Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100006818/jz1397sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270100006818/jz1397IIsup2.hkl |
CCDC reference: 150336
The title compound, (II), was prepared according to the literature (Rozwadowska, 1998). Some of physical and spectral characteristics of our sample and of the othersare given below:
Our sample: m.p. 459–460 K; [α]D20 = +51,0 (c = 0,54, CHCl3), [α]D20 = +70,0 (c = 0,5, CH3OH),[α]D20 = +88,5 (c = 1,0, DMSO); IR (KBr) cm−1: 1648 (C═N); 1H NMR (CDCl3): δ = 4,24 (d, J = 8,0 Hz, H4), 5,58 (d, J = 8,2 Hz, H5).
Allen & Williams (1994): m.p. 400–402 K; [α]D25 = −44,6 (c = 5,4, CHCl3); IR (KBr) cm−1: 1670 (C═N); 1H NMR (CDCl3): δ = 4,22 (H4), 5,56 (d, J = 8,0 Hz, H5).
Hoarau et al. (1997): m.p. 408 K; [α]D20 = +74,2 (c = 1,0, DMSO); 1H NMR (CDCl3): δ = 4,23 (d, J = 8,1 Hz, H4), 5,57 (d, J = 8,1 Hz, H5).
The crystals were grown from ethanol by slow evaporation of the solvent at room temperature. The positions of the H atoms were obtained from difference Fourier maps and refined freely. The absolute configuration of (II) was established on the basis of 930 Friedel opposite reflections using the Flack parameter (Flack 1983).
Data collection: Kuma KM-4 Software (Kuma Diffraction, 1991); cell refinement: Kuma KM-4 Software; data reduction: Kuma KM-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
C16H15NO2 | Dx = 1.272 Mg m−3 |
Mr = 253.29 | Melting point: 459–460 K K |
Orthorhombic, P212121 | Cu Kα radiation, λ = 1.54178 Å |
a = 4.8995 (10) Å | Cell parameters from 48 reflections |
b = 11.3300 (13) Å | θ = 15.4–30.3° |
c = 23.820 (3) Å | µ = 0.67 mm−1 |
V = 1322.3 (4) Å3 | T = 293 K |
Z = 4 | Needle, colourless |
F(000) = 536 | 0.50 × 0.25 × 0.11 mm |
Kuma Diffraction KM-4 diffractometer | Rint = 0.037 |
Radiation source: fine-focus sealed tube | θmax = 70.0°, θmin = 3.7° |
Graphite monochromator | h = −5→5 |
ω–2θ scans | k = 0→13 |
2557 measured reflections | l = 0→29 |
2406 independent reflections | 2 standard reflections every 100 reflections |
2273 reflections with I > 2σ(I) | intensity decay: 0.7% |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.029 | w = 1/[σ2(Fo2) + (0.0536P)2 + 0.0663P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.082 | (Δ/σ)max < 0.001 |
S = 1.08 | Δρmax = 0.13 e Å−3 |
2406 reflections | Δρmin = −0.13 e Å−3 |
233 parameters | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0047 (7) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983) |
Secondary atom site location: difference Fourier map | Absolute structure parameter: −0.09 (19) |
C16H15NO2 | V = 1322.3 (4) Å3 |
Mr = 253.29 | Z = 4 |
Orthorhombic, P212121 | Cu Kα radiation |
a = 4.8995 (10) Å | µ = 0.67 mm−1 |
b = 11.3300 (13) Å | T = 293 K |
c = 23.820 (3) Å | 0.50 × 0.25 × 0.11 mm |
Kuma Diffraction KM-4 diffractometer | Rint = 0.037 |
2557 measured reflections | 2 standard reflections every 100 reflections |
2406 independent reflections | intensity decay: 0.7% |
2273 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.029 | All H-atom parameters refined |
wR(F2) = 0.082 | Δρmax = 0.13 e Å−3 |
S = 1.08 | Δρmin = −0.13 e Å−3 |
2406 reflections | Absolute structure: Flack (1983) |
233 parameters | Absolute structure parameter: −0.09 (19) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.6153 (2) | 0.95123 (7) | 0.12135 (4) | 0.0560 (3) | |
C2 | 0.6976 (3) | 0.83793 (10) | 0.11417 (5) | 0.0446 (3) | |
N3 | 0.8497 (2) | 0.81512 (8) | 0.07251 (4) | 0.0454 (2) | |
C4 | 0.8914 (3) | 0.92531 (9) | 0.04140 (5) | 0.0428 (3) | |
C5 | 0.7121 (3) | 1.01667 (10) | 0.07262 (5) | 0.0428 (3) | |
C6 | 0.5973 (3) | 0.75357 (11) | 0.15641 (5) | 0.0482 (3) | |
C7 | 0.6979 (4) | 0.63901 (13) | 0.15754 (6) | 0.0619 (4) | |
C8 | 0.5996 (5) | 0.55956 (15) | 0.19670 (7) | 0.0739 (5) | |
C9 | 0.4053 (5) | 0.59340 (17) | 0.23446 (7) | 0.0761 (5) | |
C10 | 0.3007 (5) | 0.70634 (19) | 0.23316 (7) | 0.0789 (5) | |
C11 | 0.3980 (4) | 0.78668 (15) | 0.19443 (6) | 0.0630 (4) | |
C12 | 0.8116 (3) | 0.91222 (11) | −0.01947 (6) | 0.0512 (3) | |
O13 | 0.5259 (2) | 0.89721 (9) | −0.02506 (5) | 0.0592 (3) | |
C14 | 0.8498 (3) | 1.12880 (9) | 0.09044 (5) | 0.0409 (3) | |
C15 | 0.7732 (3) | 1.23437 (11) | 0.06599 (6) | 0.0543 (3) | |
C16 | 0.9014 (4) | 1.33881 (12) | 0.08107 (7) | 0.0681 (4) | |
C17 | 1.1019 (4) | 1.33838 (13) | 0.12064 (7) | 0.0663 (4) | |
C18 | 1.1794 (4) | 1.23448 (15) | 0.14528 (7) | 0.0656 (4) | |
C19 | 1.0548 (3) | 1.12933 (12) | 0.13020 (6) | 0.0541 (3) | |
H4A | 1.092 (4) | 0.9450 (13) | 0.0443 (6) | 0.053 (4)* | |
H5A | 0.559 (3) | 1.0366 (13) | 0.0502 (6) | 0.046 (4)* | |
H7A | 0.843 (5) | 0.6148 (17) | 0.1319 (8) | 0.083 (6)* | |
H8A | 0.679 (5) | 0.476 (2) | 0.1952 (9) | 0.099 (7)* | |
H9A | 0.341 (5) | 0.5391 (18) | 0.2623 (9) | 0.087 (6)* | |
H10A | 0.166 (5) | 0.730 (2) | 0.2613 (9) | 0.105 (7)* | |
H11A | 0.313 (5) | 0.8696 (19) | 0.1932 (8) | 0.088 (6)* | |
H12A | 0.869 (4) | 0.9860 (16) | −0.0401 (7) | 0.065 (4)* | |
H12B | 0.921 (4) | 0.8417 (15) | −0.0357 (7) | 0.064 (5)* | |
H13A | 0.492 (5) | 0.826 (2) | −0.0419 (8) | 0.092 (7)* | |
H15A | 0.630 (4) | 1.2322 (15) | 0.0377 (7) | 0.073 (5)* | |
H16A | 0.844 (4) | 1.4148 (17) | 0.0645 (8) | 0.076 (5)* | |
H17A | 1.193 (5) | 1.4129 (18) | 0.1314 (8) | 0.088 (6)* | |
H18A | 1.317 (5) | 1.2351 (17) | 0.1740 (8) | 0.081 (5)* | |
H19A | 1.099 (4) | 1.0573 (17) | 0.1490 (7) | 0.069 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0609 (6) | 0.0336 (4) | 0.0735 (6) | −0.0047 (4) | 0.0270 (5) | −0.0076 (4) |
C2 | 0.0460 (7) | 0.0348 (5) | 0.0529 (6) | −0.0034 (5) | 0.0014 (5) | −0.0072 (5) |
N3 | 0.0509 (6) | 0.0346 (5) | 0.0508 (5) | 0.0060 (4) | 0.0020 (5) | −0.0022 (4) |
C4 | 0.0403 (7) | 0.0311 (5) | 0.0572 (7) | −0.0014 (4) | 0.0065 (5) | −0.0049 (4) |
C5 | 0.0396 (6) | 0.0322 (5) | 0.0565 (6) | −0.0015 (4) | 0.0058 (5) | −0.0054 (5) |
C6 | 0.0529 (7) | 0.0438 (6) | 0.0480 (6) | −0.0089 (5) | −0.0032 (5) | −0.0035 (5) |
C7 | 0.0792 (11) | 0.0470 (7) | 0.0594 (7) | 0.0003 (7) | 0.0041 (8) | 0.0032 (6) |
C8 | 0.1008 (14) | 0.0525 (8) | 0.0684 (9) | −0.0056 (9) | −0.0036 (9) | 0.0118 (7) |
C9 | 0.0919 (13) | 0.0748 (11) | 0.0616 (9) | −0.0196 (10) | 0.0004 (8) | 0.0186 (8) |
C10 | 0.0837 (13) | 0.0876 (12) | 0.0654 (9) | −0.0072 (11) | 0.0170 (9) | 0.0119 (8) |
C11 | 0.0668 (10) | 0.0610 (8) | 0.0613 (8) | −0.0027 (7) | 0.0093 (7) | 0.0026 (6) |
C12 | 0.0595 (8) | 0.0411 (6) | 0.0531 (7) | 0.0008 (6) | 0.0102 (6) | −0.0003 (5) |
O13 | 0.0625 (6) | 0.0420 (5) | 0.0731 (6) | 0.0008 (4) | −0.0130 (5) | −0.0125 (4) |
C14 | 0.0420 (6) | 0.0319 (5) | 0.0488 (5) | −0.0015 (5) | 0.0070 (5) | −0.0049 (4) |
C15 | 0.0572 (8) | 0.0389 (6) | 0.0667 (8) | −0.0016 (5) | −0.0018 (7) | 0.0042 (5) |
C16 | 0.0789 (11) | 0.0341 (6) | 0.0912 (11) | −0.0052 (7) | 0.0067 (9) | 0.0042 (6) |
C17 | 0.0693 (10) | 0.0472 (7) | 0.0825 (9) | −0.0198 (7) | 0.0136 (8) | −0.0158 (7) |
C18 | 0.0586 (9) | 0.0698 (9) | 0.0684 (8) | −0.0146 (8) | −0.0029 (8) | −0.0152 (7) |
C19 | 0.0526 (8) | 0.0470 (7) | 0.0627 (7) | −0.0004 (6) | −0.0041 (6) | −0.0006 (6) |
O1—C2 | 1.3563 (14) | C10—C11 | 1.381 (2) |
O1—C5 | 1.4568 (16) | C10—H10A | 0.98 (2) |
C2—N3 | 1.2677 (16) | C11—H11A | 1.03 (2) |
C2—C6 | 1.4723 (17) | C12—O13 | 1.4163 (19) |
N3—C4 | 1.4660 (15) | C12—H12A | 1.010 (18) |
C4—C12 | 1.5090 (19) | C12—H12B | 1.037 (18) |
C4—C5 | 1.5479 (16) | O13—H13A | 0.92 (2) |
C4—H4A | 1.011 (17) | C14—C19 | 1.3806 (19) |
C5—C14 | 1.4999 (16) | C14—C15 | 1.3822 (17) |
C5—H5A | 0.949 (16) | C15—C16 | 1.387 (2) |
C6—C11 | 1.383 (2) | C15—H15A | 0.974 (18) |
C6—C7 | 1.389 (2) | C16—C17 | 1.361 (3) |
C7—C8 | 1.383 (2) | C16—H16A | 0.99 (2) |
C7—H7A | 0.98 (2) | C17—C18 | 1.369 (3) |
C8—C9 | 1.365 (3) | C17—H17A | 0.99 (2) |
C8—H8A | 1.02 (2) | C18—C19 | 1.386 (2) |
C9—C10 | 1.379 (3) | C18—H18A | 0.96 (2) |
C9—H9A | 0.96 (2) | C19—H19A | 0.955 (19) |
C2—O1—C5 | 106.52 (9) | C9—C10—H10A | 119.6 (14) |
N3—C2—O1 | 117.81 (10) | C11—C10—H10A | 120.4 (14) |
N3—C2—C6 | 126.79 (11) | C10—C11—C6 | 120.14 (16) |
O1—C2—C6 | 115.40 (10) | C10—C11—H11A | 118.9 (12) |
C2—N3—C4 | 107.69 (9) | C6—C11—H11A | 120.9 (11) |
N3—C4—C12 | 111.46 (10) | O13—C12—C4 | 110.98 (11) |
N3—C4—C5 | 104.34 (10) | O13—C12—H12A | 109.3 (11) |
C12—C4—C5 | 112.35 (11) | C4—C12—H12A | 108.3 (9) |
N3—C4—H4A | 106.8 (8) | O13—C12—H12B | 112.5 (10) |
C12—C4—H4A | 109.9 (8) | C4—C12—H12B | 107.5 (9) |
C5—C4—H4A | 111.8 (9) | H12A—C12—H12B | 108.1 (13) |
O1—C5—C14 | 110.61 (10) | C12—O13—H13A | 108.9 (15) |
O1—C5—C4 | 103.13 (9) | C19—C14—C15 | 118.86 (12) |
C14—C5—C4 | 116.55 (10) | C19—C14—C5 | 121.68 (11) |
O1—C5—H5A | 108.2 (9) | C15—C14—C5 | 119.45 (12) |
C14—C5—H5A | 108.3 (9) | C14—C15—C16 | 120.42 (14) |
C4—C5—H5A | 109.8 (9) | C14—C15—H15A | 117.7 (11) |
C11—C6—C7 | 119.43 (13) | C16—C15—H15A | 121.9 (11) |
C11—C6—C2 | 120.46 (12) | C17—C16—C15 | 120.19 (14) |
C7—C6—C2 | 120.10 (12) | C17—C16—H16A | 119.1 (12) |
C8—C7—C6 | 119.86 (16) | C15—C16—H16A | 120.7 (12) |
C8—C7—H7A | 119.5 (11) | C16—C17—C18 | 120.01 (13) |
C6—C7—H7A | 120.6 (11) | C16—C17—H17A | 120.2 (13) |
C9—C8—C7 | 120.31 (17) | C18—C17—H17A | 119.8 (13) |
C9—C8—H8A | 123.2 (14) | C17—C18—C19 | 120.37 (16) |
C7—C8—H8A | 116.5 (14) | C17—C18—H18A | 119.6 (12) |
C8—C9—C10 | 120.33 (16) | C19—C18—H18A | 120.0 (12) |
C8—C9—H9A | 120.4 (12) | C14—C19—C18 | 120.14 (14) |
C10—C9—H9A | 119.2 (13) | C14—C19—H19A | 118.8 (12) |
C9—C10—C11 | 119.91 (18) | C18—C19—H19A | 120.9 (12) |
C5—O1—C2—N3 | 5.53 (16) | C7—C8—C9—C10 | 1.4 (3) |
C5—O1—C2—C6 | −174.27 (11) | C8—C9—C10—C11 | −1.7 (3) |
O1—C2—N3—C4 | −1.09 (16) | C9—C10—C11—C6 | 1.0 (3) |
C6—C2—N3—C4 | 178.69 (12) | C7—C6—C11—C10 | 0.1 (2) |
C2—N3—C4—C12 | −125.02 (12) | C2—C6—C11—C10 | 178.62 (15) |
C2—N3—C4—C5 | −3.54 (14) | N3—C4—C12—O13 | 68.15 (14) |
C2—O1—C5—C14 | −132.27 (11) | C5—C4—C12—O13 | −48.55 (14) |
C2—O1—C5—C4 | −6.95 (13) | O1—C5—C14—C19 | 51.81 (15) |
N3—C4—C5—O1 | 6.35 (13) | C4—C5—C14—C19 | −65.53 (16) |
C12—C4—C5—O1 | 127.24 (11) | O1—C5—C14—C15 | −129.16 (13) |
N3—C4—C5—C14 | 127.72 (11) | C4—C5—C14—C15 | 113.50 (14) |
C12—C4—C5—C14 | −111.39 (13) | C19—C14—C15—C16 | 0.3 (2) |
N3—C2—C6—C11 | −169.62 (14) | C5—C14—C15—C16 | −178.78 (13) |
O1—C2—C6—C11 | 10.16 (19) | C14—C15—C16—C17 | −0.8 (3) |
N3—C2—C6—C7 | 8.9 (2) | C15—C16—C17—C18 | 0.6 (3) |
O1—C2—C6—C7 | −171.30 (13) | C16—C17—C18—C19 | 0.0 (3) |
C11—C6—C7—C8 | −0.4 (2) | C15—C14—C19—C18 | 0.4 (2) |
C2—C6—C7—C8 | −178.91 (15) | C5—C14—C19—C18 | 179.39 (13) |
C6—C7—C8—C9 | −0.4 (3) | C17—C18—C19—C14 | −0.5 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O13—H13A···N3i | 0.92 (2) | 1.89 (2) | 2.7948 (14) | 169 (2) |
C16—H16A···O13ii | 0.99 (2) | 2.49 (2) | 3.3314 (18) | 142.3 (16) |
C5—H5A···O13 | 0.949 (16) | 2.394 (14) | 2.8419 (16) | 108.5 (11) |
Symmetry codes: (i) x−1/2, −y+3/2, −z; (ii) x+1/2, −y+5/2, −z. |
Experimental details
Crystal data | |
Chemical formula | C16H15NO2 |
Mr | 253.29 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 293 |
a, b, c (Å) | 4.8995 (10), 11.3300 (13), 23.820 (3) |
V (Å3) | 1322.3 (4) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.67 |
Crystal size (mm) | 0.50 × 0.25 × 0.11 |
Data collection | |
Diffractometer | Kuma Diffraction KM-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2557, 2406, 2273 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.610 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.082, 1.08 |
No. of reflections | 2406 |
No. of parameters | 233 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.13, −0.13 |
Absolute structure | Flack (1983) |
Absolute structure parameter | −0.09 (19) |
Computer programs: Kuma KM-4 Software (Kuma Diffraction, 1991), Kuma KM-4 Software, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976) and ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.
O1—C2 | 1.3563 (14) | N3—C4 | 1.4660 (15) |
O1—C5 | 1.4568 (16) | C4—C5 | 1.5479 (16) |
C2—N3 | 1.2677 (16) | C5—C14 | 1.4999 (16) |
C2—C6 | 1.4723 (17) | ||
C2—O1—C5 | 106.52 (9) | N3—C4—C5 | 104.34 (10) |
N3—C2—O1 | 117.81 (10) | O1—C5—C4 | 103.13 (9) |
C2—N3—C4 | 107.69 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
O13—H13A···N3i | 0.92 (2) | 1.89 (2) | 2.7948 (14) | 169 (2) |
C16—H16A···O13ii | 0.99 (2) | 2.49 (2) | 3.3314 (18) | 142.3 (16) |
Symmetry codes: (i) x−1/2, −y+3/2, −z; (ii) x+1/2, −y+5/2, −z. |
The synthesis of the title compound, (II), from (1S,2S)-(+)-2-amino-1-phenyl-1,3-propanediol, (I), and ethyl benzimidate hydrochloride or benzonitrile has recently been reported independently by three research groups (Allen & Williams, 1994; Hoarau et al., 1997; Rozwadowska, 1998). Although the stereochemistry of (II) has been accepted as (4S,5S), the samples of oxazoline (II) prepared in these laboratories differed significantly in their physical data, i.e. in specific rotations, both in the sign and dimension, melting points and solubility, whereas the spectral data were much the same, within experimental error, for all the samples (see Experimental). \sch
Oxazoline (II), prepared in our laboratory from (I) and ethyl benzimidate hydrochloride or benzonitrile, showed positive rotation, as did the sample described by Hoarau et al. (1997), whereas Allen & Williams (1994) reported negative rotation. There were also differences in melting points for all the samples: our sample melted much higher (459–460 K) than the samples prepared by Allen & Williams (400–402 K) and Hoarau et al. (408 K) Moreover, we reported poor solubility of the compound in chloroform at room temperature. Since oxazolines are intermediates in the O → N acyl group migration in acylated 1,2-aminoalcohols, involving in some cases inversion of configuration, we decided to confirm unambiguously the structure of oxazoline (II) of m.p. 459–460 K and [α]D20 = +51.0 (c = 0.54, CHCl3) by X-ray analysis.
For the (+)-enantiomer shown in Fig. 1, the tetrahedral C4 and C5 atoms are chiral centres. The absolute configuration of those atoms was established as 4S and 5S by the structure refinement using Bijvoet-pair reflections. The hydroxymethyl group at the asymmetric C4 atom exhibits a β-orientation, whereas the phenyl group at the asymmetric C5 atom is α-oriented. The torsion angle C12—C4—C5—C14 [−111.39 (13)°] indicates anti-clinal conformation of the C12 atom in the hydroxymethyl group with respect to the C14 atom of the phenyl group.
The oxazoline ring is nearly planar with the r.m.s. deviation of 0.0306 Å. The C2 and C5 phenyl groups subtend very different interplanar angles oxazoline ring of 8.82 (10) and 82.47 (4)° to this ring. The C2—C6 distance of 1.4723 (17) Å is shorter than the C5—C14 single bond 1.4999 (16) Å by about 12σ. This fact indicates a weak conjugation effect between the C2 phenyl group and the oxazoline ring.
The bond distances and angles in the title molecule are consistent with those found in (4S,5S,SS)-4-hydroxymethyl-2-[2-(4-methylphenylsulfinyl)phenyl]- 4,5-dihydro-5-phenyl-1,3-oxazole (Bower et al., 1996). Other hydroxymethyl-phenyloxazoline derivatives are not described in the Cambridge Structural Database, Version 518 (Allen & Kennard, 1993).
The O13 atom of the hydroxyl group is syn-clinal with respect to the N3—C4 bond of the oxazoline ring [torsion angle O13—C12—C4—N3 68.15 (14)°]. We assume that this arrangement of the O13 atom is stabilized by the intermolecular hydrogen bond O13—H13A···N3i (Table 2), which leads to chains of molecules parallel to the x axis. An intermolecular C16—H16A···O13ii contact (Table 2) links neighbouring chains into a two-dimensional hydrogen network parallel to the xy plane (Fig. 2).