.5834 Å and 144.56°, and Ru—CO···Hpz 2.5960 Å and 172.23°, where Ph and pz represent the phenyl and the pyrazolyl ring, respectively (Huh, Kim, Park, Youm et al., 1999). It is interesting to note that the sources of the hydrogen bonding (H donor groups) are different in each of the compounds studied. Furthermore, such intermolecular hydrogen bonding leading to the dimeric motif could not be observed when we prepared the compound [RuH(CO)(AsPh3)2(η2-H2Bpz2)], (IV), using AsPh3 in place of PPh3 (Huh, Kim, Park, Park & Jun, 1999).

In this study, an analogous RuII complex having substituted phenyl groups in the PPh3 moieties has been prepared, to test the effect of the structural variation in the PPh3 moiety on the formation of the dimeric motif. Instead of PPh3, we have chosen a tri-p-tolylphosphine, P(p—C6H4CH3)3, whose cone angle is also 145° (Tolman, 1977). This ligand has a methyl group at the para position in each phenyl ring. In our synthesis of the title compound, [RuH(CO){P(p—C6H4CH3)3}2(η2-H2Bpz2)], (I), we had anticipated obtaining another example of the novel cyclic dimer via the mutual intermolecular hydrogen bonding. Quite unexpectedly, however, we have not been able to obtain the dimeric motif but only the monomeric form in (I). \scheme

Compound (I) shows the same ligand geometry as (II) and (III). The two Ru—P bond distances are also comparable with those of (II) and (III) [2.3578 (12) ~2.3841 (12) Å] (Please clarify). However, the Ru1—P2 length is longer than Ru1—P1 by about 0.025 Å. Although the para-positioned methyl groups of the phosphines do not seem to affect the Ru—P bond distances significantly, they do affect the bond angle of P1—Ru1—P2, whose value is 166.69 (5)°.

The two phosphine ligands are tilted toward the small hydride ligand and this is evident from the H1Ru—Ru1—P1 and H1Ru—Ru1—P2 angles of 85.1 (17) and 81.8 (17)°. This significant deviation from linearity can be attributed to the steric repulsions between the phosphines and the tetrahedral BN2H2 moiety, as shown in Fig. 1. The interligand angles of the equatorial donor atoms lie in the range 87.6 (15) to 92.36 (19)° and these values are only slightly different from 90°. The bond distances of Ru1 and other donor atoms are not significantly different from those of complexes (II) and (III). Moreover, the five atoms Ru1, H1Ru, C1, N1 and N3 are almost coplanar: the r.m.s. deviation of these five atoms from the best plane is only 0.035 Å. The angle between the two pyrazolyl rings is 152.2 (4)° (check e.s.d.) and this value is very similar to that in (III).

Two very weak intramolecular hydrogen bonds, C62—H62A···N3 and C62—H62A···N4, have dimensions of 2.549 (4) and 2.508 (5) Å (H···N) and 118.4 (4) and 148.9 (4)° (C—H···N), respectively (check 4 e.s.d.'s).

Experimental top

[RuHCl(CO)(P(p—C6H4CH3)3)3] (324 mg, 0.3 mmol; Stephenson & Wilkinson, 1966) was reacted with K[H2Bpz2] (74 mg, 0.4 mmol; Trofimenko, 1970) in boiling toluene (30 ml) solution under a nitrogen atmosphere for 18 h, to give a green solution. After being cooled and filtered, the clear filtrate was evaporated on a rotary evaporator to dryness. The resultant residue was dissolved in a small amount of acetone (5 ml) and this solution was set aside in air. Colourless crystals were obtained in a few days by slow evaporation of the solvent. X-ray quality crystals were collected from the mother liquor, washed with n-hexane and dried in air. Spectroscopic analysis: IR (cm-1, KBr): ν(BH) 2396, 2344, 2294, ν(CO) 1932; 1H NMR (293 K, CDCl3, TMS, Bruker 500 MHz, p.p.m.): δ(Ru—H) -11.8 (t, 2J = 21.5 Hz).

Refinement top

All H atoms were included in calculated postions and treated as riding, except for those bonded to B and Ru which were refined with isotropic displacement parameters.

Structure description top

Our recent structural investigations of several hydridocarbonyl RuII complexes containing bidentate anionic dihydrobis(pyrazol-1-yl)borates, [H2B(pz*)2]- (pz* = pyrazol-1-yl rings with various substituents), have revealed that these compounds often form novel cyclic dimers consisting of mutual intermolecular hydrogen bonds, namely Ru—CO···H, where H belongs to a phenyl or pyrazolyl ring of a neighbouring molecule. We have been interested in this type of hydrogen bonding because this motif can be a good candidate for crystal engineering of organometallic compounds. Both [RuH(CO)(PPh3)2(η2-H2Bpz2)], (II), and [RuH(CO)(PPh3)2(η2-H2B(4-Brpz)2)], (III), display respective intermolecular hydrogen-bond dimensions of Ru—CO···HPh 2.5834 Å and 144.56°, and Ru—CO···Hpz 2.5960 Å and 172.23°, where Ph and pz represent the phenyl and the pyrazolyl ring, respectively (Huh, Kim, Park, Youm et al., 1999). It is interesting to note that the sources of the hydrogen bonding (H donor groups) are different in each of the compounds studied. Furthermore, such intermolecular hydrogen bonding leading to the dimeric motif could not be observed when we prepared the compound [RuH(CO)(AsPh3)2(η2-H2Bpz2)], (IV), using AsPh3 in place of PPh3 (Huh, Kim, Park, Park & Jun, 1999).

In this study, an analogous RuII complex having substituted phenyl groups in the PPh3 moieties has been prepared, to test the effect of the structural variation in the PPh3 moiety on the formation of the dimeric motif. Instead of PPh3, we have chosen a tri-p-tolylphosphine, P(p—C6H4CH3)3, whose cone angle is also 145° (Tolman, 1977). This ligand has a methyl group at the para position in each phenyl ring. In our synthesis of the title compound, [RuH(CO){P(p—C6H4CH3)3}2(η2-H2Bpz2)], (I), we had anticipated obtaining another example of the novel cyclic dimer via the mutual intermolecular hydrogen bonding. Quite unexpectedly, however, we have not been able to obtain the dimeric motif but only the monomeric form in (I). \scheme

Compound (I) shows the same ligand geometry as (II) and (III). The two Ru—P bond distances are also comparable with those of (II) and (III) [2.3578 (12) ~2.3841 (12) Å] (Please clarify). However, the Ru1—P2 length is longer than Ru1—P1 by about 0.025 Å. Although the para-positioned methyl groups of the phosphines do not seem to affect the Ru—P bond distances significantly, they do affect the bond angle of P1—Ru1—P2, whose value is 166.69 (5)°.

The two phosphine ligands are tilted toward the small hydride ligand and this is evident from the H1Ru—Ru1—P1 and H1Ru—Ru1—P2 angles of 85.1 (17) and 81.8 (17)°. This significant deviation from linearity can be attributed to the steric repulsions between the phosphines and the tetrahedral BN2H2 moiety, as shown in Fig. 1. The interligand angles of the equatorial donor atoms lie in the range 87.6 (15) to 92.36 (19)° and these values are only slightly different from 90°. The bond distances of Ru1 and other donor atoms are not significantly different from those of complexes (II) and (III). Moreover, the five atoms Ru1, H1Ru, C1, N1 and N3 are almost coplanar: the r.m.s. deviation of these five atoms from the best plane is only 0.035 Å. The angle between the two pyrazolyl rings is 152.2 (4)° (check e.s.d.) and this value is very similar to that in (III).

Two very weak intramolecular hydrogen bonds, C62—H62A···N3 and C62—H62A···N4, have dimensions of 2.549 (4) and 2.508 (5) Å (H···N) and 118.4 (4) and 148.9 (4)° (C—H···N), respectively (check 4 e.s.d.'s).

Computing details top

Data collection: Kappa-CCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXTL/PC (Sheldrick, 1998); program(s) used to refine structure: SHELXTL/PC; molecular graphics: SHELXTL/PC; software used to prepare material for publication: SHELXTL/PC.

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. All H atoms have been omitted for clarity, except those bonded to B and Ru, which are shown as spheres of arbitrary radii.
Carbonyl[dihydrobis(pyrazol-1-yl-κN2)borato]hydridobis- (tri-p-tolylphosphine-κP)ruthenium(II) top
Crystal data top
[RuH(CO)(C6H8BN4)(C21H21P)2]Z = 2
Mr = 885.76F(000) = 920
Triclinic, P1Dx = 1.340 Mg m3
a = 13.3445 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.7089 (2) ÅCell parameters from 14686 reflections
c = 14.2471 (2) Åθ = 4.2–25.1°
α = 106.644 (7)°µ = 0.47 mm1
β = 116.816 (8)°T = 100 K
γ = 90.965 (7)°Block, pale yellow
V = 2195.85 (6) Å30.25 × 0.15 × 0.10 mm
Data collection top
Nonius Kappa-CCD
diffractometer
7547 independent reflections
Radiation source: fine-focus sealed tube4669 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.103
φ scans and ω scans with κ offsetsθmax = 25.1°, θmin = 4.2°
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
h = 015
Tmin = 0.891, Tmax = 0.954k = 1616
14686 measured reflectionsl = 1614
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0651P)2]
where P = (Fo2 + 2Fc2)/3
7547 reflections(Δ/σ)max = 0.001
541 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.99 e Å3
Crystal data top
[RuH(CO)(C6H8BN4)(C21H21P)2]γ = 90.965 (7)°
Mr = 885.76V = 2195.85 (6) Å3
Triclinic, P1Z = 2
a = 13.3445 (2) ÅMo Kα radiation
b = 13.7089 (2) ŵ = 0.47 mm1
c = 14.2471 (2) ÅT = 100 K
α = 106.644 (7)°0.25 × 0.15 × 0.10 mm
β = 116.816 (8)°
Data collection top
Nonius Kappa-CCD
diffractometer
7547 independent reflections
Absorption correction: multi-scan
DENZO-SMN (Otwinowski & Minor, 1997)
4669 reflections with I > 2σ(I)
Tmin = 0.891, Tmax = 0.954Rint = 0.103
14686 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.73 e Å3
7547 reflectionsΔρmin = 0.99 e Å3
541 parameters
Special details top

Experimental. The program DENZO-SMN (Otwinowski & Minor, 1997) uses a scaling algorithm (Fox & Holmes, 1996) which effectively corrects for absorption effects. High redundancy data were used in the scaling program hence the 'multi-scan' code word was used. No transmission coefficients are available from the program (only scale factors for each frame). The scale factors in the experimental table are calculated from the 'size' command in the SHELXL97 input file.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.50199 (4)0.20963 (3)0.26308 (4)0.03428 (17)
H1Ru0.571 (4)0.327 (3)0.318 (4)0.026 (12)*
P10.33890 (12)0.28369 (11)0.18892 (12)0.0336 (4)
P20.68926 (12)0.17380 (11)0.34984 (12)0.0341 (4)
O10.5259 (3)0.1833 (3)0.0581 (4)0.0476 (11)
N10.3985 (4)0.0574 (4)0.1923 (4)0.0392 (12)
N20.3740 (4)0.0108 (4)0.2527 (4)0.0441 (13)
N30.4894 (4)0.2333 (3)0.4117 (4)0.0367 (12)
N40.4536 (4)0.1569 (4)0.4403 (4)0.0398 (12)
C10.5173 (4)0.1933 (4)0.1379 (5)0.0379 (15)
C20.3374 (5)0.0029 (4)0.0846 (5)0.0455 (16)
H2A0.33700.01230.02340.055*
C30.2758 (5)0.0894 (5)0.0761 (6)0.0528 (18)
H3A0.22740.14480.01020.063*
C40.2989 (6)0.0789 (5)0.1824 (6)0.058 (2)
H4A0.26800.12610.20390.070*
C50.5074 (5)0.3217 (5)0.4932 (5)0.0426 (15)
H5A0.53200.38800.49500.051*
C60.4861 (5)0.3049 (5)0.5739 (5)0.0449 (16)
H6A0.49310.35450.63960.054*
C70.4520 (5)0.1981 (5)0.5366 (5)0.0447 (15)
H7A0.43110.16080.57370.054*
C110.2787 (4)0.3282 (4)0.2815 (5)0.0350 (14)
C120.2789 (4)0.4330 (4)0.3300 (5)0.0375 (14)
H12A0.30940.48420.31250.045*
C130.2344 (5)0.4621 (4)0.4038 (5)0.0396 (15)
H13A0.23560.53340.43610.047*
C140.1887 (5)0.3903 (4)0.4314 (5)0.0397 (15)
C150.1935 (4)0.2864 (4)0.3873 (5)0.0373 (14)
H15A0.16560.23570.40730.045*
C160.2384 (4)0.2565 (4)0.3147 (4)0.0355 (14)
H16A0.24190.18550.28680.043*
C170.1360 (5)0.4212 (5)0.5077 (5)0.0522 (18)
H17A0.07430.36600.48570.078*
H17B0.10540.48500.50190.078*
H17C0.19420.43260.58470.078*
C210.2162 (4)0.2040 (4)0.0564 (5)0.0354 (14)
C220.2241 (5)0.1871 (4)0.0412 (5)0.0405 (15)
H22A0.29170.21640.03700.049*
C230.1357 (5)0.1286 (4)0.1441 (5)0.0422 (15)
H23A0.14350.11860.20910.051*
C240.0350 (5)0.0840 (4)0.1537 (5)0.0399 (15)
C250.0275 (5)0.0971 (4)0.0576 (5)0.0417 (15)
H25A0.03880.06520.06180.050*
C260.1172 (5)0.1574 (4)0.0465 (5)0.0403 (15)
H26A0.10980.16640.11160.048*
C270.0633 (5)0.0218 (5)0.2678 (5)0.0498 (17)
H27A0.11990.01470.25820.075*
H27B0.03400.02840.30940.075*
H27C0.09890.06870.30910.075*
C310.3552 (5)0.3954 (4)0.1487 (4)0.0373 (15)
C320.4588 (5)0.4331 (4)0.1570 (5)0.0405 (15)
H32A0.52380.40220.18830.049*
C330.4675 (5)0.5145 (4)0.1203 (5)0.0423 (15)
H33A0.53790.53750.12550.051*
C340.3751 (5)0.5634 (4)0.0759 (5)0.0409 (15)
C350.2733 (5)0.5269 (4)0.0690 (5)0.0431 (15)
H35A0.20930.55970.04030.052*
C360.2631 (5)0.4442 (5)0.1026 (5)0.0421 (15)
H36A0.19140.41990.09420.051*
C370.3848 (6)0.6538 (5)0.0385 (6)0.0563 (18)
H37A0.44100.64690.01160.084*
H37B0.40910.71810.10140.084*
H37C0.31050.65520.02160.084*
C410.7754 (4)0.2211 (4)0.2950 (4)0.0358 (14)
C420.7766 (5)0.3217 (4)0.2932 (5)0.0371 (14)
H42A0.73510.36510.32180.045*
C430.8370 (5)0.3599 (4)0.2504 (5)0.0397 (15)
H43A0.83650.42920.25060.048*
C440.8978 (4)0.2999 (4)0.2076 (4)0.0356 (14)
C450.8984 (5)0.1990 (4)0.2105 (5)0.0371 (14)
H45A0.94040.15610.18230.045*
C460.8380 (5)0.1603 (4)0.2543 (5)0.0408 (15)
H46A0.83990.09160.25620.049*
C470.9590 (5)0.3405 (5)0.1552 (5)0.0442 (16)
H47A1.03460.32060.18000.066*
H47B0.96710.41600.17790.066*
H47C0.91470.31120.07390.066*
C510.7112 (5)0.0417 (4)0.3343 (5)0.0376 (15)
C520.6357 (5)0.0375 (4)0.2353 (5)0.0386 (14)
H52A0.57580.02030.17700.046*
C530.6478 (5)0.1410 (4)0.2218 (5)0.0447 (16)
H53A0.59580.19300.15430.054*
C540.7332 (5)0.1693 (5)0.3040 (6)0.0482 (17)
C550.8099 (6)0.0920 (4)0.4004 (5)0.0494 (16)
H55A0.87040.10980.45760.059*
C560.7996 (5)0.0112 (4)0.4147 (5)0.0454 (16)
H56A0.85440.06260.48110.054*
C570.7444 (6)0.2813 (5)0.2890 (6)0.062 (2)
H57A0.72910.31700.21240.094*
H57B0.68950.31390.30370.094*
H57C0.82190.28600.34110.094*
C610.7768 (4)0.2366 (4)0.5004 (5)0.0355 (14)
C620.7387 (5)0.2216 (4)0.5729 (5)0.0413 (15)
H62A0.66680.17990.54330.050*
C630.8037 (5)0.2663 (5)0.6862 (5)0.0443 (16)
H63A0.77460.25640.73320.053*
C640.9105 (5)0.3255 (4)0.7341 (5)0.0413 (15)
C650.9504 (5)0.3384 (4)0.6641 (5)0.0412 (15)
H65A1.02380.37770.69480.049*
C660.8854 (5)0.2952 (4)0.5498 (5)0.0385 (14)
H66A0.91530.30550.50350.046*
C670.9813 (5)0.3711 (5)0.8591 (5)0.0492 (17)
H67A1.06050.39250.87850.074*
H67B0.97780.31920.89310.074*
H67C0.95140.43120.88670.074*
B10.4457 (7)0.0396 (6)0.3796 (7)0.0486 (19)
H1B0.550 (4)0.027 (4)0.406 (4)0.029 (13)*
H2B0.412 (5)0.010 (5)0.416 (5)0.061 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.0289 (3)0.0320 (3)0.0352 (3)0.00037 (18)0.0126 (2)0.0064 (2)
P10.0292 (8)0.0299 (7)0.0359 (8)0.0003 (6)0.0149 (7)0.0043 (6)
P20.0299 (8)0.0315 (7)0.0358 (8)0.0013 (6)0.0136 (7)0.0076 (6)
O10.040 (2)0.053 (3)0.046 (3)0.009 (2)0.019 (2)0.014 (2)
N10.033 (3)0.041 (3)0.042 (3)0.008 (2)0.018 (2)0.012 (2)
N20.045 (3)0.036 (3)0.047 (3)0.002 (2)0.025 (3)0.004 (2)
N30.031 (3)0.035 (3)0.040 (3)0.003 (2)0.014 (2)0.011 (2)
N40.033 (3)0.044 (3)0.039 (3)0.007 (2)0.016 (2)0.011 (2)
C10.021 (3)0.032 (3)0.047 (4)0.000 (2)0.011 (3)0.001 (3)
C20.044 (4)0.042 (3)0.043 (4)0.004 (3)0.020 (3)0.004 (3)
C30.050 (4)0.036 (3)0.051 (4)0.004 (3)0.014 (3)0.001 (3)
C40.062 (4)0.030 (3)0.069 (5)0.012 (3)0.027 (4)0.006 (3)
C50.030 (3)0.042 (3)0.046 (4)0.001 (3)0.013 (3)0.010 (3)
C60.040 (3)0.053 (4)0.041 (3)0.010 (3)0.021 (3)0.010 (3)
C70.037 (3)0.055 (4)0.046 (4)0.013 (3)0.018 (3)0.023 (3)
C110.025 (3)0.030 (3)0.037 (3)0.004 (2)0.009 (3)0.004 (2)
C120.032 (3)0.034 (3)0.038 (3)0.003 (2)0.013 (3)0.006 (3)
C130.035 (3)0.030 (3)0.045 (3)0.001 (3)0.017 (3)0.003 (3)
C140.031 (3)0.041 (3)0.037 (3)0.000 (3)0.013 (3)0.003 (3)
C150.030 (3)0.037 (3)0.038 (3)0.001 (2)0.014 (3)0.006 (3)
C160.026 (3)0.036 (3)0.037 (3)0.002 (2)0.012 (3)0.005 (3)
C170.054 (4)0.055 (4)0.049 (4)0.007 (3)0.032 (3)0.005 (3)
C210.033 (3)0.030 (3)0.044 (3)0.005 (2)0.020 (3)0.010 (3)
C220.036 (3)0.039 (3)0.043 (3)0.005 (3)0.020 (3)0.005 (3)
C230.044 (4)0.037 (3)0.038 (3)0.004 (3)0.017 (3)0.007 (3)
C240.037 (3)0.029 (3)0.041 (3)0.002 (3)0.014 (3)0.004 (3)
C250.034 (3)0.041 (3)0.037 (3)0.008 (3)0.011 (3)0.004 (3)
C260.042 (3)0.039 (3)0.038 (3)0.003 (3)0.019 (3)0.009 (3)
C270.040 (3)0.044 (4)0.038 (3)0.000 (3)0.004 (3)0.001 (3)
C310.037 (3)0.036 (3)0.032 (3)0.006 (3)0.015 (3)0.003 (3)
C320.035 (3)0.042 (3)0.043 (3)0.007 (3)0.018 (3)0.013 (3)
C330.039 (3)0.037 (3)0.052 (4)0.000 (3)0.024 (3)0.012 (3)
C340.045 (4)0.031 (3)0.039 (3)0.002 (3)0.015 (3)0.010 (3)
C350.031 (3)0.041 (3)0.042 (3)0.004 (3)0.006 (3)0.012 (3)
C360.033 (3)0.043 (3)0.042 (3)0.002 (3)0.013 (3)0.009 (3)
C370.055 (4)0.052 (4)0.063 (4)0.004 (3)0.019 (4)0.035 (3)
C410.030 (3)0.035 (3)0.031 (3)0.001 (2)0.010 (3)0.004 (2)
C420.037 (3)0.030 (3)0.037 (3)0.004 (3)0.015 (3)0.004 (3)
C430.035 (3)0.037 (3)0.042 (3)0.001 (3)0.015 (3)0.011 (3)
C440.026 (3)0.037 (3)0.033 (3)0.000 (2)0.008 (2)0.006 (3)
C450.032 (3)0.037 (3)0.039 (3)0.006 (3)0.017 (3)0.009 (3)
C460.036 (3)0.037 (3)0.047 (4)0.006 (3)0.019 (3)0.011 (3)
C470.042 (3)0.045 (3)0.041 (3)0.003 (3)0.019 (3)0.009 (3)
C510.037 (3)0.034 (3)0.036 (3)0.003 (3)0.017 (3)0.004 (3)
C520.030 (3)0.038 (3)0.037 (3)0.004 (3)0.009 (3)0.009 (3)
C530.036 (3)0.032 (3)0.056 (4)0.000 (3)0.020 (3)0.003 (3)
C540.046 (4)0.037 (3)0.061 (4)0.006 (3)0.027 (4)0.014 (3)
C550.055 (4)0.038 (3)0.045 (4)0.014 (3)0.015 (3)0.016 (3)
C560.050 (4)0.033 (3)0.041 (4)0.003 (3)0.015 (3)0.006 (3)
C570.066 (5)0.037 (3)0.080 (5)0.009 (3)0.032 (4)0.017 (3)
C610.030 (3)0.030 (3)0.039 (3)0.006 (2)0.014 (3)0.006 (3)
C620.038 (3)0.041 (3)0.041 (3)0.002 (3)0.017 (3)0.012 (3)
C630.039 (3)0.053 (4)0.038 (3)0.001 (3)0.017 (3)0.015 (3)
C640.040 (3)0.036 (3)0.037 (3)0.002 (3)0.014 (3)0.004 (3)
C650.035 (3)0.035 (3)0.042 (3)0.004 (3)0.015 (3)0.001 (3)
C660.033 (3)0.042 (3)0.039 (3)0.004 (3)0.017 (3)0.011 (3)
C670.050 (4)0.046 (4)0.038 (3)0.003 (3)0.014 (3)0.007 (3)
B10.053 (5)0.038 (4)0.056 (5)0.007 (3)0.025 (4)0.020 (4)
Geometric parameters (Å, º) top
Ru1—C11.837 (6)C23—C241.399 (7)
Ru1—N12.173 (4)C24—C251.378 (8)
Ru1—N32.132 (4)C24—C271.528 (7)
Ru1—P12.3448 (17)C25—C261.407 (7)
Ru1—P22.3699 (17)C31—C361.394 (9)
Ru1—H1Ru1.62 (4)C31—C321.409 (7)
P1—C111.807 (5)C32—C331.384 (9)
P1—C311.824 (6)C33—C341.391 (9)
P1—C211.846 (5)C34—C351.390 (8)
P2—C511.806 (6)C34—C371.506 (9)
P2—C611.832 (5)C35—C361.377 (9)
P2—C411.851 (5)C41—C461.382 (7)
O1—C11.164 (6)C41—C421.387 (8)
N1—N21.348 (7)C42—C431.381 (8)
N1—C21.351 (7)C43—C441.374 (7)
N2—C41.367 (7)C44—C451.395 (8)
N2—B11.536 (9)C44—C471.520 (7)
N3—C51.344 (6)C45—C461.397 (8)
N3—N41.378 (6)C51—C561.396 (9)
N4—C71.335 (7)C51—C521.410 (7)
N4—B11.568 (8)C52—C531.399 (8)
C2—C31.376 (8)C53—C541.375 (10)
C3—C41.364 (9)C54—C551.386 (8)
C5—C61.379 (8)C54—C571.509 (9)
C6—C71.395 (8)C55—C561.389 (8)
C11—C161.400 (8)C61—C661.399 (7)
C11—C121.404 (7)C61—C621.399 (8)
C12—C131.395 (7)C62—C631.374 (8)
C13—C141.384 (8)C63—C641.387 (7)
C14—C151.398 (7)C64—C651.372 (8)
C14—C171.513 (7)C64—C671.509 (8)
C15—C161.387 (7)C65—C661.383 (8)
C21—C261.387 (7)B1—H2B1.16 (6)
C21—C221.396 (7)B1—H1B1.30 (5)
C22—C231.385 (7)
H1Ru—Ru1—C190.4 (15)C26—C21—C22117.2 (5)
H1Ru—Ru1—N1175.2 (15)C26—C21—P1125.0 (4)
H1Ru—Ru1—N387.6 (15)C22—C21—P1117.8 (4)
H1Ru—Ru1—P185.1 (17)C23—C22—C21121.5 (5)
H1Ru—Ru1—P281.8 (17)C22—C23—C24120.9 (5)
C1—Ru1—N192.36 (19)C25—C24—C23118.2 (5)
C1—Ru1—N3177.85 (19)C25—C24—C27121.2 (5)
C1—Ru1—P190.02 (19)C23—C24—C27120.6 (5)
C1—Ru1—P288.00 (18)C24—C25—C26120.5 (5)
N1—Ru1—P190.98 (14)C21—C26—C25121.6 (5)
N1—Ru1—P2102.26 (14)C36—C31—C32116.8 (6)
N3—Ru1—P190.53 (14)C36—C31—P1120.9 (4)
N3—Ru1—P290.99 (14)C32—C31—P1122.2 (5)
N3—Ru1—N189.71 (16)C33—C32—C31121.1 (6)
P1—Ru1—P2166.69 (5)C32—C33—C34121.4 (5)
C11—P1—C31103.9 (3)C35—C34—C33117.4 (6)
C11—P1—C21104.0 (2)C35—C34—C37120.9 (6)
C31—P1—C2198.4 (3)C33—C34—C37121.7 (5)
C11—P1—Ru1114.0 (2)C36—C35—C34121.6 (6)
C31—P1—Ru1116.53 (19)C35—C36—C31121.6 (5)
C21—P1—Ru1117.83 (18)C46—C41—C42118.1 (5)
C51—P2—C61101.5 (3)C46—C41—P2123.0 (5)
C51—P2—C41103.5 (2)C42—C41—P2118.8 (4)
C61—P2—C41102.1 (2)C43—C42—C41121.1 (5)
C51—P2—Ru1119.72 (18)C44—C43—C42121.5 (6)
C61—P2—Ru1118.14 (17)C43—C44—C45117.8 (5)
C41—P2—Ru1109.6 (2)C43—C44—C47121.2 (5)
N2—N1—C2106.8 (5)C45—C44—C47121.0 (5)
N2—N1—Ru1123.3 (3)C44—C45—C46120.9 (5)
C2—N1—Ru1129.5 (4)C41—C46—C45120.5 (6)
N1—N2—C4108.9 (5)C56—C51—C52116.5 (5)
N1—N2—B1123.2 (5)C56—C51—P2124.3 (4)
C4—N2—B1125.8 (6)C52—C51—P2119.2 (5)
C5—N3—N4105.2 (4)C53—C52—C51120.8 (6)
C5—N3—Ru1129.6 (4)C54—C53—C52121.5 (5)
N4—N3—Ru1125.1 (3)C53—C54—C55118.2 (6)
C7—N4—N3109.9 (4)C53—C54—C57121.0 (5)
C7—N4—B1127.1 (5)C55—C54—C57120.8 (7)
N3—N4—B1121.5 (4)C54—C55—C56120.9 (7)
O1—C1—Ru1179.3 (5)C55—C56—C51122.0 (5)
N1—C2—C3110.3 (6)C66—C61—C62116.5 (5)
C4—C3—C2105.4 (5)C66—C61—P2123.5 (4)
C3—C4—N2108.6 (6)C62—C61—P2119.8 (4)
N3—C5—C6112.0 (5)C63—C62—C61120.9 (5)
C5—C6—C7103.9 (5)C62—C63—C64122.0 (5)
N4—C7—C6108.9 (5)C65—C64—C63117.7 (5)
C16—C11—C12117.4 (5)C65—C64—C67121.6 (5)
C16—C11—P1119.1 (4)C63—C64—C67120.7 (5)
C12—C11—P1123.3 (4)C64—C65—C66121.1 (5)
C13—C12—C11120.2 (5)C65—C66—C61121.7 (5)
C14—C13—C12122.0 (5)H2B—B1—H1B107 (4)
C13—C14—C15117.8 (5)H2B—B1—N2113 (3)
C13—C14—C17122.2 (5)H1B—B1—N2110 (2)
C15—C14—C17120.0 (5)H2B—B1—N4109 (3)
C16—C15—C14120.7 (5)H1B—B1—N4106 (2)
C15—C16—C11121.6 (5)N2—B1—N4111.5 (6)
H1Ru—Ru1—P1—C1186.3 (15)C31—P1—C21—C26129.6 (5)
C1—Ru1—P1—C11176.7 (2)Ru1—P1—C21—C26104.4 (5)
N3—Ru1—P1—C111.2 (2)C11—P1—C21—C22158.6 (5)
N1—Ru1—P1—C1191.0 (2)C31—P1—C21—C2251.9 (5)
P2—Ru1—P1—C1195.3 (3)Ru1—P1—C21—C2274.1 (5)
H1Ru—Ru1—P1—C3134.8 (15)C26—C21—C22—C231.7 (9)
C1—Ru1—P1—C3155.6 (2)P1—C21—C22—C23179.7 (5)
N3—Ru1—P1—C31122.4 (2)C21—C22—C23—C240.2 (9)
N1—Ru1—P1—C31147.9 (2)C22—C23—C24—C252.0 (9)
P2—Ru1—P1—C3125.8 (3)C22—C23—C24—C27178.5 (6)
H1Ru—Ru1—P1—C21151.4 (15)C23—C24—C25—C262.5 (9)
C1—Ru1—P1—C2161.0 (3)C27—C24—C25—C26177.9 (6)
N3—Ru1—P1—C21121.0 (2)C22—C21—C26—C251.1 (9)
N1—Ru1—P1—C2131.3 (2)P1—C21—C26—C25179.6 (5)
P2—Ru1—P1—C21142.4 (3)C24—C25—C26—C211.0 (10)
H1Ru—Ru1—P2—C51178.2 (15)C11—P1—C31—C3654.4 (5)
C1—Ru1—P2—C5187.5 (3)C21—P1—C31—C3652.3 (5)
N3—Ru1—P2—C5194.4 (2)Ru1—P1—C31—C36179.3 (4)
N1—Ru1—P2—C514.5 (2)C11—P1—C31—C32128.9 (4)
P1—Ru1—P2—C51169.1 (3)C21—P1—C31—C32124.4 (4)
H1Ru—Ru1—P2—C6157.3 (15)Ru1—P1—C31—C322.6 (5)
C1—Ru1—P2—C61148.0 (3)C36—C31—C32—C330.4 (8)
N3—Ru1—P2—C6130.1 (2)P1—C31—C32—C33176.5 (4)
N1—Ru1—P2—C61120.0 (2)C31—C32—C33—C341.3 (8)
P1—Ru1—P2—C6166.4 (3)C32—C33—C34—C350.5 (8)
H1Ru—Ru1—P2—C4159.0 (15)C32—C33—C34—C37178.4 (5)
C1—Ru1—P2—C4131.7 (2)C33—C34—C35—C361.2 (8)
N3—Ru1—P2—C41146.4 (2)C37—C34—C35—C36179.9 (5)
N1—Ru1—P2—C41123.7 (2)C34—C35—C36—C312.2 (8)
P1—Ru1—P2—C4149.9 (3)C32—C31—C36—C351.3 (8)
H1Ru—Ru1—N1—N268 (21)P1—C31—C36—C35178.2 (4)
C1—Ru1—N1—N2167.1 (5)C51—P2—C41—C460.0 (5)
N3—Ru1—N1—N212.3 (4)C61—P2—C41—C46105.1 (5)
P1—Ru1—N1—N2102.9 (4)Ru1—P2—C41—C46128.8 (5)
P2—Ru1—N1—N278.6 (4)C51—P2—C41—C42179.1 (4)
H1Ru—Ru1—N1—C2104 (21)C61—P2—C41—C4275.7 (5)
C1—Ru1—N1—C221.1 (5)Ru1—P2—C41—C4250.3 (5)
N3—Ru1—N1—C2159.5 (5)C46—C41—C42—C431.0 (8)
P1—Ru1—N1—C269.0 (5)P2—C41—C42—C43178.3 (4)
P2—Ru1—N1—C2109.5 (5)C41—C42—C43—C440.3 (9)
C2—N1—N2—C40.8 (6)C42—C43—C44—C451.2 (8)
Ru1—N1—N2—C4174.3 (4)C42—C43—C44—C47176.8 (5)
C2—N1—N2—B1164.9 (5)C43—C44—C45—C460.8 (8)
Ru1—N1—N2—B121.6 (7)C47—C44—C45—C46177.2 (5)
H1Ru—Ru1—N3—C514.9 (18)C42—C41—C46—C451.4 (8)
C1—Ru1—N3—C535 (7)P2—C41—C46—C45177.8 (4)
N1—Ru1—N3—C5161.2 (5)C44—C45—C46—C410.5 (9)
P1—Ru1—N3—C570.2 (5)C61—P2—C51—C5616.8 (5)
P2—Ru1—N3—C596.6 (5)C41—P2—C51—C5688.8 (5)
H1Ru—Ru1—N3—N4168.9 (18)Ru1—P2—C51—C56148.9 (4)
C1—Ru1—N3—N4149 (6)C61—P2—C51—C52163.5 (4)
N1—Ru1—N3—N415.1 (4)C41—P2—C51—C5290.9 (4)
P1—Ru1—N3—N4106.0 (4)Ru1—P2—C51—C5231.4 (5)
P2—Ru1—N3—N487.2 (4)C56—C51—C52—C532.4 (8)
C5—N3—N4—C71.0 (6)P2—C51—C52—C53177.9 (4)
Ru1—N3—N4—C7178.0 (4)C51—C52—C53—C540.0 (9)
C5—N3—N4—B1168.0 (5)C52—C53—C54—C551.8 (9)
Ru1—N3—N4—B115.0 (7)C52—C53—C54—C57179.2 (5)
H1Ru—Ru1—C1—O191 (42)C53—C54—C55—C561.2 (9)
N3—Ru1—C1—O1110 (41)C57—C54—C55—C56179.8 (6)
N1—Ru1—C1—O186 (42)C54—C55—C56—C511.2 (9)
P1—Ru1—C1—O15 (42)C52—C51—C56—C553.0 (8)
P2—Ru1—C1—O1172 (100)P2—C51—C56—C55177.3 (4)
N2—N1—C2—C31.4 (7)C51—P2—C61—C66101.1 (5)
Ru1—N1—C2—C3174.4 (4)C41—P2—C61—C665.5 (6)
N1—C2—C3—C41.5 (8)Ru1—P2—C61—C66125.8 (5)
C2—C3—C4—N21.0 (8)C51—P2—C61—C6274.7 (5)
N1—N2—C4—C30.1 (7)C41—P2—C61—C62178.7 (5)
B1—N2—C4—C3163.5 (6)Ru1—P2—C61—C6258.4 (5)
N4—N3—C5—C60.9 (7)C66—C61—C62—C632.7 (9)
Ru1—N3—C5—C6177.7 (4)P2—C61—C62—C63178.8 (5)
N3—C5—C6—C70.4 (7)C61—C62—C63—C641.8 (10)
N3—N4—C7—C60.7 (7)C62—C63—C64—C650.1 (9)
B1—N4—C7—C6166.9 (6)C62—C63—C64—C67178.2 (6)
C5—C6—C7—N40.2 (7)C63—C64—C65—C661.0 (9)
C31—P1—C11—C16170.1 (4)C67—C64—C65—C66179.1 (6)
C21—P1—C11—C1667.6 (5)C64—C65—C66—C610.0 (9)
Ru1—P1—C11—C1662.0 (5)C62—C61—C66—C651.8 (9)
C31—P1—C11—C1215.6 (6)P2—C61—C66—C65177.8 (5)
C21—P1—C11—C12118.1 (5)N1—N2—B1—H2B179 (3)
Ru1—P1—C11—C12112.3 (5)C4—N2—B1—H2B18 (3)
C16—C11—C12—C133.3 (8)N1—N2—B1—H1B59 (2)
P1—C11—C12—C13177.8 (4)C4—N2—B1—H1B102 (2)
C11—C12—C13—C140.3 (9)N1—N2—B1—N457.7 (7)
C12—C13—C14—C153.3 (9)C4—N2—B1—N4141.0 (6)
C12—C13—C14—C17177.4 (6)C7—N4—B1—H2B16 (4)
C13—C14—C15—C162.6 (9)N3—N4—B1—H2B179 (3)
C17—C14—C15—C16178.0 (5)C7—N4—B1—H1B99 (2)
C14—C15—C16—C111.0 (9)N3—N4—B1—H1B66 (2)
C12—C11—C16—C154.0 (8)C7—N4—B1—N2141.9 (6)
P1—C11—C16—C15178.7 (4)N3—N4—B1—N253.4 (7)
C11—P1—C21—C2622.9 (6)

Experimental details

Crystal data
Chemical formula[RuH(CO)(C6H8BN4)(C21H21P)2]
Mr885.76
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)13.3445 (2), 13.7089 (2), 14.2471 (2)
α, β, γ (°)106.644 (7), 116.816 (8), 90.965 (7)
V3)2195.85 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.25 × 0.15 × 0.10
Data collection
DiffractometerNonius Kappa-CCD
Absorption correctionMulti-scan
DENZO-SMN (Otwinowski & Minor, 1997)
Tmin, Tmax0.891, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
14686, 7547, 4669
Rint0.103
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.152, 0.97
No. of reflections7547
No. of parameters541
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.73, 0.99

Computer programs: Kappa-CCD Server Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXTL/PC (Sheldrick, 1998), SHELXTL/PC.

Selected geometric parameters (Å, º) top
Ru1—C11.837 (6)Ru1—P22.3699 (17)
Ru1—N12.173 (4)Ru1—H1Ru1.62 (4)
Ru1—N32.132 (4)O1—C11.164 (6)
Ru1—P12.3448 (17)
H1Ru—Ru1—C190.4 (15)C1—Ru1—P288.00 (18)
H1Ru—Ru1—N1175.2 (15)N1—Ru1—P190.98 (14)
H1Ru—Ru1—N387.6 (15)N1—Ru1—P2102.26 (14)
H1Ru—Ru1—P185.1 (17)N3—Ru1—P190.53 (14)
H1Ru—Ru1—P281.8 (17)N3—Ru1—P290.99 (14)
C1—Ru1—N192.36 (19)N3—Ru1—N189.71 (16)
C1—Ru1—N3177.85 (19)P1—Ru1—P2166.69 (5)
C1—Ru1—P190.02 (19)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds