Download citation
Download citation
link to html
The hydro­thermal reaction of (NH4)3[CoMo6O24H6]·7H2O (CoMo6), CuCl2·2H2O and 2,2′-bi­imidazole (H2biim) led to the formation of a new coordination polymer, namely poly[di­aqua­bis­(2,2′-bi­imidazole)­hexa-μ3-oxo-octa-μ2-oxo-hexa­oxodicopper(II)hexa­molybdate(VI)], [Cu2Mo6O20(C6H6N4)2(H2O)2]n (Cu-Mo6O20), at pH 2–3. It is obvious that in the formation of crystalline Cu-Mo6O20, the original Anderson-type skeleton of heteropolymolybdate CoMo6 was broken and the new isopolyhexa­molybdate Mo6O20 unit was assembled. In Cu-Mo6O20, one Mo6O20 unit connects four [Cu(H2biim)(H2O)]2+ ions in a penta­coordinate mode via four terminal O atoms, resulting in a tetra-supported structure, and each CuII ion is shared by two adjacent Mo6O20 units. Infinite one-dimensional chains are established by linkage between two adjacent Mo6O20 units and two CuII ions, and these chains are further packed into a three-dimensional framework by hydrogen bonds, π–π inter­actions and electrostatic attractions. The catalytic performance of this crystalline material used as an efficient and reusable heterogeneous acid catalyst for carbonyl-group protection is discussed. In addition, Cu-Mo6O20 was applied as a new support for enzyme (horseradish peroxidase, HRP) immobilization, forming immobilized enzyme HRP/Cu-Mo6O20. HRP/Cu-Mo6O20 showed good catalytic activity and could be reused.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618013037/jr3022sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618013037/jr3022Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229618013037/jr3022sup3.pdf
Additional figures and spectra

CCDC reference: 1838120

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SMART (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(I) top
Crystal data top
[Cu2Mo6O20(C6H6N4)2(H2O)2]Z = 1
Mr = 1327.07F(000) = 630
Triclinic, P1Dx = 2.904 Mg m3
a = 8.065 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.293 (4) ÅCell parameters from 2954 reflections
c = 10.837 (4) Åθ = 2.1–31.0°
α = 64.090 (5)°µ = 3.87 mm1
β = 75.186 (5)°T = 296 K
γ = 71.141 (5)°Block, green
V = 758.8 (5) Å30.09 × 0.07 × 0.06 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
2409 reflections with I > 2σ(I)
phi and ω scansRint = 0.011
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
θmax = 25.0°, θmin = 2.1°
Tmin = 0.724, Tmax = 0.795h = 99
3875 measured reflectionsk = 125
2639 independent reflectionsl = 1211
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.018 w = 1/[σ2(Fo2) + (0.0182P)2 + 0.8925P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.042(Δ/σ)max = 0.002
S = 1.06Δρmax = 0.36 e Å3
2639 reflectionsΔρmin = 0.49 e Å3
235 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.00089 (19)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.98397 (3)0.33719 (3)0.03177 (3)0.01070 (8)
Mo20.60552 (3)0.61615 (3)0.14598 (3)0.01038 (8)
Mo31.36521 (3)0.35113 (3)0.13694 (3)0.01252 (8)
Cu10.74909 (5)0.03949 (4)0.26078 (4)0.01640 (10)
O10.8072 (3)0.3884 (2)0.0564 (2)0.0153 (5)
O20.4604 (3)0.4673 (2)0.0845 (2)0.0130 (5)
O30.4304 (3)0.7745 (2)0.1873 (2)0.0171 (5)
O41.1704 (3)0.2611 (2)0.0937 (2)0.0160 (5)
O50.7053 (3)0.6093 (3)0.3023 (2)0.0205 (5)
O61.2507 (3)0.3138 (2)0.0931 (2)0.0139 (5)
O71.5341 (3)0.1920 (3)0.1027 (2)0.0221 (5)
O80.9664 (3)0.1694 (2)0.1693 (2)0.0179 (5)
O90.9035 (3)0.4712 (2)0.1197 (2)0.0137 (5)
O101.3870 (3)0.4373 (3)0.3123 (2)0.0261 (6)
N10.9166 (4)0.1542 (3)0.3601 (3)0.0219 (6)
N20.7007 (4)0.0549 (3)0.4419 (3)0.0208 (6)
N31.0422 (4)0.2950 (3)0.5499 (3)0.0255 (7)
H3B1.06740.32680.63230.031*
N40.7703 (4)0.0341 (4)0.6520 (3)0.0277 (7)
H4B0.82090.09130.72490.033*
C10.9213 (4)0.1711 (4)0.4888 (3)0.0193 (7)
C20.8025 (4)0.0553 (4)0.5341 (3)0.0188 (7)
C31.0407 (5)0.2745 (4)0.3394 (4)0.0294 (9)
H3A1.06700.29280.25890.035*
C41.1183 (5)0.3617 (4)0.4566 (4)0.0315 (9)
H4A1.20610.44970.47070.038*
C50.5996 (5)0.1512 (4)0.5058 (4)0.0259 (8)
H5A0.51690.23910.46610.031*
C60.6412 (5)0.0962 (4)0.6357 (4)0.0306 (9)
H6A0.59200.13840.70130.037*
O1W0.7698 (4)0.0086 (3)0.0923 (3)0.0286 (6)
H1WA0.795 (5)0.076 (2)0.088 (4)0.031 (11)*
H1WB0.689 (4)0.066 (4)0.042 (4)0.034 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.00964 (14)0.00824 (14)0.01472 (15)0.00114 (10)0.00385 (10)0.00442 (11)
Mo20.01055 (14)0.00962 (14)0.01067 (14)0.00216 (10)0.00322 (10)0.00288 (11)
Mo30.01202 (14)0.01383 (15)0.01426 (15)0.00256 (11)0.00265 (11)0.00763 (12)
Cu10.0205 (2)0.0121 (2)0.0155 (2)0.00063 (17)0.00799 (17)0.00461 (17)
O10.0134 (11)0.0148 (11)0.0190 (12)0.0011 (9)0.0050 (9)0.0080 (10)
O20.0120 (11)0.0151 (11)0.0124 (11)0.0038 (9)0.0036 (9)0.0044 (10)
O30.0161 (12)0.0150 (12)0.0188 (12)0.0014 (10)0.0062 (9)0.0050 (10)
O40.0148 (11)0.0154 (12)0.0234 (12)0.0027 (9)0.0029 (9)0.0131 (10)
O50.0213 (12)0.0219 (13)0.0172 (12)0.0053 (10)0.0009 (10)0.0076 (11)
O60.0132 (11)0.0125 (11)0.0166 (12)0.0017 (9)0.0049 (9)0.0057 (9)
O70.0199 (13)0.0208 (13)0.0283 (14)0.0009 (10)0.0068 (10)0.0142 (11)
O80.0186 (12)0.0111 (11)0.0219 (12)0.0046 (9)0.0082 (10)0.0009 (10)
O90.0130 (11)0.0122 (11)0.0171 (12)0.0028 (9)0.0030 (9)0.0065 (10)
O100.0269 (14)0.0349 (15)0.0168 (12)0.0090 (12)0.0044 (10)0.0083 (11)
N10.0239 (15)0.0169 (15)0.0223 (16)0.0009 (13)0.0073 (13)0.0060 (13)
N20.0228 (15)0.0196 (15)0.0163 (15)0.0003 (12)0.0074 (12)0.0047 (13)
N30.0262 (16)0.0206 (16)0.0250 (17)0.0009 (13)0.0148 (13)0.0031 (14)
N40.0320 (17)0.0306 (18)0.0149 (15)0.0002 (14)0.0101 (13)0.0053 (14)
C10.0201 (17)0.0138 (17)0.0188 (18)0.0036 (14)0.0069 (14)0.0003 (14)
C20.0202 (17)0.0172 (17)0.0161 (17)0.0065 (14)0.0040 (14)0.0017 (14)
C30.033 (2)0.021 (2)0.034 (2)0.0026 (17)0.0087 (17)0.0151 (18)
C40.029 (2)0.022 (2)0.041 (2)0.0066 (16)0.0157 (18)0.0123 (19)
C50.028 (2)0.0219 (19)0.0231 (19)0.0049 (16)0.0083 (16)0.0095 (16)
C60.034 (2)0.034 (2)0.025 (2)0.0009 (18)0.0041 (17)0.0181 (18)
O1W0.0431 (17)0.0167 (14)0.0300 (15)0.0070 (12)0.0196 (13)0.0145 (12)
Geometric parameters (Å, º) top
Mo1—O11.730 (2)Cu1—O82.305 (2)
Mo1—O81.739 (2)O2—Mo3iv1.938 (2)
Mo1—O91.868 (2)O2—Mo2ii2.236 (2)
Mo1—O41.961 (2)O3—Cu1ii1.965 (2)
Mo1—O9i2.230 (2)O6—Mo2i1.853 (2)
Mo1—O62.320 (2)O9—Mo1i2.230 (2)
Mo1—Mo33.1621 (11)O9—Mo3i2.367 (2)
Mo1—Mo1i3.1980 (14)N1—C11.337 (4)
Mo2—O51.701 (2)N1—C31.383 (5)
Mo2—O31.746 (2)N2—C21.336 (4)
Mo2—O6i1.853 (2)N2—C51.384 (4)
Mo2—O22.007 (2)N3—C11.344 (4)
Mo2—O2ii2.236 (2)N3—C41.374 (5)
Mo2—O12.332 (2)N3—H3B0.8600
Mo2—Mo3i3.3005 (12)N4—C21.337 (5)
Mo3—O101.699 (2)N4—C61.378 (5)
Mo3—O71.720 (2)N4—H4B0.8600
Mo3—O41.932 (2)C1—C21.453 (5)
Mo3—O2iii1.938 (2)C3—C41.362 (5)
Mo3—O62.330 (2)C3—H3A0.9300
Mo3—O9i2.367 (2)C4—H4A0.9300
Mo3—Mo2i3.3005 (12)C5—C61.356 (5)
Cu1—O1W1.944 (3)C5—H5A0.9300
Cu1—O3ii1.965 (2)C6—H6A0.9300
Cu1—N21.968 (3)O1W—H1WA0.848 (10)
Cu1—N12.021 (3)O1W—H1WB0.847 (10)
O1—Mo1—O8105.53 (10)O2iii—Mo3—Mo1107.91 (7)
O1—Mo1—O999.82 (10)O6—Mo3—Mo147.03 (5)
O8—Mo1—O9101.97 (11)O9i—Mo3—Mo144.76 (6)
O1—Mo1—O498.42 (10)O10—Mo3—Mo2i142.83 (9)
O8—Mo1—O499.33 (10)O7—Mo3—Mo2i91.19 (8)
O9—Mo1—O4146.97 (9)O4—Mo3—Mo2i107.00 (7)
O1—Mo1—O9i93.92 (9)O2iii—Mo3—Mo2i41.02 (6)
O8—Mo1—O9i160.21 (9)O6—Mo3—Mo2i33.08 (5)
O9—Mo1—O9i77.76 (10)O9i—Mo3—Mo2i79.92 (5)
O4—Mo1—O9i73.73 (9)Mo1—Mo3—Mo2i77.48 (2)
O1—Mo1—O6164.31 (9)O1W—Cu1—O3ii88.80 (10)
O8—Mo1—O689.31 (9)O1W—Cu1—N2171.61 (13)
O9—Mo1—O681.63 (8)O3ii—Cu1—N291.04 (10)
O4—Mo1—O673.66 (8)O1W—Cu1—N197.25 (11)
O9i—Mo1—O671.01 (8)O3ii—Cu1—N1172.79 (11)
O1—Mo1—Mo3119.19 (8)N2—Cu1—N182.40 (12)
O8—Mo1—Mo3116.11 (8)O1W—Cu1—O892.83 (11)
O9—Mo1—Mo3111.74 (7)O3ii—Cu1—O890.16 (9)
O4—Mo1—Mo335.38 (6)N2—Cu1—O895.57 (11)
O9i—Mo1—Mo348.38 (5)N1—Cu1—O893.43 (11)
O6—Mo1—Mo347.29 (6)Mo1—O1—Mo2131.51 (11)
O1—Mo1—Mo1i98.47 (7)Mo3iv—O2—Mo2146.84 (12)
O8—Mo1—Mo1i141.00 (8)Mo3iv—O2—Mo2ii104.30 (9)
O9—Mo1—Mo1i42.95 (7)Mo2—O2—Mo2ii108.61 (9)
O4—Mo1—Mo1i107.11 (7)Mo2—O3—Cu1ii171.89 (14)
O9i—Mo1—Mo1i34.80 (6)Mo3—O4—Mo1108.63 (10)
O6—Mo1—Mo1i71.83 (5)Mo2i—O6—Mo1151.38 (11)
Mo3—Mo1—Mo1i75.714 (13)Mo2i—O6—Mo3103.60 (10)
O5—Mo2—O3103.81 (11)Mo1—O6—Mo385.69 (7)
O5—Mo2—O6i105.88 (11)Mo1—O8—Cu1133.36 (11)
O3—Mo2—O6i99.09 (10)Mo1—O9—Mo1i102.24 (10)
O5—Mo2—O299.76 (10)Mo1—O9—Mo3i133.99 (10)
O3—Mo2—O296.41 (10)Mo1i—O9—Mo3i86.86 (8)
O6i—Mo2—O2145.72 (9)C1—N1—C3106.1 (3)
O5—Mo2—O2ii157.22 (10)C1—N1—Cu1111.6 (2)
O3—Mo2—O2ii98.12 (9)C3—N1—Cu1142.1 (3)
O6i—Mo2—O2ii76.26 (9)C2—N2—C5106.2 (3)
O2—Mo2—O2ii71.39 (9)C2—N2—Cu1113.6 (2)
O5—Mo2—O184.46 (10)C5—N2—Cu1140.0 (2)
O3—Mo2—O1170.22 (9)C1—N3—C4107.4 (3)
O6i—Mo2—O183.37 (9)C1—N3—H3B126.3
O2—Mo2—O176.79 (8)C4—N3—H3B126.3
O2ii—Mo2—O173.17 (8)C2—N4—C6107.6 (3)
O5—Mo2—Mo3i147.98 (8)C2—N4—H4B126.2
O3—Mo2—Mo3i92.04 (7)C6—N4—H4B126.2
O6i—Mo2—Mo3i43.33 (7)N1—C1—N3110.8 (3)
O2—Mo2—Mo3i105.98 (6)N1—C1—C2116.3 (3)
O2ii—Mo2—Mo3i34.67 (6)N3—C1—C2132.8 (3)
O1—Mo2—Mo3i83.25 (6)N2—C2—N4110.7 (3)
O10—Mo3—O7105.13 (12)N2—C2—C1115.8 (3)
O10—Mo3—O4103.31 (11)N4—C2—C1133.5 (3)
O7—Mo3—O498.59 (11)C4—C3—N1108.7 (3)
O10—Mo3—O2iii102.58 (11)C4—C3—H3A125.7
O7—Mo3—O2iii99.05 (10)N1—C3—H3A125.7
O4—Mo3—O2iii143.45 (9)C3—C4—N3107.0 (3)
O10—Mo3—O6158.41 (10)C3—C4—H4A126.5
O7—Mo3—O696.44 (10)N3—C4—H4A126.5
O4—Mo3—O673.93 (8)C6—C5—N2108.7 (3)
O2iii—Mo3—O672.48 (8)C6—C5—H5A125.7
O10—Mo3—O9i90.22 (10)N2—C5—H5A125.7
O7—Mo3—O9i163.34 (10)C5—C6—N4106.9 (3)
O4—Mo3—O9i71.06 (9)C5—C6—H6A126.6
O2iii—Mo3—O9i83.52 (8)N4—C6—H6A126.6
O6—Mo3—O9i68.49 (7)Cu1—O1W—H1WA125 (3)
O10—Mo3—Mo1119.29 (8)Cu1—O1W—H1WB115 (3)
O7—Mo3—Mo1119.71 (9)H1WA—O1W—H1WB108 (4)
O4—Mo3—Mo136.00 (6)
O8—Mo1—O1—Mo2135.03 (15)Mo1i—Mo1—O9—Mo3i97.56 (16)
O9—Mo1—O1—Mo229.57 (16)C3—N1—C1—N30.3 (4)
O4—Mo1—O1—Mo2122.78 (15)Cu1—N1—C1—N3175.7 (2)
O9i—Mo1—O1—Mo248.67 (15)C3—N1—C1—C2179.0 (3)
O6—Mo1—O1—Mo264.4 (4)Cu1—N1—C1—C23.1 (4)
Mo3—Mo1—O1—Mo292.25 (14)C4—N3—C1—N10.4 (4)
Mo1i—Mo1—O1—Mo213.94 (15)C4—N3—C1—C2178.9 (4)
O1—Mo1—O8—Cu110.07 (19)C5—N2—C2—N40.4 (4)
O9—Mo1—O8—Cu193.81 (16)Cu1—N2—C2—N4176.5 (2)
O4—Mo1—O8—Cu1111.59 (16)C5—N2—C2—C1180.0 (3)
O9i—Mo1—O8—Cu1179.13 (17)Cu1—N2—C2—C13.9 (4)
O6—Mo1—O8—Cu1175.10 (16)C6—N4—C2—N20.0 (4)
Mo3—Mo1—O8—Cu1144.49 (12)C6—N4—C2—C1179.5 (4)
Mo1i—Mo1—O8—Cu1115.81 (14)N1—C1—C2—N20.5 (5)
O1—Mo1—O9—Mo1i91.91 (10)N3—C1—C2—N2178.9 (4)
O8—Mo1—O9—Mo1i159.76 (9)N1—C1—C2—N4179.9 (4)
O4—Mo1—O9—Mo1i30.7 (2)N3—C1—C2—N41.7 (7)
O9i—Mo1—O9—Mo1i0.001 (1)C1—N1—C3—C40.1 (4)
O6—Mo1—O9—Mo1i72.26 (9)Cu1—N1—C3—C4173.8 (3)
Mo3—Mo1—O9—Mo1i35.09 (9)N1—C3—C4—N30.1 (5)
O1—Mo1—O9—Mo3i5.65 (17)C1—N3—C4—C30.3 (4)
O8—Mo1—O9—Mo3i102.68 (15)C2—N2—C5—C60.7 (4)
O4—Mo1—O9—Mo3i128.26 (16)Cu1—N2—C5—C6175.1 (3)
O9i—Mo1—O9—Mo3i97.56 (16)N2—C5—C6—N40.7 (5)
O6—Mo1—O9—Mo3i169.82 (16)C2—N4—C6—C50.4 (4)
Mo3—Mo1—O9—Mo3i132.65 (12)
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O9v0.862.473.303 (4)164
N4—H4B···O8v0.862.052.834 (4)151
N4—H4B···O6v0.862.413.013 (4)128
O1W—H1WA···O4vi0.85 (1)1.81 (1)2.654 (3)174 (4)
O1W—H1WB···O7iv0.85 (1)1.97 (1)2.809 (3)170 (4)
Symmetry codes: (iv) x1, y, z; (v) x+2, y, z+1; (vi) x+2, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds