Download citation
Download citation
link to html
Guanidine is the functional group on the side chain of arginine, one of the fundamental building blocks of life. In recent years, a number of compounds based on the aminoguanidine (AG) moiety have been described as presenting high anti­cancer activities. The product of condensation between two mol­ecules of AG and one mol­ecule of formaldehyde was isolated in the protonated form as the dinitrate salt (systematic name: 2,8-di­amino-1,3,4,6,7,9-hexa­aza­nona-1,8-diene-1,9-diium dinitrate), C3H14N82+·2NO3, (I). The cation lacks crystallographically imposed symmetry and comprises two terminal planar guani­dinium groups, which share an N—C—N unit. Each cation in (I) builds 14 N—H...O hydrogen bonds and is separated from adjacent cations by seven nitrate anions. The AG self-condensation reaction in the presence of copper(II) chloride and chloride anions led to the formation of the organic–inorganic hy­brid 1,2-bis­(di­amino­methyl­idene)hydrazine-1,2-diium tetra­chlorido­cup­rate(II), (C2H10N6)[CuCl4], (II). Its asymmetric unit is composed of half a diprotonated 1,2-bis­(di­amino­methyl­idene)hydrazine-1,2-diium dication and half a tetra­chlorido­cuprate(II) dianion, with the CuII atom situated on a twofold rotation axis. The planar guanidinium fragments in (II) have their planes twisted by approximately 77.64 (5)° with respect to each other. The tetra­hedral [CuCl4]2− anion is severely distorted and its pronounced `planarity' must originate from its involvement in multiple N—H...Cl hydrogen bonds. It was reported that [CuCl4]2− anions, with a trans-Cl—Cu—Cl angle (Θ) of ∼140°, are yellow–green at room temperature, with the colour shifting to a deeper green as Θ increases and toward orange as Θ decreases. Brown salt (II), with a Θ value of 142.059 (8)°, does not fit the trend, which emphasizes the need to take other structural factors into consideration. In the crystal of salt (II), layers of cations and anions alternate along the b axis, with the minimum Cu...Cu distance being 7.5408 (3) Å inside a layer. The structures of salts (I) and (II) were substanti­ated via spectroscopic data. The endothermic reaction involved in the thermal decomposition of (I) requires additional oxygen. The title salts may be useful for the screening of new substances with biological activity.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229617018514/jx3005sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617018514/jx3005Isup3.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617018514/jx3005IIsup2.hkl
Contains datablock II

CCDC references: 1814045; 1814044

Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2016); cell refinement: CrysAlis PRO (Rigaku OD, 2016); data reduction: CrysAlis PRO (Rigaku OD, 2016). Program(s) used to solve structure: SHELXT (Sheldrick, 2015a) for (I); SIR92 (Altomare et al., 1994) for (II). For both structures, program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

2,8-Diamino-1,3,4,6,7,9-hexaazanona-1,8-diene-1,9-diium dinitrate (I) top
Crystal data top
C3H14N82+·2NO3F(000) = 1200
Mr = 286.24Dx = 1.624 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 2603 reflections
a = 12.6989 (4) Åθ = 2.6–29.3°
b = 13.0236 (6) ŵ = 0.15 mm1
c = 14.1585 (5) ÅT = 100 K
V = 2341.61 (15) Å3Block, colourless
Z = 80.37 × 0.24 × 0.06 mm
Data collection top
Oxford diffraction Gemini
diffractometer
3255 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo)-ray Source2307 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 10.4738 pixels mm-1θmax = 30.8°, θmin = 2.2°
ω scansh = 1117
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2016) .
k = 1811
Tmin = 0.968, Tmax = 1l = 198
8505 measured reflections
Refinement top
Refinement on F211 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0413P)2 + 0.674P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3255 reflectionsΔρmax = 0.25 e Å3
220 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All N-H hydrogen aioms were refined with N-H distances restrained to ideal values.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.21357 (13)0.60635 (14)0.46673 (12)0.0175 (4)
N110.19182 (12)0.63126 (14)0.55552 (11)0.0236 (4)
N120.13797 (12)0.59940 (13)0.40314 (11)0.0190 (3)
N20.31350 (12)0.59018 (13)0.44313 (11)0.0199 (3)
N30.33748 (11)0.55401 (13)0.35225 (10)0.0195 (3)
C40.38560 (13)0.63247 (16)0.29400 (12)0.0208 (4)
H4A0.33270.68680.2820.025*
H4B0.4040.60150.23230.025*
N50.48020 (11)0.68072 (13)0.33326 (11)0.0194 (3)
N60.57409 (11)0.63746 (13)0.29624 (11)0.0197 (3)
C70.65775 (13)0.63107 (14)0.35375 (12)0.0171 (4)
N710.64592 (12)0.64372 (13)0.44527 (11)0.0197 (3)
N720.75106 (12)0.60993 (14)0.31675 (12)0.0257 (4)
N100.60067 (11)0.63915 (12)0.05062 (10)0.0183 (3)
O110.69065 (9)0.63666 (10)0.08552 (9)0.0229 (3)
O120.52494 (9)0.66907 (12)0.10032 (9)0.0275 (3)
O130.58491 (10)0.61236 (11)0.03341 (9)0.0225 (3)
N200.04438 (11)0.61546 (12)0.17039 (10)0.0186 (3)
O210.02224 (9)0.58917 (11)0.08758 (8)0.0222 (3)
O220.13665 (9)0.64234 (12)0.19105 (9)0.0263 (3)
O230.02482 (9)0.61388 (10)0.23304 (9)0.0230 (3)
H11A0.1270 (13)0.6482 (17)0.5690 (15)0.032 (6)*
H11B0.2437 (15)0.6359 (17)0.5962 (14)0.038 (7)*
H12A0.0736 (12)0.6060 (15)0.4198 (14)0.019 (5)*
H12B0.1511 (16)0.5866 (18)0.3441 (12)0.033 (6)*
H10.3593 (17)0.5972 (16)0.4845 (16)0.028 (6)*
H30.3814 (13)0.5020 (14)0.3569 (14)0.023 (5)*
H50.4794 (15)0.7474 (13)0.3191 (14)0.024 (6)*
H60.5840 (15)0.6467 (16)0.2363 (11)0.027 (6)*
H71A0.5820 (13)0.6511 (17)0.4688 (15)0.032 (6)*
H71B0.6974 (14)0.6361 (16)0.4832 (14)0.030 (6)*
H72A0.8055 (15)0.6022 (18)0.3533 (15)0.039 (7)*
H72B0.7564 (17)0.5998 (18)0.2574 (12)0.037 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0173 (8)0.0197 (10)0.0156 (8)0.0011 (7)0.0016 (6)0.0018 (7)
N110.0151 (8)0.0399 (11)0.0158 (7)0.0008 (7)0.0009 (6)0.0031 (7)
N120.0140 (7)0.0286 (9)0.0144 (7)0.0020 (6)0.0011 (6)0.0007 (7)
N20.0150 (7)0.0317 (10)0.0130 (7)0.0004 (6)0.0023 (6)0.0017 (7)
N30.0173 (7)0.0251 (9)0.0162 (7)0.0025 (6)0.0015 (6)0.0030 (7)
C40.0167 (8)0.0300 (11)0.0156 (8)0.0001 (7)0.0031 (7)0.0027 (8)
N50.0155 (7)0.0215 (9)0.0212 (8)0.0015 (6)0.0005 (6)0.0017 (7)
N60.0160 (7)0.0296 (9)0.0137 (7)0.0003 (6)0.0001 (6)0.0003 (7)
C70.0155 (8)0.0190 (9)0.0169 (8)0.0025 (7)0.0009 (6)0.0009 (7)
N710.0144 (7)0.0292 (10)0.0156 (7)0.0001 (6)0.0019 (6)0.0004 (7)
N720.0170 (8)0.0418 (11)0.0182 (8)0.0017 (7)0.0012 (7)0.0053 (8)
N100.0175 (7)0.0210 (8)0.0164 (7)0.0012 (6)0.0015 (6)0.0021 (7)
O110.0153 (6)0.0337 (8)0.0196 (6)0.0001 (5)0.0018 (5)0.0002 (6)
O120.0181 (6)0.0455 (9)0.0189 (6)0.0044 (6)0.0037 (5)0.0084 (6)
O130.0207 (6)0.0332 (8)0.0137 (6)0.0008 (6)0.0010 (5)0.0031 (6)
N200.0169 (7)0.0230 (9)0.0160 (7)0.0002 (6)0.0012 (6)0.0014 (6)
O210.0221 (6)0.0322 (8)0.0122 (6)0.0025 (5)0.0014 (5)0.0038 (6)
O220.0160 (6)0.0436 (9)0.0194 (7)0.0057 (6)0.0001 (5)0.0067 (6)
O230.0201 (6)0.0304 (8)0.0185 (6)0.0042 (5)0.0068 (5)0.0041 (6)
Geometric parameters (Å, º) top
C1—N121.319 (2)N5—H50.892 (16)
C1—N111.327 (2)N6—C71.341 (2)
C1—N21.329 (2)N6—H60.866 (15)
N11—H11A0.873 (15)C7—N711.315 (2)
N11—H11B0.877 (16)C7—N721.324 (2)
N12—H12A0.855 (15)N71—H71A0.882 (15)
N12—H12B0.868 (16)N71—H71B0.852 (15)
N2—N31.404 (2)N72—H72A0.869 (16)
N2—H10.83 (2)N72—H72B0.853 (16)
N3—C41.448 (2)N10—O111.2454 (18)
N3—H30.880 (15)N10—O121.2538 (18)
C4—N51.465 (2)N10—O131.2558 (18)
C4—H4A0.99N20—O231.2488 (18)
C4—H4B0.99N20—O211.2533 (18)
N5—N61.419 (2)N20—O221.2573 (18)
N12—C1—N11120.77 (16)N6—N5—C4112.24 (15)
N12—C1—N2120.82 (17)N6—N5—H5108.3 (13)
N11—C1—N2118.40 (16)C4—N5—H5108.9 (13)
C1—N11—H11A117.7 (15)C7—N6—N5117.78 (15)
C1—N11—H11B118.8 (15)C7—N6—H6119.2 (13)
H11A—N11—H11B123 (2)N5—N6—H6115.4 (14)
C1—N12—H12A120.1 (14)N71—C7—N72121.20 (16)
C1—N12—H12B122.1 (14)N71—C7—N6120.00 (15)
H12A—N12—H12B117.9 (19)N72—C7—N6118.78 (16)
C1—N2—N3119.39 (15)C7—N71—H71A119.4 (14)
C1—N2—H1118.3 (15)C7—N71—H71B121.2 (15)
N3—N2—H1122.1 (15)H71A—N71—H71B119 (2)
N2—N3—C4112.13 (15)C7—N72—H72A120.0 (15)
N2—N3—H3109.1 (14)C7—N72—H72B119.5 (15)
C4—N3—H3108.6 (13)H72A—N72—H72B120 (2)
N3—C4—N5115.62 (14)O11—N10—O12119.28 (15)
N3—C4—H4A108.4O11—N10—O13120.99 (14)
N5—C4—H4A108.4O12—N10—O13119.72 (14)
N3—C4—H4B108.4O23—N20—O21120.14 (14)
N5—C4—H4B108.4O23—N20—O22119.67 (15)
H4A—C4—H4B107.4O21—N20—O22120.18 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O22i0.992.63.287 (2)127
C4—H4B···O120.992.573.298 (2)130
N11—H11A···O12ii0.87 (2)2.00 (2)2.867 (2)173 (2)
N11—H11B···O22ii0.88 (2)2.03 (2)2.907 (2)178 (2)
N12—H12A···O13ii0.86 (2)2.12 (2)2.9742 (19)176 (2)
N12—H12B···O220.87 (2)2.29 (2)3.055 (2)146 (2)
N2—H1···O21ii0.83 (2)2.10 (2)2.9214 (19)171 (2)
N3—H3···N20iii0.88 (2)2.60 (2)3.446 (2)161 (2)
N3—H3···O21iii0.88 (2)2.29 (2)3.116 (2)157 (2)
N3—H3···O23iii0.88 (2)2.31 (2)3.049 (2)142 (2)
N5—H5···O23i0.89 (2)2.25 (2)3.081 (2)154 (2)
N6—H6···O110.87 (2)2.53 (2)3.330 (2)154 (2)
N6—H6···O120.87 (2)2.09 (2)2.873 (2)151 (2)
N71—H71A···O21ii0.88 (2)2.29 (2)3.021 (2)141 (2)
N71—H71B···O11iv0.85 (2)2.03 (2)2.8738 (19)171 (2)
N72—H72A···O13iv0.87 (2)2.13 (2)2.973 (2)164 (2)
N72—H72B···O110.85 (2)2.62 (2)3.380 (2)150 (2)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1/2, y, z+1/2; (iii) x+1/2, y+1, z+1/2; (iv) x+3/2, y, z+1/2.
1,2-Bis(diaminomethylidene)hydrazine-1,2-diium tetrachloridocuprate(II) (II) top
Crystal data top
(C2H10N6)[CuCl4]F(000) = 644
Mr = 323.5Dx = 1.929 Mg m3
Orthorhombic, PnnaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2a 2bcCell parameters from 15421 reflections
a = 8.4242 (1) Åθ = 2.9–40.8°
b = 10.0515 (2) ŵ = 2.89 mm1
c = 13.1557 (2) ÅT = 100 K
V = 1113.97 (3) Å3Prism, brown
Z = 40.42 × 0.34 × 0.25 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
3567 independent reflections
Graphite monochromator3368 reflections with I > 2σ(I)
Detector resolution: 16.0009 pixels mm-1Rint = 0.023
ω scansθmax = 40.5°, θmin = 2.9°
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2014), analytical numeric absorption correction (Clark & Reid, 1995)]
h = 1415
Tmin = 0.449, Tmax = 0.591k = 1814
26253 measured reflectionsl = 2424
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0271P)2 + 0.3155P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max = 0.001
3567 reflectionsΔρmax = 0.69 e Å3
64 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The hydrogen atom on N3 was refined with geometries restrained to ideal values.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.750.50.26228 (2)0.01276 (3)
Cl10.59826 (3)0.38922 (2)0.37468 (2)0.01837 (4)
Cl20.94848 (2)0.47042 (2)0.14937 (2)0.01657 (4)
N10.78060 (10)0.18798 (8)0.53593 (6)0.01885 (13)
H1A0.73970.21350.47760.023*
H1B0.84650.12010.5380.023*
N20.64504 (10)0.35367 (8)0.62144 (6)0.01798 (12)
H2A0.60210.38170.56440.022*
H2B0.62250.39380.67910.022*
N30.80531 (9)0.20604 (7)0.70930 (5)0.01361 (10)
C40.74303 (9)0.25160 (8)0.62057 (6)0.01403 (12)
H30.8806 (18)0.1548 (16)0.7038 (12)0.026 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01123 (6)0.01669 (6)0.01036 (6)0.00096 (4)00
Cl10.01731 (8)0.02403 (9)0.01375 (7)0.00382 (6)0.00047 (6)0.00524 (6)
Cl20.01361 (8)0.02138 (8)0.01472 (7)0.00179 (6)0.00197 (6)0.00513 (6)
N10.0218 (3)0.0231 (3)0.0117 (3)0.0017 (2)0.0013 (2)0.0031 (2)
N20.0201 (3)0.0187 (3)0.0151 (3)0.0046 (2)0.0027 (2)0.0000 (2)
N30.0140 (3)0.0156 (2)0.0113 (2)0.0023 (2)0.00016 (19)0.00135 (18)
C40.0145 (3)0.0162 (3)0.0114 (2)0.0006 (2)0.0004 (2)0.0005 (2)
Geometric parameters (Å, º) top
Cu1—Cl1i2.2496 (2)N2—C41.3169 (11)
Cu1—Cl12.2496 (2)N2—H2A0.88
Cu1—Cl22.2562 (2)N2—H2B0.88
Cu1—Cl2i2.2562 (2)N3—C41.3592 (10)
N1—C41.3225 (11)N3—N3ii1.3885 (14)
N1—H1A0.88N3—H30.820 (13)
N1—H1B0.88
Cl1i—Cu1—Cl197.805 (12)C4—N2—H2A120
Cl1i—Cu1—Cl294.408 (8)C4—N2—H2B120
Cl1—Cu1—Cl2142.059 (8)H2A—N2—H2B120
Cl1i—Cu1—Cl2i142.059 (8)C4—N3—N3ii116.61 (8)
Cl1—Cu1—Cl2i94.410 (8)C4—N3—H3115.7 (12)
Cl2—Cu1—Cl2i97.652 (12)N3ii—N3—H3117.9 (12)
C4—N1—H1A120N2—C4—N1122.28 (8)
C4—N1—H1B120N2—C4—N3119.80 (7)
H1A—N1—H1B120N1—C4—N3117.89 (7)
Symmetry codes: (i) x+3/2, y+1, z; (ii) x, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.882.523.3092 (9)149
N1—H1B···Cl2iii0.882.723.4954 (9)148
N1—H1B···Cl2iv0.882.763.2369 (8)115
N2—H2A···Cl10.882.53.2896 (8)150
N2—H2B···Cl2v0.882.83.6346 (8)159
N3—H3···Cl2iii0.82 (1)2.45 (1)3.2454 (7)163 (2)
Symmetry codes: (iii) x+2, y1/2, z+1/2; (iv) x, y+1/2, z+1/2; (v) x1/2, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds