In the two title optically active tetrahydroisoquinoline derivatives, namely 3-hydroxymethyl-4-phenyl-1,2,3,4-tetrahydroisoquinolin-2-ium bromide methanol hemisolvate, C16H18NO+·Br-·0.5CH3OH, (IIb), and 2-formyl-3-hydroxymethyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline, C17H17NO2, (III), the absolute configurations have been confirmed as 3R,4R by structure refinement using Bijvoet-pair reflections. The hydroxymethyl and phenyl groups in (IIb) are oriented in equatorial and pseudo-equatorial positions, respectively, whereas in (III), the corresponding groups are in axial and pseudo-axial positions, respectively; the hydroxymethyl and phenyl groups are trans with respect to one another in both structures. The heterocyclic rings in (IIb) and (III) adopt envelope conformations inverted with respect to each other. In both structures, the molecules are linked through hydrogen bonds.
Supporting information
CCDC references: 193440; 193441
Compounds (IIb) and (III) were prepared according to the method of Brózda
et al. (2000). Crystals of both compounds suitable for single-crystal
X-ray diffraction analysis were selected directly from the analytical samples.
The positions of the H atoms bonded to N and O atoms in the partially reduced
isoquinoline core of (IIb) were obtained from difference Fourier maps and were
refined freely. For molecule A of (III), the hydroxyl group, which was
disordered over two positions (O141 and O142, with occupation factors of 67
and 33%), was allowed to rotate freely around the C—O bond. Atoms H141/H142
was placed geometrically and they converged to a position that could be
interpreted as a favourable conformation for the formation of a hydrogen bond.
The remaining H atoms of (IIb) and (III) were positioned geometrically and
refined with a riding model (O—H = 0.82 Å and C—H = 0.93–0.98 Å) and
with Uiso values constrained to be 1.5 (for hydroxyl H atoms) or 1.2
(for all other Hatoms) times the Ueq value of the parent atom.
In (IIb), the methanol solvate molecule lies near the twofold axis and shows
orientational disorder; the equivalent isotropic displacement parameter of
atom O19 is high [0.211 (5) Å2], and is associated with an interatomic
O19—C20 distance [1.247 (14) Å] shortened by about 11σ relative to the
normal value for a Csp3—O single bond [1.413 (4) Å; Allen et
al., 1987]. The position of atom O19 was fixed on the twofold axis, and
atom C20 was introduced with a site-occupation factor of 50%. A significant
degree of disorder of the methanol solvate molecule prevents identification of
the positions of the H atoms, so making it difficult to perform a correct
determination of the positions of the O and C atoms in the molecule.
Nevertheless, the assumption of the inverse positions of the atoms leads to
worse results.
For both compounds, data collection: KM-4 Software (Kuma, 1991); cell refinement: KM-4 Software; data reduction: KM-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
(IIb) 3-Hydroxymethyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline hydrobromide methanol
hemisolvate
top
Crystal data top
C16H18NO+·Br−·0.5CH4O | F(000) = 692 |
Mr = 336.25 | Dx = 1.435 Mg m−3 |
Monoclinic, C2 | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: C 2y | Cell parameters from 58 reflections |
a = 20.5882 (14) Å | θ = 10.2–29.4° |
b = 6.4413 (6) Å | µ = 3.58 mm−1 |
c = 11.7354 (6) Å | T = 293 K |
β = 91.004 (5)° | Block, colourless |
V = 1556.0 (2) Å3 | 0.43 × 0.14 × 0.10 mm |
Z = 4 | |
Data collection top
Kuma KM-4 diffractometer | 2713 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.020 |
Graphite monochromator | θmax = 70.1°, θmin = 3.8° |
ω–1θ scans | h = −24→24 |
Absorption correction: ψ scan (North et al., 1968) | k = −7→7 |
Tmin = 0.395, Tmax = 0.699 | l = 0→14 |
2953 measured reflections | 2 standard reflections every 100 reflections |
2827 independent reflections | intensity decay: 3.4% |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.028 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.081 | w = 1/[σ2(Fo2) + (0.0498P)2 + 0.8792P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.019 |
2827 reflections | Δρmax = 0.36 e Å−3 |
198 parameters | Δρmin = −0.43 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1205 Friedel reflections |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.01 (2) |
Crystal data top
C16H18NO+·Br−·0.5CH4O | V = 1556.0 (2) Å3 |
Mr = 336.25 | Z = 4 |
Monoclinic, C2 | Cu Kα radiation |
a = 20.5882 (14) Å | µ = 3.58 mm−1 |
b = 6.4413 (6) Å | T = 293 K |
c = 11.7354 (6) Å | 0.43 × 0.14 × 0.10 mm |
β = 91.004 (5)° | |
Data collection top
Kuma KM-4 diffractometer | 2713 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.020 |
Tmin = 0.395, Tmax = 0.699 | 2 standard reflections every 100 reflections |
2953 measured reflections | intensity decay: 3.4% |
2827 independent reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.028 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.081 | Δρmax = 0.36 e Å−3 |
S = 1.06 | Δρmin = −0.43 e Å−3 |
2827 reflections | Absolute structure: Flack (1983), 1205 Friedel reflections |
198 parameters | Absolute structure parameter: −0.01 (2) |
1 restraint | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
Br | 0.323588 (14) | 0.25337 (7) | −0.15463 (2) | 0.06295 (12) | |
C1 | 0.28368 (17) | 0.2903 (5) | 0.1680 (3) | 0.0604 (8) | |
H1A | 0.3026 | 0.1649 | 0.1370 | 0.072* | |
H1B | 0.2368 | 0.2753 | 0.1644 | 0.072* | |
N2 | 0.30286 (13) | 0.4706 (4) | 0.0966 (2) | 0.0525 (6) | |
H2A | 0.2754 (17) | 0.580 (7) | 0.107 (3) | 0.061 (10)* | |
H2B | 0.2984 (19) | 0.429 (7) | 0.016 (4) | 0.067 (11)* | |
C3 | 0.37024 (15) | 0.5458 (5) | 0.1205 (2) | 0.0534 (6) | |
H3 | 0.4001 | 0.4277 | 0.1161 | 0.064* | |
C4 | 0.37215 (14) | 0.6309 (5) | 0.2436 (2) | 0.0493 (6) | |
H4 | 0.3419 | 0.7483 | 0.2468 | 0.059* | |
C5 | 0.36770 (16) | 0.4695 (6) | 0.4407 (3) | 0.0597 (7) | |
H5 | 0.3965 | 0.5710 | 0.4666 | 0.072* | |
C6 | 0.34464 (19) | 0.3246 (6) | 0.5162 (3) | 0.0682 (10) | |
H6 | 0.3588 | 0.3272 | 0.5919 | 0.082* | |
C7 | 0.30071 (18) | 0.1759 (6) | 0.4806 (3) | 0.0676 (9) | |
H7 | 0.2845 | 0.0800 | 0.5321 | 0.081* | |
C8 | 0.28108 (16) | 0.1708 (5) | 0.3681 (3) | 0.0600 (7) | |
H8 | 0.2513 | 0.0709 | 0.3437 | 0.072* | |
C9 | 0.30511 (14) | 0.3130 (4) | 0.2904 (2) | 0.0499 (7) | |
C10 | 0.34859 (14) | 0.4670 (5) | 0.3258 (2) | 0.0491 (6) | |
C11 | 0.38801 (18) | 0.7016 (6) | 0.0308 (3) | 0.0647 (9) | |
H11A | 0.4312 | 0.7559 | 0.0465 | 0.078* | |
H11B | 0.3880 | 0.6357 | −0.0435 | 0.078* | |
O12 | 0.34219 (15) | 0.8648 (4) | 0.0314 (2) | 0.0747 (7) | |
H12 | 0.359 (2) | 0.920 (8) | −0.022 (4) | 0.084 (14)* | |
C13 | 0.44004 (14) | 0.7130 (5) | 0.2732 (2) | 0.0510 (7) | |
C14 | 0.49443 (18) | 0.5933 (6) | 0.2602 (3) | 0.0664 (8) | |
H14 | 0.4903 | 0.4572 | 0.2346 | 0.080* | |
C15 | 0.55589 (19) | 0.6736 (9) | 0.2851 (4) | 0.0808 (13) | |
H15 | 0.5924 | 0.5918 | 0.2739 | 0.097* | |
C16 | 0.5630 (2) | 0.8698 (9) | 0.3255 (4) | 0.0803 (12) | |
H16 | 0.6042 | 0.9224 | 0.3422 | 0.096* | |
C17 | 0.5083 (2) | 0.9908 (8) | 0.3415 (4) | 0.0885 (12) | |
H17 | 0.5125 | 1.1244 | 0.3708 | 0.106* | |
C18 | 0.44771 (18) | 0.9135 (6) | 0.3141 (3) | 0.0680 (8) | |
H18 | 0.4113 | 0.9971 | 0.3233 | 0.082* | |
O19 | 0.5000 | 0.147 (2) | 1.0000 | 0.211 (5) | |
C20 | 0.4793 (8) | 0.315 (2) | 0.9614 (13) | 0.117 (4) | 0.50 |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Br | 0.07771 (19) | 0.06541 (19) | 0.04600 (15) | −0.00797 (19) | 0.00925 (11) | 0.00064 (17) |
C1 | 0.0795 (18) | 0.056 (2) | 0.0457 (13) | −0.0045 (15) | −0.0041 (12) | 0.0025 (13) |
N2 | 0.0694 (15) | 0.0497 (14) | 0.0383 (12) | 0.0023 (12) | −0.0028 (10) | −0.0003 (10) |
C3 | 0.0625 (16) | 0.0552 (16) | 0.0427 (14) | 0.0047 (13) | 0.0033 (12) | 0.0001 (12) |
C4 | 0.0551 (14) | 0.0528 (16) | 0.0402 (13) | 0.0048 (12) | 0.0015 (11) | −0.0014 (11) |
C5 | 0.0672 (18) | 0.071 (2) | 0.0408 (14) | −0.0028 (15) | −0.0016 (12) | −0.0006 (13) |
C6 | 0.0727 (19) | 0.090 (3) | 0.0421 (15) | 0.0030 (17) | 0.0018 (13) | 0.0080 (14) |
C7 | 0.074 (2) | 0.077 (2) | 0.0527 (16) | 0.0012 (16) | 0.0091 (14) | 0.0180 (15) |
C8 | 0.0648 (17) | 0.0600 (17) | 0.0553 (17) | −0.0001 (14) | 0.0017 (13) | 0.0055 (13) |
C9 | 0.0572 (14) | 0.0486 (18) | 0.0439 (14) | 0.0058 (11) | 0.0022 (11) | 0.0009 (10) |
C10 | 0.0541 (14) | 0.0538 (16) | 0.0396 (13) | 0.0094 (12) | 0.0022 (11) | 0.0008 (11) |
C11 | 0.0749 (18) | 0.077 (3) | 0.0427 (13) | −0.0031 (16) | 0.0054 (12) | 0.0031 (14) |
O12 | 0.0894 (17) | 0.0693 (15) | 0.0655 (15) | 0.0041 (13) | 0.0053 (13) | 0.0205 (13) |
C13 | 0.0585 (14) | 0.051 (2) | 0.0439 (12) | −0.0008 (12) | 0.0010 (10) | 0.0072 (12) |
C14 | 0.0695 (19) | 0.066 (2) | 0.0639 (19) | 0.0081 (16) | −0.0017 (16) | −0.0035 (16) |
C15 | 0.0599 (19) | 0.112 (3) | 0.070 (2) | 0.016 (2) | −0.0014 (17) | 0.007 (2) |
C16 | 0.068 (2) | 0.092 (3) | 0.080 (3) | −0.011 (2) | −0.0111 (19) | 0.006 (2) |
C17 | 0.096 (3) | 0.072 (2) | 0.097 (3) | −0.017 (2) | −0.014 (2) | −0.002 (2) |
C18 | 0.071 (2) | 0.057 (2) | 0.076 (2) | 0.0044 (15) | −0.0050 (17) | −0.0091 (17) |
O19 | 0.170 (8) | 0.141 (8) | 0.324 (17) | 0.000 | 0.022 (9) | 0.000 |
C20 | 0.141 (11) | 0.093 (9) | 0.118 (9) | 0.016 (7) | 0.013 (7) | −0.008 (6) |
Geometric parameters (Å, º) top
C1—N2 | 1.490 (4) | C8—H8 | 0.93 |
C1—C9 | 1.503 (4) | C9—C10 | 1.395 (4) |
C1—H1A | 0.97 | C11—O12 | 1.412 (5) |
C1—H1B | 0.97 | C11—H11A | 0.97 |
N2—C3 | 1.491 (4) | C11—H11B | 0.97 |
N2—H2A | 0.92 (4) | O12—H12 | 0.81 (5) |
N2—H2B | 0.99 (4) | C13—C14 | 1.370 (5) |
C3—C11 | 1.505 (4) | C13—C18 | 1.386 (5) |
C3—C4 | 1.545 (4) | C14—C15 | 1.393 (6) |
C3—H3 | 0.98 | C14—H14 | 0.93 |
C4—C10 | 1.515 (4) | C15—C16 | 1.357 (7) |
C4—C13 | 1.529 (4) | C15—H15 | 0.93 |
C4—H4 | 0.98 | C16—C17 | 1.386 (7) |
C5—C6 | 1.377 (5) | C16—H16 | 0.93 |
C5—C10 | 1.398 (4) | C17—C18 | 1.376 (6) |
C5—H5 | 0.93 | C17—H17 | 0.93 |
C6—C7 | 1.378 (5) | C18—H18 | 0.93 |
C6—H6 | 0.93 | O19—C20i | 1.247 (14) |
C7—C8 | 1.374 (5) | O19—C20 | 1.247 (14) |
C7—H7 | 0.93 | C20—C20i | 1.23 (3) |
C8—C9 | 1.390 (4) | | |
| | | |
N2—C1—C9 | 112.7 (3) | C9—C8—H8 | 119.6 |
N2—C1—H1A | 109.1 | C8—C9—C10 | 120.5 (3) |
C9—C1—H1A | 109.1 | C8—C9—C1 | 117.5 (3) |
N2—C1—H1B | 109.1 | C10—C9—C1 | 122.0 (3) |
C9—C1—H1B | 109.1 | C9—C10—C5 | 117.6 (3) |
H1A—C1—H1B | 107.8 | C9—C10—C4 | 121.2 (2) |
C1—N2—C3 | 113.7 (2) | C5—C10—C4 | 121.2 (3) |
C1—N2—H2A | 111 (2) | O12—C11—C3 | 108.8 (3) |
C3—N2—H2A | 107 (2) | O12—C11—H11A | 109.9 |
C1—N2—H2B | 108 (2) | C3—C11—H11A | 109.9 |
C3—N2—H2B | 110 (2) | O12—C11—H11B | 109.9 |
H2A—N2—H2B | 107 (3) | C3—C11—H11B | 109.9 |
N2—C3—C11 | 108.8 (2) | H11A—C11—H11B | 108.3 |
N2—C3—C4 | 107.4 (2) | C11—O12—H12 | 91 (4) |
C11—C3—C4 | 114.5 (3) | C14—C13—C18 | 118.3 (3) |
N2—C3—H3 | 108.7 | C14—C13—C4 | 121.7 (3) |
C11—C3—H3 | 108.7 | C18—C13—C4 | 119.9 (3) |
C4—C3—H3 | 108.7 | C13—C14—C15 | 120.6 (4) |
C10—C4—C13 | 113.5 (2) | C13—C14—H14 | 119.7 |
C10—C4—C3 | 110.2 (2) | C15—C14—H14 | 119.7 |
C13—C4—C3 | 110.1 (2) | C16—C15—C14 | 120.8 (4) |
C10—C4—H4 | 107.6 | C16—C15—H15 | 119.6 |
C13—C4—H4 | 107.6 | C14—C15—H15 | 119.6 |
C3—C4—H4 | 107.6 | C15—C16—C17 | 119.2 (4) |
C6—C5—C10 | 121.2 (3) | C15—C16—H16 | 120.4 |
C6—C5—H5 | 119.4 | C17—C16—H16 | 120.4 |
C10—C5—H5 | 119.4 | C18—C17—C16 | 120.1 (4) |
C5—C6—C7 | 120.5 (3) | C18—C17—H17 | 120.0 |
C5—C6—H6 | 119.7 | C16—C17—H17 | 120.0 |
C7—C6—H6 | 119.7 | C17—C18—C13 | 121.0 (4) |
C8—C7—C6 | 119.3 (3) | C17—C18—H18 | 119.5 |
C8—C7—H7 | 120.4 | C13—C18—H18 | 119.5 |
C6—C7—H7 | 120.4 | C20i—O19—C20 | 59.3 (15) |
C7—C8—C9 | 120.8 (3) | C20i—C20—O19 | 60.4 (7) |
C7—C8—H8 | 119.6 | | |
| | | |
C9—C1—N2—C3 | 42.5 (4) | C6—C5—C10—C4 | 177.9 (3) |
C1—N2—C3—C11 | 170.4 (3) | C13—C4—C10—C9 | −151.1 (3) |
C1—N2—C3—C4 | −65.2 (3) | C3—C4—C10—C9 | −27.2 (4) |
N2—C3—C4—C10 | 54.8 (3) | C13—C4—C10—C5 | 31.4 (4) |
C11—C3—C4—C10 | 175.7 (3) | C3—C4—C10—C5 | 155.3 (3) |
N2—C3—C4—C13 | −179.4 (2) | N2—C3—C11—O12 | 57.6 (3) |
C11—C3—C4—C13 | −58.5 (3) | C4—C3—C11—O12 | −62.6 (4) |
C10—C5—C6—C7 | −1.6 (6) | C10—C4—C13—C14 | 70.6 (4) |
C5—C6—C7—C8 | 1.3 (6) | C3—C4—C13—C14 | −53.4 (4) |
C6—C7—C8—C9 | 0.2 (5) | C10—C4—C13—C18 | −109.5 (3) |
C7—C8—C9—C10 | −1.5 (5) | C3—C4—C13—C18 | 126.5 (3) |
C7—C8—C9—C1 | 177.1 (3) | C18—C13—C14—C15 | −1.5 (5) |
N2—C1—C9—C8 | 170.0 (3) | C4—C13—C14—C15 | 178.4 (3) |
N2—C1—C9—C10 | −11.5 (4) | C13—C14—C15—C16 | 1.8 (6) |
C8—C9—C10—C5 | 1.2 (4) | C14—C15—C16—C17 | −0.2 (7) |
C1—C9—C10—C5 | −177.3 (3) | C15—C16—C17—C18 | −1.5 (8) |
C8—C9—C10—C4 | −176.3 (3) | C16—C17—C18—C13 | 1.7 (7) |
C1—C9—C10—C4 | 5.1 (4) | C14—C13—C18—C17 | −0.2 (6) |
C6—C5—C10—C9 | 0.3 (5) | C4—C13—C18—C17 | 179.9 (4) |
Symmetry code: (i) −x+1, y, −z+2. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···Brii | 0.91 (4) | 2.40 (4) | 3.259 (3) | 157 (3) |
N2—H2B···Br | 0.99 (5) | 2.37 (5) | 3.298 (2) | 158 (3) |
O12—H12···Briii | 0.80 (5) | 2.74 (5) | 3.339 (3) | 132 (4) |
C1—H1A···O12iv | 0.97 | 2.44 | 3.406 (4) | 171 |
Symmetry codes: (ii) −x+1/2, y+1/2, −z; (iii) x, y+1, z; (iv) x, y−1, z. |
(III) 2-Formyl-3-hydroxymethyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline
top
Crystal data top
C17H17NO2 | F(000) = 1136 |
Mr = 267.32 | Dx = 1.248 Mg m−3 |
Orthorhombic, P212121 | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 45 reflections |
a = 11.097 (2) Å | θ = 14.9–26.1° |
b = 11.742 (2) Å | µ = 0.65 mm−1 |
c = 21.829 (4) Å | T = 293 K |
V = 2844.3 (9) Å3 | Prism, colourless |
Z = 8 | 0.52 × 0.16 × 0.11 mm |
Data collection top
Kuma KM-4 diffractometer | Rint = 0.028 |
Radiation source: fine-focus sealed tube | θmax = 70.1°, θmin = 4.1° |
Graphite monochromator | h = 0→13 |
ω–2θ scans | k = 0→14 |
5771 measured reflections | l = −26→26 |
5213 independent reflections | 2 standard reflections every 100 reflections |
4350 reflections with I > 2σ(I) | intensity decay: 6.8% |
Refinement top
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.033 | w = 1/[σ2(Fo2) + (0.0599P)2 + 0.1727P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.099 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.28 e Å−3 |
5213 reflections | Δρmin = −0.14 e Å−3 |
375 parameters | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
2 restraints | Extinction coefficient: 0.0054 (3) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 2181 Friedel reflections |
Secondary atom site location: difference Fourier map | Absolute structure parameter: −0.1 (2) |
Crystal data top
C17H17NO2 | V = 2844.3 (9) Å3 |
Mr = 267.32 | Z = 8 |
Orthorhombic, P212121 | Cu Kα radiation |
a = 11.097 (2) Å | µ = 0.65 mm−1 |
b = 11.742 (2) Å | T = 293 K |
c = 21.829 (4) Å | 0.52 × 0.16 × 0.11 mm |
Data collection top
Kuma KM-4 diffractometer | Rint = 0.028 |
5771 measured reflections | 2 standard reflections every 100 reflections |
5213 independent reflections | intensity decay: 6.8% |
4350 reflections with I > 2σ(I) | |
Refinement top
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.099 | Δρmax = 0.28 e Å−3 |
S = 1.05 | Δρmin = −0.14 e Å−3 |
5213 reflections | Absolute structure: Flack (1983), 2181 Friedel reflections |
375 parameters | Absolute structure parameter: −0.1 (2) |
2 restraints | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
C13A | 0.2552 (2) | 0.11568 (18) | 0.06544 (10) | 0.0761 (6) | |
H13A | 0.2594 | 0.1469 | 0.0244 | 0.091* | 0.67 |
H13B | 0.3368 | 0.0980 | 0.0781 | 0.091* | 0.67 |
H13C | 0.1897 | 0.0663 | 0.0528 | 0.091* | 0.33 |
H13D | 0.2873 | 0.1519 | 0.0290 | 0.091* | 0.33 |
O141 | 0.1926 (3) | 0.01901 (19) | 0.06332 (11) | 0.0846 (7) | 0.67 |
H141 | 0.1860 | −0.0071 | 0.0980 | 0.127* | 0.67 |
O142 | 0.3396 (5) | 0.0537 (4) | 0.0905 (2) | 0.0858 (14) | 0.33 |
H142 | 0.3171 | 0.0317 | 0.1243 | 0.129* | 0.33 |
C1A | 0.0593 (2) | 0.2901 (2) | 0.03364 (10) | 0.0721 (6) | |
H1A | −0.0168 | 0.3305 | 0.0356 | 0.087* | |
H1B | 0.0521 | 0.2316 | 0.0025 | 0.087* | |
N2A | 0.08189 (15) | 0.23617 (14) | 0.09232 (8) | 0.0602 (4) | |
C3A | 0.20542 (18) | 0.20721 (16) | 0.10803 (9) | 0.0576 (4) | |
H3A | 0.2060 | 0.1770 | 0.1499 | 0.069* | |
C4A | 0.28248 (15) | 0.31543 (15) | 0.10701 (8) | 0.0501 (4) | |
H4A | 0.3671 | 0.2916 | 0.1065 | 0.060* | |
C5A | 0.34444 (19) | 0.46413 (19) | 0.03081 (9) | 0.0662 (5) | |
H5A | 0.4143 | 0.4736 | 0.0538 | 0.079* | |
C6A | 0.3280 (2) | 0.5295 (2) | −0.02021 (9) | 0.0768 (6) | |
H6A | 0.3858 | 0.5829 | −0.0315 | 0.092* | |
C7A | 0.2259 (2) | 0.5160 (2) | −0.05456 (8) | 0.0761 (6) | |
H7A | 0.2140 | 0.5598 | −0.0896 | 0.091* | |
C8A | 0.1412 (2) | 0.4376 (2) | −0.03704 (8) | 0.0706 (6) | |
H8A | 0.0722 | 0.4283 | −0.0607 | 0.085* | |
C9A | 0.15619 (17) | 0.37149 (17) | 0.01535 (7) | 0.0546 (4) | |
C10A | 0.26035 (17) | 0.38422 (16) | 0.04944 (7) | 0.0512 (4) | |
C11A | −0.0091 (2) | 0.20697 (19) | 0.12830 (12) | 0.0824 (7) | |
H11A | 0.0089 | 0.1688 | 0.1645 | 0.099* | |
O12A | −0.11522 (18) | 0.22665 (16) | 0.11723 (11) | 0.1083 (7) | |
C15A | 0.26296 (16) | 0.38446 (14) | 0.16516 (7) | 0.0497 (4) | |
C16A | 0.33664 (17) | 0.36730 (16) | 0.21531 (8) | 0.0543 (4) | |
H16A | 0.3998 | 0.3154 | 0.2126 | 0.065* | |
C17A | 0.3181 (2) | 0.42578 (18) | 0.26920 (8) | 0.0633 (5) | |
H17A | 0.3681 | 0.4121 | 0.3026 | 0.076* | |
C18A | 0.2267 (2) | 0.50394 (18) | 0.27414 (8) | 0.0667 (5) | |
H18A | 0.2145 | 0.5436 | 0.3105 | 0.080* | |
C19A | 0.1533 (2) | 0.52245 (19) | 0.22400 (10) | 0.0718 (5) | |
H19A | 0.0912 | 0.5754 | 0.2265 | 0.086* | |
C20A | 0.1711 (2) | 0.46338 (18) | 0.17050 (8) | 0.0641 (5) | |
H20A | 0.1206 | 0.4767 | 0.1373 | 0.077* | |
C1B | 0.62307 (18) | 0.54871 (19) | 0.23088 (8) | 0.0622 (5) | |
H1C | 0.6429 | 0.5952 | 0.2662 | 0.075* | |
H1D | 0.5648 | 0.4921 | 0.2439 | 0.075* | |
N2B | 0.73146 (13) | 0.49106 (12) | 0.20993 (6) | 0.0497 (3) | |
C3B | 0.73796 (16) | 0.45876 (14) | 0.14550 (7) | 0.0498 (4) | |
H3B | 0.8179 | 0.4263 | 0.1380 | 0.060* | |
C4B | 0.72498 (16) | 0.56558 (14) | 0.10552 (7) | 0.0486 (4) | |
H4B | 0.7131 | 0.5401 | 0.0632 | 0.058* | |
C5B | 0.5557 (2) | 0.70084 (19) | 0.08187 (10) | 0.0678 (5) | |
H5B | 0.5858 | 0.7063 | 0.0422 | 0.081* | |
C6B | 0.4548 (2) | 0.7618 (2) | 0.09765 (13) | 0.0834 (7) | |
H6B | 0.4181 | 0.8091 | 0.0690 | 0.100* | |
C7B | 0.40838 (19) | 0.7529 (2) | 0.15547 (13) | 0.0756 (6) | |
H7B | 0.3397 | 0.7938 | 0.1660 | 0.091* | |
C8B | 0.46325 (17) | 0.68334 (18) | 0.19823 (9) | 0.0622 (5) | |
H8B | 0.4309 | 0.6771 | 0.2374 | 0.075* | |
C9B | 0.56669 (15) | 0.62259 (15) | 0.18295 (8) | 0.0511 (4) | |
C10B | 0.61378 (16) | 0.63103 (15) | 0.12405 (8) | 0.0511 (4) | |
C11B | 0.81414 (19) | 0.45985 (16) | 0.24987 (9) | 0.0610 (5) | |
H11B | 0.8804 | 0.4200 | 0.2350 | 0.073* | |
O12B | 0.81079 (15) | 0.47911 (14) | 0.30505 (7) | 0.0798 (4) | |
C13B | 0.6443 (2) | 0.36826 (17) | 0.12960 (9) | 0.0635 (5) | |
H13E | 0.5644 | 0.4000 | 0.1356 | 0.076* | |
H13F | 0.6522 | 0.3485 | 0.0866 | 0.076* | |
O14B | 0.65508 (16) | 0.26995 (12) | 0.16451 (8) | 0.0815 (5) | |
H14B | 0.7230 | 0.2435 | 0.1604 | 0.122* | |
C15B | 0.83979 (16) | 0.63570 (14) | 0.10703 (7) | 0.0475 (4) | |
C16B | 0.93209 (18) | 0.61088 (15) | 0.06707 (8) | 0.0574 (4) | |
H16B | 0.9216 | 0.5541 | 0.0379 | 0.069* | |
C17B | 1.04020 (19) | 0.66921 (18) | 0.06970 (10) | 0.0668 (5) | |
H17B | 1.1021 | 0.6505 | 0.0428 | 0.080* | |
C18B | 1.05664 (18) | 0.75407 (19) | 0.11155 (11) | 0.0692 (5) | |
H18B | 1.1293 | 0.7934 | 0.1131 | 0.083* | |
C19B | 0.9655 (2) | 0.78099 (19) | 0.15125 (11) | 0.0700 (5) | |
H19B | 0.9760 | 0.8395 | 0.1795 | 0.084* | |
C20B | 0.85793 (18) | 0.72153 (17) | 0.14958 (9) | 0.0611 (5) | |
H20B | 0.7972 | 0.7394 | 0.1773 | 0.073* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
C13A | 0.0903 (16) | 0.0638 (12) | 0.0744 (13) | 0.0142 (12) | 0.0135 (12) | −0.0090 (10) |
O141 | 0.1097 (19) | 0.0600 (13) | 0.0839 (14) | −0.0124 (13) | 0.0135 (14) | −0.0171 (11) |
O142 | 0.077 (3) | 0.084 (3) | 0.097 (3) | 0.032 (3) | 0.005 (3) | −0.002 (3) |
C1A | 0.0571 (12) | 0.0873 (15) | 0.0720 (13) | −0.0061 (11) | −0.0037 (9) | −0.0105 (11) |
N2A | 0.0529 (9) | 0.0579 (9) | 0.0699 (10) | −0.0036 (7) | 0.0124 (7) | −0.0074 (7) |
C3A | 0.0642 (12) | 0.0540 (9) | 0.0547 (9) | 0.0041 (8) | 0.0088 (8) | 0.0002 (8) |
C4A | 0.0467 (9) | 0.0574 (9) | 0.0464 (8) | 0.0032 (7) | −0.0011 (7) | 0.0035 (7) |
C5A | 0.0602 (12) | 0.0800 (13) | 0.0584 (10) | −0.0109 (11) | 0.0013 (9) | 0.0102 (9) |
C6A | 0.0867 (16) | 0.0845 (15) | 0.0592 (11) | −0.0111 (13) | 0.0122 (11) | 0.0157 (10) |
C7A | 0.1014 (18) | 0.0828 (14) | 0.0440 (9) | 0.0088 (13) | 0.0081 (10) | 0.0105 (9) |
C8A | 0.0714 (14) | 0.0930 (15) | 0.0474 (9) | 0.0159 (12) | −0.0115 (9) | −0.0078 (10) |
C9A | 0.0526 (10) | 0.0670 (11) | 0.0442 (8) | 0.0051 (9) | −0.0012 (7) | −0.0067 (7) |
C10A | 0.0500 (9) | 0.0607 (10) | 0.0429 (8) | 0.0013 (8) | 0.0033 (7) | 0.0006 (7) |
C11A | 0.0759 (16) | 0.0566 (12) | 0.1148 (19) | −0.0038 (11) | 0.0427 (14) | −0.0098 (12) |
O12A | 0.0683 (11) | 0.0838 (11) | 0.173 (2) | −0.0058 (9) | 0.0463 (12) | −0.0091 (12) |
C15A | 0.0524 (9) | 0.0509 (9) | 0.0459 (8) | −0.0009 (8) | 0.0005 (7) | 0.0063 (7) |
C16A | 0.0528 (10) | 0.0602 (10) | 0.0498 (9) | −0.0021 (8) | −0.0039 (7) | 0.0092 (7) |
C17A | 0.0719 (13) | 0.0728 (12) | 0.0454 (9) | −0.0092 (10) | −0.0044 (8) | 0.0052 (8) |
C18A | 0.0878 (15) | 0.0626 (11) | 0.0497 (9) | −0.0085 (11) | 0.0067 (9) | −0.0027 (8) |
C19A | 0.0820 (15) | 0.0622 (11) | 0.0713 (12) | 0.0129 (11) | 0.0076 (11) | −0.0021 (9) |
C20A | 0.0720 (13) | 0.0685 (11) | 0.0519 (9) | 0.0144 (10) | −0.0066 (9) | 0.0027 (8) |
C1B | 0.0579 (12) | 0.0787 (13) | 0.0501 (9) | 0.0092 (10) | 0.0036 (8) | −0.0005 (9) |
N2B | 0.0472 (8) | 0.0517 (7) | 0.0501 (7) | 0.0030 (6) | −0.0010 (6) | 0.0002 (6) |
C3B | 0.0479 (9) | 0.0481 (8) | 0.0534 (9) | −0.0016 (7) | 0.0044 (7) | −0.0047 (7) |
C4B | 0.0495 (9) | 0.0542 (9) | 0.0421 (7) | −0.0036 (7) | 0.0005 (7) | −0.0051 (7) |
C5B | 0.0621 (13) | 0.0720 (13) | 0.0695 (12) | 0.0013 (10) | −0.0089 (9) | 0.0117 (10) |
C6B | 0.0683 (15) | 0.0827 (15) | 0.0992 (18) | 0.0117 (12) | −0.0204 (13) | 0.0167 (13) |
C7B | 0.0489 (11) | 0.0757 (14) | 0.1022 (17) | 0.0127 (10) | −0.0092 (11) | −0.0061 (12) |
C8B | 0.0437 (10) | 0.0714 (12) | 0.0715 (12) | 0.0012 (9) | 0.0016 (8) | −0.0090 (9) |
C9B | 0.0402 (8) | 0.0568 (10) | 0.0564 (9) | 0.0006 (7) | −0.0030 (7) | −0.0048 (7) |
C10B | 0.0440 (9) | 0.0533 (9) | 0.0559 (9) | −0.0032 (7) | −0.0063 (7) | −0.0014 (8) |
C11B | 0.0605 (12) | 0.0538 (10) | 0.0687 (12) | 0.0044 (9) | −0.0126 (9) | 0.0007 (8) |
O12B | 0.0965 (12) | 0.0782 (9) | 0.0647 (8) | 0.0145 (9) | −0.0252 (8) | −0.0028 (7) |
C13B | 0.0640 (12) | 0.0591 (10) | 0.0674 (11) | −0.0135 (9) | 0.0057 (9) | −0.0060 (9) |
O14B | 0.0831 (11) | 0.0587 (8) | 0.1028 (11) | −0.0066 (8) | 0.0300 (9) | 0.0057 (8) |
C15B | 0.0489 (9) | 0.0478 (8) | 0.0457 (8) | 0.0017 (7) | 0.0012 (7) | 0.0021 (7) |
C16B | 0.0609 (11) | 0.0564 (10) | 0.0550 (9) | 0.0015 (9) | 0.0116 (8) | 0.0014 (8) |
C17B | 0.0549 (12) | 0.0670 (12) | 0.0786 (13) | 0.0045 (9) | 0.0186 (10) | 0.0151 (10) |
C18B | 0.0492 (11) | 0.0631 (11) | 0.0954 (15) | −0.0030 (9) | −0.0045 (11) | 0.0145 (11) |
C19B | 0.0586 (12) | 0.0655 (12) | 0.0861 (14) | −0.0058 (10) | −0.0078 (11) | −0.0151 (10) |
C20B | 0.0528 (11) | 0.0608 (11) | 0.0698 (11) | −0.0016 (9) | 0.0040 (9) | −0.0145 (9) |
Geometric parameters (Å, º) top
C13A—O142 | 1.306 (5) | C19A—H19A | 0.93 |
C13A—O141 | 1.331 (3) | C20A—H20A | 0.93 |
C13A—C3A | 1.525 (3) | C1B—N2B | 1.454 (2) |
C13A—H13A | 0.97 | C1B—C9B | 1.496 (3) |
C13A—H13B | 0.97 | C1B—H1C | 0.97 |
C13A—H13C | 0.97 | C1B—H1D | 0.97 |
C13A—H13D | 0.97 | N2B—C11B | 1.318 (2) |
O141—H141 | 0.82 | N2B—C3B | 1.458 (2) |
O142—H142 | 0.82 | C3B—C13B | 1.526 (3) |
C1A—N2A | 1.451 (3) | C3B—C4B | 1.535 (2) |
C1A—C9A | 1.493 (3) | C3B—H3B | 0.98 |
C1A—H1A | 0.97 | C4B—C10B | 1.509 (2) |
C1A—H1B | 0.97 | C4B—C15B | 1.517 (2) |
N2A—C11A | 1.324 (3) | C4B—H4B | 0.98 |
N2A—C3A | 1.453 (3) | C5B—C6B | 1.373 (3) |
C3A—C4A | 1.532 (3) | C5B—C10B | 1.391 (3) |
C3A—H3A | 0.98 | C5B—H5B | 0.93 |
C4A—C10A | 1.514 (2) | C6B—C7B | 1.367 (4) |
C4A—C15A | 1.522 (2) | C6B—H6B | 0.93 |
C4A—H4A | 0.98 | C7B—C8B | 1.382 (3) |
C5A—C6A | 1.365 (3) | C7B—H7B | 0.93 |
C5A—C10A | 1.384 (3) | C8B—C9B | 1.392 (3) |
C5A—H5A | 0.93 | C8B—H8B | 0.93 |
C6A—C7A | 1.368 (4) | C9B—C10B | 1.391 (2) |
C6A—H6A | 0.93 | C11B—O12B | 1.226 (2) |
C7A—C8A | 1.370 (3) | C11B—H11B | 0.93 |
C7A—H7A | 0.93 | C13B—O14B | 1.388 (3) |
C8A—C9A | 1.392 (3) | C13B—H13E | 0.97 |
C8A—H8A | 0.93 | C13B—H13F | 0.97 |
C9A—C10A | 1.383 (3) | O14B—H14B | 0.82 |
C11A—O12A | 1.224 (3) | C15B—C16B | 1.377 (2) |
C11A—H11A | 0.93 | C15B—C20B | 1.385 (3) |
C15A—C16A | 1.381 (2) | C16B—C17B | 1.383 (3) |
C15A—C20A | 1.382 (3) | C16B—H16B | 0.93 |
C16A—C17A | 1.378 (3) | C17B—C18B | 1.364 (3) |
C16A—H16A | 0.93 | C17B—H17B | 0.93 |
C17A—C18A | 1.372 (3) | C18B—C19B | 1.369 (3) |
C17A—H17A | 0.93 | C18B—H18B | 0.93 |
C18A—C19A | 1.382 (3) | C19B—C20B | 1.383 (3) |
C18A—H18A | 0.93 | C19B—H19B | 0.93 |
C19A—C20A | 1.373 (3) | C20B—H20B | 0.93 |
| | | |
O142—C13A—C3A | 113.4 (3) | C20A—C19A—C18A | 120.6 (2) |
O141—C13A—C3A | 115.7 (2) | C20A—C19A—H19A | 119.7 |
O142—C13A—H13A | 124.3 | C18A—C19A—H19A | 119.7 |
O141—C13A—H13A | 108.4 | C19A—C20A—C15A | 121.13 (18) |
C3A—C13A—H13A | 108.4 | C19A—C20A—H20A | 119.4 |
O141—C13A—H13B | 108.4 | C15A—C20A—H20A | 119.4 |
C3A—C13A—H13B | 108.4 | N2B—C1B—C9B | 113.32 (14) |
H13A—C13A—H13B | 107.4 | N2B—C1B—H1C | 108.9 |
O142—C13A—H13C | 108.9 | C9B—C1B—H1C | 108.9 |
C3A—C13A—H13C | 108.9 | N2B—C1B—H1D | 108.9 |
H13A—C13A—H13C | 89.9 | C9B—C1B—H1D | 108.9 |
H13B—C13A—H13C | 130.8 | H1C—C1B—H1D | 107.7 |
O142—C13A—H13D | 108.9 | C11B—N2B—C1B | 119.83 (15) |
O141—C13A—H13D | 122.5 | C11B—N2B—C3B | 122.09 (16) |
C3A—C13A—H13D | 108.9 | C1B—N2B—C3B | 117.73 (14) |
H13B—C13A—H13D | 89.1 | N2B—C3B—C13B | 111.51 (14) |
H13C—C13A—H13D | 107.7 | N2B—C3B—C4B | 109.34 (13) |
C13A—O141—H141 | 109.5 | C13B—C3B—C4B | 112.07 (15) |
C13A—O142—H142 | 109.5 | N2B—C3B—H3B | 107.9 |
N2A—C1A—C9A | 113.03 (16) | C13B—C3B—H3B | 107.9 |
N2A—C1A—H1A | 109.0 | C4B—C3B—H3B | 107.9 |
C9A—C1A—H1A | 109.0 | C10B—C4B—C15B | 113.85 (14) |
N2A—C1A—H1B | 109.0 | C10B—C4B—C3B | 109.91 (13) |
C9A—C1A—H1B | 109.0 | C15B—C4B—C3B | 110.63 (14) |
H1A—C1A—H1B | 107.8 | C10B—C4B—H4B | 107.4 |
C11A—N2A—C1A | 120.3 (2) | C15B—C4B—H4B | 107.4 |
C11A—N2A—C3A | 121.2 (2) | C3B—C4B—H4B | 107.4 |
C1A—N2A—C3A | 118.24 (15) | C6B—C5B—C10B | 121.3 (2) |
N2A—C3A—C13A | 111.27 (18) | C6B—C5B—H5B | 119.4 |
N2A—C3A—C4A | 109.20 (15) | C10B—C5B—H5B | 119.4 |
C13A—C3A—C4A | 111.95 (16) | C7B—C6B—C5B | 120.0 (2) |
N2A—C3A—H3A | 108.1 | C7B—C6B—H6B | 120.0 |
C13A—C3A—H3A | 108.1 | C5B—C6B—H6B | 120.0 |
C4A—C3A—H3A | 108.1 | C6B—C7B—C8B | 120.2 (2) |
C10A—C4A—C15A | 112.65 (14) | C6B—C7B—H7B | 119.9 |
C10A—C4A—C3A | 111.36 (15) | C8B—C7B—H7B | 119.9 |
C15A—C4A—C3A | 110.51 (14) | C7B—C8B—C9B | 120.3 (2) |
C10A—C4A—H4A | 107.3 | C7B—C8B—H8B | 119.9 |
C15A—C4A—H4A | 107.3 | C9B—C8B—H8B | 119.9 |
C3A—C4A—H4A | 107.3 | C10B—C9B—C8B | 119.65 (17) |
C6A—C5A—C10A | 122.1 (2) | C10B—C9B—C1B | 122.04 (15) |
C6A—C5A—H5A | 119.0 | C8B—C9B—C1B | 118.32 (17) |
C10A—C5A—H5A | 119.0 | C5B—C10B—C9B | 118.67 (17) |
C5A—C6A—C7A | 119.5 (2) | C5B—C10B—C4B | 120.10 (17) |
C5A—C6A—H6A | 120.2 | C9B—C10B—C4B | 121.23 (15) |
C7A—C6A—H6A | 120.2 | O12B—C11B—N2B | 125.28 (19) |
C6A—C7A—C8A | 119.53 (18) | O12B—C11B—H11B | 117.4 |
C6A—C7A—H7A | 120.2 | N2B—C11B—H11B | 117.4 |
C8A—C7A—H7A | 120.2 | O14B—C13B—C3B | 113.28 (18) |
C7A—C8A—C9A | 121.47 (19) | O14B—C13B—H13E | 108.9 |
C7A—C8A—H8A | 119.3 | C3B—C13B—H13E | 108.9 |
C9A—C8A—H8A | 119.3 | O14B—C13B—H13F | 108.9 |
C10A—C9A—C8A | 118.81 (18) | C3B—C13B—H13F | 108.9 |
C10A—C9A—C1A | 121.81 (17) | H13E—C13B—H13F | 107.7 |
C8A—C9A—C1A | 119.37 (18) | C13B—O14B—H14B | 109.5 |
C9A—C10A—C5A | 118.59 (16) | C16B—C15B—C20B | 118.09 (17) |
C9A—C10A—C4A | 121.64 (16) | C16B—C15B—C4B | 119.74 (15) |
C5A—C10A—C4A | 119.75 (17) | C20B—C15B—C4B | 122.10 (16) |
O12A—C11A—N2A | 124.6 (3) | C15B—C16B—C17B | 120.95 (18) |
O12A—C11A—H11A | 117.7 | C15B—C16B—H16B | 119.5 |
N2A—C11A—H11A | 117.7 | C17B—C16B—H16B | 119.5 |
C16A—C15A—C20A | 117.86 (16) | C18B—C17B—C16B | 120.38 (19) |
C16A—C15A—C4A | 119.95 (16) | C18B—C17B—H17B | 119.8 |
C20A—C15A—C4A | 122.17 (15) | C16B—C17B—H17B | 119.8 |
C17A—C16A—C15A | 121.06 (18) | C17B—C18B—C19B | 119.60 (19) |
C17A—C16A—H16A | 119.5 | C17B—C18B—H18B | 120.2 |
C15A—C16A—H16A | 119.5 | C19B—C18B—H18B | 120.2 |
C18A—C17A—C16A | 120.72 (17) | C18B—C19B—C20B | 120.3 (2) |
C18A—C17A—H17A | 119.6 | C18B—C19B—H19B | 119.9 |
C16A—C17A—H17A | 119.6 | C20B—C19B—H19B | 119.9 |
C17A—C18A—C19A | 118.61 (17) | C19B—C20B—C15B | 120.68 (18) |
C17A—C18A—H18A | 120.7 | C19B—C20B—H20B | 119.7 |
C19A—C18A—H18A | 120.7 | C15B—C20B—H20B | 119.7 |
| | | |
C9A—C1A—N2A—C11A | 148.30 (19) | C4A—C15A—C20A—C19A | 178.22 (19) |
C9A—C1A—N2A—C3A | −36.5 (2) | C9B—C1B—N2B—C11B | 154.36 (17) |
C11A—N2A—C3A—C13A | 109.6 (2) | C9B—C1B—N2B—C3B | −32.3 (2) |
C1A—N2A—C3A—C13A | −65.5 (2) | C11B—N2B—C3B—C13B | 107.4 (2) |
C11A—N2A—C3A—C4A | −126.34 (19) | C1B—N2B—C3B—C13B | −65.7 (2) |
C1A—N2A—C3A—C4A | 58.5 (2) | C11B—N2B—C3B—C4B | −128.07 (18) |
O142—C13A—C3A—N2A | −152.9 (3) | C1B—N2B—C3B—C4B | 58.8 (2) |
O141—C13A—C3A—N2A | −57.0 (3) | N2B—C3B—C4B—C10B | −52.17 (18) |
O142—C13A—C3A—C4A | 84.6 (3) | C13B—C3B—C4B—C10B | 72.00 (17) |
O141—C13A—C3A—C4A | −179.5 (2) | N2B—C3B—C4B—C15B | 74.41 (17) |
N2A—C3A—C4A—C10A | −47.57 (19) | C13B—C3B—C4B—C15B | −161.42 (14) |
C13A—C3A—C4A—C10A | 76.1 (2) | C10B—C5B—C6B—C7B | −1.2 (4) |
N2A—C3A—C4A—C15A | 78.43 (18) | C5B—C6B—C7B—C8B | 0.5 (4) |
C13A—C3A—C4A—C15A | −157.89 (16) | C6B—C7B—C8B—C9B | 0.5 (3) |
C10A—C5A—C6A—C7A | −0.4 (4) | C7B—C8B—C9B—C10B | −0.9 (3) |
C5A—C6A—C7A—C8A | 0.4 (4) | C7B—C8B—C9B—C1B | 179.8 (2) |
C6A—C7A—C8A—C9A | 0.4 (3) | N2B—C1B—C9B—C10B | 1.6 (3) |
C7A—C8A—C9A—C10A | −1.4 (3) | N2B—C1B—C9B—C8B | −179.06 (16) |
C7A—C8A—C9A—C1A | 177.90 (19) | C6B—C5B—C10B—C9B | 0.8 (3) |
N2A—C1A—C9A—C10A | 5.3 (3) | C6B—C5B—C10B—C4B | −179.6 (2) |
N2A—C1A—C9A—C8A | −173.92 (18) | C8B—C9B—C10B—C5B | 0.2 (3) |
C8A—C9A—C10A—C5A | 1.4 (3) | C1B—C9B—C10B—C5B | 179.50 (18) |
C1A—C9A—C10A—C5A | −177.85 (18) | C8B—C9B—C10B—C4B | −179.35 (16) |
C8A—C9A—C10A—C4A | 179.81 (17) | C1B—C9B—C10B—C4B | 0.0 (3) |
C1A—C9A—C10A—C4A | 0.5 (3) | C15B—C4B—C10B—C5B | 81.3 (2) |
C6A—C5A—C10A—C9A | −0.6 (3) | C3B—C4B—C10B—C5B | −153.93 (17) |
C6A—C5A—C10A—C4A | −179.0 (2) | C15B—C4B—C10B—C9B | −99.14 (19) |
C15A—C4A—C10A—C9A | −103.66 (19) | C3B—C4B—C10B—C9B | 25.6 (2) |
C3A—C4A—C10A—C9A | 21.1 (2) | C1B—N2B—C11B—O12B | −3.0 (3) |
C15A—C4A—C10A—C5A | 74.7 (2) | C3B—N2B—C11B—O12B | −176.03 (19) |
C3A—C4A—C10A—C5A | −160.48 (18) | N2B—C3B—C13B—O14B | −57.9 (2) |
C1A—N2A—C11A—O12A | −3.5 (3) | C4B—C3B—C13B—O14B | 179.11 (15) |
C3A—N2A—C11A—O12A | −178.5 (2) | C10B—C4B—C15B—C16B | −149.69 (16) |
C10A—C4A—C15A—C16A | −143.10 (17) | C3B—C4B—C15B—C16B | 85.96 (18) |
C3A—C4A—C15A—C16A | 91.6 (2) | C10B—C4B—C15B—C20B | 33.5 (2) |
C10A—C4A—C15A—C20A | 38.4 (2) | C3B—C4B—C15B—C20B | −90.9 (2) |
C3A—C4A—C15A—C20A | −86.9 (2) | C20B—C15B—C16B—C17B | 0.6 (3) |
C20A—C15A—C16A—C17A | 0.9 (3) | C4B—C15B—C16B—C17B | −176.38 (17) |
C4A—C15A—C16A—C17A | −177.66 (17) | C15B—C16B—C17B—C18B | −1.1 (3) |
C15A—C16A—C17A—C18A | −0.9 (3) | C16B—C17B—C18B—C19B | 0.3 (3) |
C16A—C17A—C18A—C19A | 0.3 (3) | C17B—C18B—C19B—C20B | 0.9 (3) |
C17A—C18A—C19A—C20A | 0.3 (3) | C18B—C19B—C20B—C15B | −1.3 (3) |
C18A—C19A—C20A—C15A | −0.3 (3) | C16B—C15B—C20B—C19B | 0.6 (3) |
C16A—C15A—C20A—C19A | −0.3 (3) | C4B—C15B—C20B—C19B | 177.49 (18) |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O141—H141···O12Bi | 0.82 | 2.12 | 2.912 (3) | 161 |
O142—H142···O12Bi | 0.82 | 2.18 | 2.958 (6) | 158 |
O14B—H14B···O12Aii | 0.82 | 2.04 | 2.797 (3) | 154 |
C3A—H3A···O12Bi | 0.98 | 2.53 | 3.287 (3) | 134 |
C3B—H3B···O12Aii | 0.98 | 2.50 | 3.235 (3) | 132 |
C8B—H8B···O14Biii | 0.93 | 2.59 | 3.426 (3) | 151 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x+1, y, z; (iii) −x+1, y+1/2, −z+1/2. |
Experimental details
| (IIb) | (III) |
Crystal data |
Chemical formula | C16H18NO+·Br−·0.5CH4O | C17H17NO2 |
Mr | 336.25 | 267.32 |
Crystal system, space group | Monoclinic, C2 | Orthorhombic, P212121 |
Temperature (K) | 293 | 293 |
a, b, c (Å) | 20.5882 (14), 6.4413 (6), 11.7354 (6) | 11.097 (2), 11.742 (2), 21.829 (4) |
α, β, γ (°) | 90, 91.004 (5), 90 | 90, 90, 90 |
V (Å3) | 1556.0 (2) | 2844.3 (9) |
Z | 4 | 8 |
Radiation type | Cu Kα | Cu Kα |
µ (mm−1) | 3.58 | 0.65 |
Crystal size (mm) | 0.43 × 0.14 × 0.10 | 0.52 × 0.16 × 0.11 |
|
Data collection |
Diffractometer | Kuma KM-4 diffractometer | Kuma KM-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) | – |
Tmin, Tmax | 0.395, 0.699 | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2953, 2827, 2713 | 5771, 5213, 4350 |
Rint | 0.020 | 0.028 |
(sin θ/λ)max (Å−1) | 0.610 | 0.610 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.081, 1.06 | 0.033, 0.099, 1.05 |
No. of reflections | 2827 | 5213 |
No. of parameters | 198 | 375 |
No. of restraints | 1 | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.36, −0.43 | 0.28, −0.14 |
Absolute structure | Flack (1983), 1205 Friedel reflections | Flack (1983), 2181 Friedel reflections |
Absolute structure parameter | −0.01 (2) | −0.1 (2) |
Hydrogen-bond geometry (Å, º) for (IIb) top
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···Bri | 0.91 (4) | 2.40 (4) | 3.259 (3) | 157 (3) |
N2—H2B···Br | 0.99 (5) | 2.37 (5) | 3.298 (2) | 158 (3) |
O12—H12···Brii | 0.80 (5) | 2.74 (5) | 3.339 (3) | 132 (4) |
C1—H1A···O12iii | 0.97 | 2.44 | 3.406 (4) | 171 |
Symmetry codes: (i) −x+1/2, y+1/2, −z; (ii) x, y+1, z; (iii) x, y−1, z. |
Hydrogen-bond geometry (Å, º) for (III) top
D—H···A | D—H | H···A | D···A | D—H···A |
O141—H141···O12Bi | 0.82 | 2.12 | 2.912 (3) | 161 |
O142—H142···O12Bi | 0.82 | 2.18 | 2.958 (6) | 158 |
O14B—H14B···O12Aii | 0.82 | 2.04 | 2.797 (3) | 154 |
C3A—H3A···O12Bi | 0.98 | 2.53 | 3.287 (3) | 134 |
C3B—H3B···O12Aii | 0.98 | 2.50 | 3.235 (3) | 132 |
C8B—H8B···O14Biii | 0.93 | 2.59 | 3.426 (3) | 151 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x+1, y, z; (iii) −x+1, y+1/2, −z+1/2. |
One of the steps in our synthesis of 4-phenyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (4-phenyl-Tic), (IV), from (+)-thiomicamine, (I), involved N-formylation of the intermediate 3-hydroxymethyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline hydrobromide, (IIa), to give 2-formyl-3-hydroxymethyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline, (III) (Brózda et al., 2000; see Scheme). The absolute configuration of both compounds, i.e. of (IIa) and (III), as 3R,4R was implied by the 1S,2S configuration of the starting material (+)-thiomicamine, (I), and mechanistic considerations (Brózda et al., 2000).
A half-chair or envelope conformation with a trans equatorial–pseudo-equatorial orientation of the C3 and C4 substituents in (IIa), respectively, was confirmed by the value of the coupling constant (J = 10.2 Hz) between atoms H3 and H4 in the 1H NMR spectrum. This value corresponds to that of axial–pseudo-axial H atoms in cyclohexene derivatives (Ehil & Wilen, 1994) and also to those in other trans-3,4-disubstituted tetrahydroisoquinoline derivatives (Bohe et al., 1999; Pedrosa et al., 2001).
In the 1H NMR spectrum of formamide (III), however, atoms H3 and H4 appear as singlets, suggesting a conformational inversion within the hydrogenated heterocyclic ring. We suspected that intramolecular hydrogen bonding involving the hydroxyl H and amide O atoms was responsible for this change (Brózda et al., 2000). Such a ring inversion would then place these H atoms in equatorial–pseudo-equatorial positions, respectively, with a torsion angle θ of ca 90°, for which, according to the Karplus equation, 3J ≈ 0. There was also a possibility of steric hindrance between the C3 substituent and the introduced N-formyl group, resulting in a change of conformation. In order to solve this problem, X-ray single-crystal analyses were performed on compounds (IIb) and (III).
The asymmetric unit of (IIb) contains one 3-hydroxymethyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline molecule in the form of its ammonium cation (i.e. with an NH2+ group), a Br- anion and half a methanol molecule. In compound (III), the asymmetric unit contains two independent 2-formyl-3-hydroxymethyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline molecules.
The results obtained for the title compounds confirm the absolute 3R,4R configuration of both compounds proposed earlier on the basis of 1H NMR studies (Brózda et al., 2000). Moreover, upon formylation of (II), the distorted envelope conformation of the heterocyclic ring in the tetrahydroisoquinoline system [Cremer & Pople (1975) puckering parameters for (IIb): Q = 0.512 (3) Å, Θ = 132.4 (3)° and Φ = 131.9 (5)°; for (III): Q = 0.446 (2) Å, Θ = 52.1 (3)° and Φ = 310.6 (3)° (molecule A), and Q = 0.469 (2) Å, Θ = 53.5 (2)° and Φ = 302.1 (3)° (molecule B)] has undergone inversion, leading to a change in the mutual orientation of the substituents at C3 and C4. The deviation of atom C3 from the almost planar system of the other five atoms of the heterocyclic ring is 0.691 (4) Å for (IIb), 0.611 (2) Å for molecule A of (III) and 0.646 (2) Å for molecule B of (III) (Sheldrick, 1997). In (IIb), the substituents at C3 and C4 have a mutually trans equatorial–pseudo-equatorial orientation, but in (III), they have a trans axial-pseudo-axial orientation. A similar stereochemistry of the partially reduced isoquinoline core of (IIb) and (III) seems to be preserved in solution, as may be judged from the values of the coupling constants in their 1H NMR spectra (see above). In (IIb), the torsion angle C11—C3—C4—C13 [-58.5 (3)°] indicates a synclinal conformation of the C11 atom in the hydroxymethyl group with respect to the C13 atom of the phenyl group, while in (III), the analogous angle C13—C3—C4—C15 [-157.89 (16)° (molecule A) and -161.42 (14)° (molecule B)] reveals a mutual orientation between anticlinal–antiperiplanar for atoms C13 and C15. It can be concluded that the above-mentioned inversion of the conformation of the hetrocyclic ring in the partially reduced isoquinoline core occurred as a result of a steric hindrance between the C3-hydroxymethyl substituent and the N-formyl group or/and a change in the state of hybridization of atom N2, which suggests a considerable contribution of the ionic form in the resonance hybrid of the amide group. The N2—C11 bond distance [1.324 (3) Å (molecule A) and 1.318 (2) Å (molecule B)] is somewhat shorter than a tertiary amide distance [1.346 (5) Å; Allen et al., 1987]. The sum of the valence angles around N2 is 359.8 (3)° for molecule A and 359.6 (3)° for molecule B.
In (IIb), the methanol solvate molecule lies near the twofold rotation axis, showing orientational disorder (see Experimental).
The hydroxyl group in molecule A of (III) also exhibits orientational disorder. Both positions of the hydroxyl group favour the formation of an intermolecular hydrogen bond with atom O12 of the carbonyl group of molecule B (Table 2).
In the crystal lattice of (IIb), the Br- anion is involved in three hydrogen bonds as an H-atom acceptor. In these bonds, the H-atom donors are the N2 atoms from two different molecules and atom O12 of the hydroxyl group belonging to the third molecule (Table 1). Additionally, there is a possible intermolecular C—H···O hydrogen bond (Table 1). In this way, chains are formed parallel to the y axis.
In the crystal lattice of (III), the A and B molecules are connected by hydrogen bonds (O141···O12Bi, O142···O12Bi and O14B···O12Aii; see Table 2 for symmetry codes), forming chains parallel to the y axis. A comparison of IR absorption in spectra of (III), recorded in the solid state (KBr) and in solution (CH2Cl2), suggests the existence of similar intermolecular interactions in both phases.