Download citation
Download citation
link to html
The title compound, C11H8N2O3S, crystallizes with two crystallographically independent mol­ecules, which are conformationally almost identical, per asymmetric unit. The dihedral angles between the phenyl and 2-thio­fur­amide planes are 46.3 (1) and 47.0 (1)° for the first and second mol­ecule, respectively. Strong intramolecular N—H...O hydrogen bonds [N...O 2.664 (2) and 2.661 (2) Å] dictate an anti conformation of the C=S groups in relation to the furan-O atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100002882/jz1378sup1.cif
Contains datablocks I, MA

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100002882/jz1378Isup2.hkl
Contains datablock I

CCDC reference: 145553

Comment top

5-Nitrofurans substituted in the 2-position became very important after their biological activity was discovered about 30 years ago by Dodd et al. (1970). Numerous papers have been published on the chemistry of biological and pharmacological studies of 5-nitrofuran derivatives, mostly concerning antibacterial activities. Moreover, it is established that some thioamides exhibit pharmacological activity (Landquist, 1984). In the course of our studies of the syntheses and reactions of furan and 5-nitrofuran thioamides (Hahn et al., 1970; Mance & Jakopčić, 1994), we have now prepared and structurally characterized the title compound, (I); its anti-tumor activity is currently under preliminary investigation. \sch

The title compound crystallizes with two crystallographically independent molecules per asymmetric unit (Fig.1.) The difference in orientation of the phenyl rings is less than 1° indicating that molecules are esssentially identical, but they are not mutually connected by any global symmetry element. The dihedral angles between two planes defined by thiofuramide moiety and phenyl ring atoms amount to 46.3 (1) and 47.0 (1)° for the first and second molecule, respectively. The molecules are not planar, exhibiting twisting around the single Nsp2—Csp2 bond (N11—C61 and N12—C62, respectively). The measure of twisting is described by torsion angles of 137.8 (2) and -138.1 (2)° for C71—C61—N11—C11 and C72—C62—N12—C12, respectively.

A survey of the Cambridge Crystallographic Database (Version 5.17; Allen & Kennard, 1993) revealed 60 structures containing the 5-nitro-2-furyl moiety and only four with the 5-nitro-2,5-dihydrofuryl fragment. Moreover, the structure of only one thiofuramide i.e. N-(2-hydroxyethyl)-2-thiofuramide is known up to now (Galešić et al., 1987).

The bond distances in both molecules are the same within the 3σ criterion. The Csp2Csp2 bond distance values within the furan ring are the same and in agreement with the literature data (Allen et al., 1987), while Csp2—Csp2 single bond [C31—C41 1.398 (4) and C32—C42 1.403 (3) Å] is slightly shorter (average value 1.423 Å) (Allen et al., 1987). The Csp2—O bond values [O11—C21 1.374 (3), O11—C51 1.351 (3), O12—C22 1.377 (2) and O12—C52 1.347 (3) Å] correspond with the average O-Csp2 value of 1.368 Å (Allen et al., 1987). However, the O11—C51 and O12—C52 distances are shortened by the effect of the NO2 groups directly attached to C51 and C52. The pattern of one shorter and one longer O-Csp2 bond distance of 1.350 Å and 1.375 Å, respectively, is observed in all database structures containing the 5-nitro-2-furyl fragment.

The CS bonds [C11—S11 1.655 (2) and C12—S12 1.655 (2) Å] are slightly shorter than those found in the structural fragment (X)2—C=S (X = C,N,O,S), 1.671 Å (Allen et al., 1987) and in N-(2-hydroxyethyl)-2-thiofuramide (Galešić et al., 1987), 1.673 (3) Å. Such shortening, associated with the significant π character of N11—C11 and N12—C12 [1.344 (3) and 1.348 (3) Å, respectively] is in agreement with delocalization of π electrons within the 5-nitro-2-thiofuramide moieties. In the structure of N-(2-hydroxyethyl)-2-thiofuramide (Galešić et al., 1987) the analogous bond length is even shorter at 1.317 (4) Å.

The angle sum around thiofuramide N atoms N11 and N12 are 359.9 (2) and 359.6 (2)°, confirming sp2 hybridization. The N11—C61 and N12—C62 bond lengths of 1.419 (3) and 1.422 (3) Å are shorter even than the partially delocalized single N-Csp3 bond distance value of 1.460 (3) Å found in N-(2-hydroxyethyl)-2-thiofuramide (Galešić et al., 1987).

The anti conformation (spatial orientation of C=S group with respect to the furan oxygen) of the molecules is adopted as a result of intramolecular hydrogen bonding of the type N—H···O (Table 2; Taylor et al., 1984). The packing also involves two weak intermolecular C—H···O hydrogen bonds involving NO2 oxygen atoms and phenyl C—H proton donors (Table 2).

Experimental top

We employed an alternative preparation of N-phenyl-5-nitro-2-thiofuramide by thionation of furancarboxamide with Lawesson's reagent (Cava & Levinson, 1985) instead of phosphorous pentasulfide (Mance & Jakopčić, 1994; Fãrcasãn & Paiu, 1966). To a solution of N-phenyl-5-nitro-2-furamide (2.3 g, 10 mmol) in dry ethyleneglycoldimethylether (15 ml) Lawesson's reagent (2.2 g, 5.4 mmol) was added. The reaction mixture was heated at 333 K for 30 minutes and solvent evaporated. The product was chromatographed on a silica gel column with petroleum ether/chloroform, 1:1. The purified product (2.4 g, 96%) obtained on evaporation of the solvents was recrystallized from ethanol, yielding red crystals (m.p. = 414–415 K) suitable for X-ray single-crystal diffractometry.

Refinement top

The structure was solved by direct methods and refined anisotropically on F2. Hydrogen atoms of furan and phenyl rings were generated at idealized geometrical positions with C—H distance 0.93 Å and Uiso(H) = 1.2 Uiso of the carrier C atom, and refined using a riding model. The hydrogen atoms H11 and H12 were identified in difference Fourier maps, but in the final stage of refinement they were generated and refined by applying riding model (N—H 0.93 Å).

Computing details top

Data collection: STADI4 (Stoe & Cie, 1995a); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1995b); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON98 (Spek, 1998); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A perspective view of the two independent molecules of (I) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The hydrogen atoms are drawn as small circles of arbitrary radius. The intramolecular hydrogen bonds are indicated by dashed lines.
N-phenyl-5-nitro-2-thiofuramide top
Crystal data top
C11H8N2O3SF(000) = 512
Mr = 248.25Dx = 1.486 Mg m3
Triclinic, P1Melting point = 414–415 K
a = 7.499 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.114 (2) ÅCell parameters from 28 reflections
c = 16.717 (2) Åθ = 10.1–14.9°
α = 86.06 (2)°µ = 0.29 mm1
β = 88.61 (1)°T = 293 K
γ = 76.73 (2)°Prism, red
V = 1109.4 (3) Å30.76 × 0.53 × 0.24 mm
Z = 4
Data collection top
Philips PW1100 updated by Stoe
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 27.1°, θmin = 2.4°
Planar graphite monochromatorh = 99
ω scank = 1111
4817 measured reflectionsl = 021
4817 independent reflections3 standard reflections every 240 min
2867 reflections with I > 2σ(I) intensity decay: 1.6%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.130Calculated w = 1/[σ2(Fo2) + (0.0666P)2 + 0.2951P]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.001
4817 reflectionsΔρmax = 0.23 e Å3
324 parametersΔρmin = 0.40 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.024 (2)
Crystal data top
C11H8N2O3Sγ = 76.73 (2)°
Mr = 248.25V = 1109.4 (3) Å3
Triclinic, P1Z = 4
a = 7.499 (1) ÅMo Kα radiation
b = 9.114 (2) ŵ = 0.29 mm1
c = 16.717 (2) ÅT = 293 K
α = 86.06 (2)°0.76 × 0.53 × 0.24 mm
β = 88.61 (1)°
Data collection top
Philips PW1100 updated by Stoe
diffractometer
Rint = 0.000
4817 measured reflections3 standard reflections every 240 min
4817 independent reflections intensity decay: 1.6%
2867 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 0.96Δρmax = 0.23 e Å3
4817 reflectionsΔρmin = 0.40 e Å3
324 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S110.21921 (10)0.27663 (8)0.33909 (4)0.0647 (2)
O110.0264 (2)0.34324 (18)0.11951 (9)0.0504 (4)
O210.0043 (4)0.1850 (3)0.06115 (13)0.1082 (9)
O310.1266 (4)0.4076 (3)0.02124 (13)0.0953 (8)
N110.0325 (3)0.5080 (2)0.24460 (11)0.0497 (5)
N210.0284 (4)0.2809 (4)0.01048 (14)0.0752 (7)
C110.1156 (3)0.3611 (3)0.25642 (13)0.0452 (5)
C210.1175 (3)0.2720 (3)0.18686 (13)0.0447 (5)
C310.1979 (3)0.1264 (3)0.17305 (15)0.0549 (6)
H310.26730.05520.20930.056 (7)*
C410.1572 (4)0.1031 (3)0.09438 (16)0.0610 (7)
H410.19280.01440.06790.076 (9)*
C510.0556 (3)0.2366 (3)0.06539 (14)0.0542 (6)
C610.0075 (3)0.6205 (3)0.30112 (13)0.0462 (5)
C710.0361 (3)0.7618 (3)0.27598 (16)0.0549 (6)
H710.07430.78040.22370.063 (8)*
C810.0073 (4)0.8744 (3)0.32914 (19)0.0658 (7)
H810.02530.96930.31220.079 (9)*
C910.0474 (4)0.8482 (3)0.40652 (18)0.0689 (8)
H910.06460.92440.44210.088 (10)*
C1010.0770 (4)0.7080 (3)0.43142 (17)0.0672 (7)
H1010.11520.69030.48380.083 (9)*
C1110.0502 (3)0.5937 (3)0.37883 (14)0.0546 (6)
H1110.07090.49960.39570.073 (8)*
S120.39910 (11)0.27191 (8)0.84184 (4)0.0644 (2)
O120.5573 (2)0.34089 (16)0.61883 (9)0.0458 (4)
O220.6802 (3)0.4056 (2)0.47566 (12)0.0782 (6)
O320.6581 (3)0.1884 (3)0.43507 (12)0.0938 (7)
N120.4644 (3)0.5031 (2)0.74601 (11)0.0493 (5)
N220.6444 (3)0.2818 (3)0.48642 (13)0.0604 (6)
C120.4568 (3)0.3569 (2)0.75771 (13)0.0435 (5)
C220.5003 (3)0.2701 (2)0.68692 (13)0.0425 (5)
C320.4920 (3)0.1274 (3)0.67207 (14)0.0498 (6)
H320.45670.05710.70830.056 (7)*
C420.5465 (3)0.1053 (3)0.59205 (14)0.0537 (6)
H420.55560.01830.56470.053 (7)*
C520.5826 (3)0.2372 (3)0.56351 (13)0.0472 (5)
C620.4331 (3)0.6144 (2)0.80357 (13)0.0456 (5)
C720.3309 (3)0.7584 (3)0.77938 (15)0.0528 (6)
H720.28090.77810.72830.063 (8)*
C820.3054 (4)0.8707 (3)0.83236 (17)0.0613 (7)
H820.23750.96690.81700.077 (9)*
C920.3793 (4)0.8418 (3)0.90794 (17)0.0655 (7)
H920.36090.91840.94340.070 (8)*
C1020.4807 (4)0.6995 (3)0.93123 (16)0.0648 (7)
H1020.53010.68050.98240.068 (8)*
C1120.5093 (3)0.5849 (3)0.87898 (14)0.0537 (6)
H1120.57890.48940.89440.040 (6)*
H110.00720.53780.19210.066 (8)*
H120.47920.53640.69260.073 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S110.0773 (5)0.0611 (4)0.0446 (4)0.0048 (3)0.0089 (3)0.0061 (3)
O110.0546 (9)0.0556 (10)0.0439 (9)0.0205 (7)0.0048 (7)0.0056 (7)
O210.138 (2)0.155 (2)0.0524 (12)0.0713 (19)0.0039 (13)0.0224 (15)
O310.1173 (19)0.1049 (19)0.0769 (15)0.0594 (16)0.0457 (13)0.0325 (13)
N110.0580 (12)0.0486 (11)0.0407 (10)0.0093 (9)0.0086 (9)0.0040 (8)
N210.0883 (18)0.108 (2)0.0479 (13)0.0628 (17)0.0074 (12)0.0078 (14)
C110.0413 (12)0.0495 (13)0.0430 (12)0.0097 (10)0.0023 (9)0.0054 (10)
C210.0439 (12)0.0505 (13)0.0405 (11)0.0155 (10)0.0012 (9)0.0069 (10)
C310.0529 (14)0.0544 (15)0.0569 (15)0.0120 (11)0.0007 (11)0.0012 (12)
C410.0579 (15)0.0664 (17)0.0619 (16)0.0185 (13)0.0090 (12)0.0158 (14)
C510.0565 (15)0.0718 (17)0.0437 (13)0.0339 (13)0.0020 (11)0.0039 (12)
C610.0415 (12)0.0477 (13)0.0473 (13)0.0070 (9)0.0072 (9)0.0029 (10)
C710.0527 (14)0.0539 (15)0.0572 (15)0.0117 (11)0.0065 (11)0.0038 (12)
C810.0589 (16)0.0517 (16)0.086 (2)0.0098 (12)0.0157 (14)0.0041 (14)
C910.0594 (16)0.0712 (19)0.0717 (19)0.0014 (14)0.0186 (14)0.0223 (16)
C1010.0587 (16)0.085 (2)0.0480 (15)0.0046 (14)0.0042 (12)0.0042 (14)
C1110.0528 (14)0.0563 (15)0.0508 (14)0.0064 (11)0.0007 (11)0.0036 (12)
S120.0957 (5)0.0594 (4)0.0460 (4)0.0368 (4)0.0006 (3)0.0053 (3)
O120.0497 (9)0.0416 (9)0.0445 (9)0.0085 (7)0.0030 (7)0.0033 (7)
O220.0798 (14)0.0716 (14)0.0740 (13)0.0069 (10)0.0176 (10)0.0188 (11)
O320.1171 (19)0.1118 (18)0.0523 (12)0.0225 (14)0.0095 (11)0.0193 (13)
N120.0628 (12)0.0426 (11)0.0422 (10)0.0128 (9)0.0025 (9)0.0017 (8)
N220.0557 (13)0.0706 (15)0.0473 (12)0.0013 (11)0.0002 (9)0.0044 (11)
C120.0439 (12)0.0438 (12)0.0439 (12)0.0137 (9)0.0056 (9)0.0030 (10)
C220.0406 (12)0.0432 (12)0.0427 (12)0.0097 (9)0.0073 (9)0.0072 (9)
C320.0557 (14)0.0467 (13)0.0500 (13)0.0190 (11)0.0133 (11)0.0060 (10)
C420.0621 (15)0.0472 (14)0.0531 (14)0.0135 (11)0.0117 (11)0.0056 (11)
C520.0441 (12)0.0529 (14)0.0422 (12)0.0066 (10)0.0088 (9)0.0011 (10)
C620.0470 (13)0.0449 (13)0.0473 (13)0.0166 (10)0.0051 (10)0.0004 (10)
C720.0505 (14)0.0507 (14)0.0568 (15)0.0130 (10)0.0028 (11)0.0034 (11)
C820.0609 (16)0.0484 (15)0.0749 (18)0.0140 (12)0.0171 (13)0.0071 (13)
C920.0754 (18)0.0635 (17)0.0669 (18)0.0320 (14)0.0271 (14)0.0235 (15)
C1020.0808 (19)0.0753 (19)0.0483 (15)0.0385 (16)0.0033 (13)0.0042 (14)
C1120.0613 (15)0.0503 (14)0.0516 (14)0.0185 (12)0.0034 (11)0.0022 (11)
Geometric parameters (Å, º) top
S11—C111.655 (2)S12—C121.655 (2)
O11—C511.351 (3)O12—C521.347 (3)
O11—C211.374 (3)O12—C221.377 (2)
O21—N211.239 (4)O22—N221.219 (3)
O31—N211.223 (4)O32—N221.236 (3)
N11—C111.344 (3)N12—C121.348 (3)
N11—C611.419 (3)N12—C621.422 (3)
N21—C511.421 (3)N22—C521.424 (3)
C11—C211.461 (3)C12—C221.458 (3)
C21—C311.359 (3)C22—C321.356 (3)
C31—C411.398 (4)C32—C421.403 (3)
C41—C511.345 (4)C42—C521.345 (3)
C61—C1111.383 (3)C62—C1121.380 (3)
C61—C711.389 (3)C62—C721.398 (3)
C71—C811.380 (4)C72—C821.376 (4)
C81—C911.370 (4)C82—C921.376 (4)
C91—C1011.381 (4)C92—C1021.380 (4)
C101—C1111.386 (4)C102—C1121.383 (4)
C51—O11—C21104.58 (18)C52—O12—C22104.90 (17)
C11—N11—C61127.37 (19)C12—N12—C62127.53 (19)
O31—N21—O21124.9 (3)O22—N22—O32125.1 (2)
O31—N21—C51119.0 (3)O22—N22—C52119.2 (2)
O21—N21—C51116.1 (3)O32—N22—C52115.8 (2)
N11—C11—C21114.81 (19)N12—C12—C22114.54 (19)
N11—C11—S11126.59 (18)N12—C12—S12126.66 (18)
C21—C11—S11118.56 (17)C22—C12—S12118.78 (16)
C31—C21—O11109.9 (2)C32—C22—O12109.7 (2)
C31—C21—C11132.4 (2)C32—C22—C12132.5 (2)
O11—C21—C11117.65 (19)O12—C22—C12117.75 (18)
C21—C31—C41107.5 (2)C22—C32—C42107.5 (2)
C51—C41—C31105.0 (2)C52—C42—C32105.0 (2)
C41—C51—O11113.0 (2)C42—C52—O12112.9 (2)
C41—C51—N21130.9 (3)C42—C52—N22130.7 (2)
O11—C51—N21116.1 (3)O12—C52—N22116.4 (2)
C111—C61—C71120.0 (2)C112—C62—C72120.8 (2)
C111—C61—N11121.6 (2)C112—C62—N12121.7 (2)
C71—C61—N11118.4 (2)C72—C62—N12117.4 (2)
C81—C71—C61119.5 (3)C82—C72—C62118.9 (2)
C91—C81—C71120.9 (3)C72—C82—C92120.6 (3)
C81—C91—C101119.6 (3)C82—C92—C102120.1 (3)
C91—C101—C111120.4 (3)C92—C102—C112120.5 (3)
C61—C111—C101119.6 (2)C62—C112—C102119.1 (2)
C61—N11—C11—C21179.0 (2)C62—N12—C12—C22178.57 (19)
C61—N11—C11—S113.4 (3)C62—N12—C12—S123.1 (3)
C51—O11—C21—C310.3 (2)C52—O12—C22—C320.0 (2)
C51—O11—C21—C11178.32 (18)C52—O12—C22—C12178.40 (17)
N11—C11—C21—C31174.3 (2)N12—C12—C22—C32173.1 (2)
S11—C11—C21—C313.5 (3)S12—C12—C22—C325.4 (3)
N11—C11—C21—O114.0 (3)N12—C12—C22—O124.9 (3)
S11—C11—C21—O11178.27 (15)S12—C12—C22—O12176.63 (14)
O11—C21—C31—C410.0 (3)O12—C22—C32—C420.4 (2)
C11—C21—C31—C41178.4 (2)C12—C22—C32—C42178.4 (2)
C21—C31—C41—C510.4 (3)C22—C32—C42—C520.6 (3)
C31—C41—C51—O110.6 (3)C32—C42—C52—O120.6 (3)
C31—C41—C51—N21178.5 (2)C32—C42—C52—N22179.5 (2)
C21—O11—C51—C410.6 (2)C22—O12—C52—C420.4 (2)
C21—O11—C51—N21178.85 (19)C22—O12—C52—N22179.41 (18)
O31—N21—C51—C41174.7 (3)O22—N22—C52—C42175.0 (2)
O21—N21—C51—C414.9 (4)O32—N22—C52—C424.7 (4)
O31—N21—C51—O113.2 (3)O22—N22—C52—O123.9 (3)
O21—N21—C51—O11177.3 (2)O32—N22—C52—O12176.5 (2)
C11—N11—C61—C11144.6 (3)C12—N12—C62—C11245.7 (3)
C11—N11—C61—C71137.8 (2)C12—N12—C62—C72138.1 (2)
C111—C61—C71—C810.3 (3)C112—C62—C72—C820.7 (3)
N11—C61—C71—C81178.1 (2)N12—C62—C72—C82177.0 (2)
C61—C71—C81—C910.6 (4)C62—C72—C82—C920.0 (4)
C71—C81—C91—C1011.0 (4)C72—C82—C92—C1020.2 (4)
C81—C91—C101—C1110.5 (4)C82—C92—C102—C1120.2 (4)
C71—C61—C111—C1010.8 (3)C72—C62—C112—C1021.1 (3)
N11—C61—C111—C101178.5 (2)N12—C62—C112—C102177.2 (2)
C91—C101—C111—C610.4 (4)C92—C102—C112—C620.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O110.942.182.664 (2)111
N12—H12···O120.942.202.661 (2)110
C111—H111···O22i0.932.543.271 (3)136
C112—H112···O31ii0.932.583.267 (4)131
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC11H8N2O3S
Mr248.25
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.499 (1), 9.114 (2), 16.717 (2)
α, β, γ (°)86.06 (2), 88.61 (1), 76.73 (2)
V3)1109.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.76 × 0.53 × 0.24
Data collection
DiffractometerPhilips PW1100 updated by Stoe
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4817, 4817, 2867
Rint0.000
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.130, 0.96
No. of reflections4817
No. of parameters324
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.40

Computer programs: STADI4 (Stoe & Cie, 1995a), STADI4, X-RED (Stoe & Cie, 1995b), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON98 (Spek, 1998), SHELXL97.

Selected geometric parameters (Å, º) top
S11—C111.655 (2)S12—C121.655 (2)
O11—C511.351 (3)O12—C521.347 (3)
O11—C211.374 (3)O12—C221.377 (2)
N11—C111.344 (3)N12—C121.348 (3)
N11—C611.419 (3)N12—C621.422 (3)
C11—N11—C61127.37 (19)C12—N12—C62127.53 (19)
N11—C11—C21114.81 (19)N12—C12—C22114.54 (19)
N11—C11—S11126.59 (18)N12—C12—S12126.66 (18)
C21—C11—S11118.56 (17)C22—C12—S12118.78 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O110.942.182.664 (2)111
N12—H12···O120.942.202.661 (2)110
C111—H111···O22i0.932.543.271 (3)136
C112—H112···O31ii0.932.583.267 (4)131
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds