Download citation
Download citation
link to html
In the crystal structures of both title compounds, [1,3-bis­(2-hydroxy­benzyl­idene)-2-methyl-2-(2-oxido­benzyl­idene­amino­methyl)­propane-1,3-diamine]­nickel(II) [2-(2-hydroxy­benzyl­idene­amino­methyl)-2-methyl-1,3-bis­(2-oxido­benzyl­idene)­propane-1,3-diamine]­nickel(II) chloride methanol disolvate, [Ni(C26H25.5N3O3)]2Cl·2CH4O, and [1,3-bis­(2-hydroxy­benzyl­idene)-2-methyl-2-(2-oxido­benzyl­idene­amino­methyl)­propane-1,3-diamine]­zinc(II) perchlorate [2-(2-hydroxy­benzyl­ideneamino­methyl)-2-methyl-1,3-bis­(2-oxido­benzyl­idene)­propane-1,3-diamine]­zinc(II) methanol tri­solvate, [Zn(C26H25N3O3)]ClO4·[Zn(C26H26N3O3)]·3CH4O, the 3d metal ion is in an approximately octa­hedral environment composed of three facially coordinated imine N atoms and three phenol O atoms. The two mononuclear units are linked by three phenol–phenolate O—H...O hydrogen bonds to form a dimeric structure. In the Ni compound, the asymmetric unit consists of one mononuclear unit, one-half of a chloride anion and a methanol solvent mol­ecule. In the O—H...O hydrogen bonds, two H atoms are located near the centre of O...O and one H atom is disordered over two positions. The NiII compound is thus formulated as [Ni(H1.5L)]2Cl·2CH3OH [H3L is 1,3-bis(2-­hy­droxybenzyl­idene)-2-(2-hydroxy­benzyl­idene­amino­methyl)-2-methyl­propane-1,3-diamine]. In the analogous ZnII com­pound, the asymmetric unit consists of two crystallographically independent mononuclear units, one perchlorate anion and three methanol solvent mol­ecules. The mode of hydrogen bonding connecting the two mononuclear units is slightly different, and the formula can be written as [Zn(H2L)]ClO4·[Zn(HL)]·3CH3OH. In both compounds, each mononuclear unit is chiral with either a Δ or a Λ configuration because of the screw coordination arrangement of the achiral tripodal ligand around the 3d metal ion. In the dimeric structure, mol­ecules with Δ–Δ and Λ–Λ pairs co-exist in the crystal structure to form a racemic crystal. A notable difference is observed between the M—O(phenol) and M—O(phenolate) bond lengths, the former being longer than the latter. In addition, as the ionic radius of the metal ion decreases, the M—O and M—N bond distances decrease.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108004289/jz3116sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108004289/jz3116Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108004289/jz3116IIsup3.hkl
Contains datablock II

CCDC references: 686415; 686416

Comment top

Magnetic interactions between paramagnetic metal centres through bridging atoms have been studied extensively to elucidate fundamental factors controlling the exchange interactions (Kahn, 1993). The mononuclear NiII title compound with H3L [H3L = C26H27N3O3, N,N',N''-trisalicylidene-2-(aminomethyl)-2-methyl-1,3-propanediamine], (I), involves three phenolate O atoms and can be used as a ligand to another metal ion. By using this complex-as-ligand strategy, we were able to prepare face-sharing di-, tri- and tetranuclear complexes. Various 3d–3d and 3d–4f ferromagnetic polynuclear complexes have been prepared with this Ni ligand complex (Ohta et al., 2001; Yamaguchi et al., 2004; Kobayashi et al., 2006). The title ZnII compound, (II), has also been used as a ligand complex. The analogous 3d–4f complexes with this diamagnetic Zn ligand complex have been prepared as reference complexes with respect to the above ferromagnetic complexes (Yamaguchi et al., 2008). However, despite our efforts, we were not able to prepare heterotrinuclear [(ZnIIL)2LnIII(NO3)] complexes. For example, the reaction of [ZnL]- with Ln(NO3)3·6H2O yielded only the homometal trinuclear ZnII–ZnII–ZnII complex, [Zn3L2] (Ohta et al., 2001). The present crystallographic study was undertaken in order to clarify the molecular structures and coordination geometries of Ni and Zn ligand complexes, which provide fundamental information on ligand activity.

The title NiII compound, (I), which was prepared by the reaction of NiCl2·6H2O in methanol with H3L, had been reported to be [Ni(HL)]·H2O·CH3OH on the basis of the crystal structure of the NiII complex with an analogous 5-methoxy ligand, N,N',N''-tri-5-methoxysalicylidene-2-(amino-methyl)-2-methyl-1,3-propanediamine (Ohta et al., 2001; Kojima & Ohta, 2001). The present X-ray structure analysis of (I), however, showed that it is actually [Ni(H1.5L)]2Cl·2CH3OH. The existence of Cl- in (I) was also confirmed by the precipitation of AgCl on the addition of aqueous AgNO3, and the formula was supported by CHN analysis and electrical conductivity measurements. The ZnII compound, [Zn(H1.5L)]2(ClO4)·3CH3OH {[Zn(H2L)][Zn(HL)]ClO4·3CH3OH}, (II), was prepared by a similar method to that for the NiII compound, (I); Zn(ClO4)2·6H2O was used instead of NiCl2·6H2O and the compound was isolated as the perchlorate salt. The presence of ClO4- was confirmed by the IR spectrum.

The asymmetric unit of (I) is composed of one [Ni(H1.5L)]0.5+ cation, a half-occupied (disordered) Cl- anion and one methanol solvent molecule of crystallization. The NiII ion displays an approximately octahedral environment composed of three facially coordinated imine N atoms and three phenolic O atoms (Fig. 1). Coordinated bond lengths for (I) are listed in Table 1. Two mononuclear cation units related by a twofold rotation axis are linked by three short O(phenol)—H···O(phenolate) hydrogen bonds (Table 2), forming a dimeric structure. Of the three hydrogen bonds, two are very short [O1···O2i and O2···O1i = 2.468 (2) Å; symmetry code: (i) -x + 1, y, -z + 1/2]. The H atom is located approximately at the midpoint of the hydrogen bond, which can be described as a proton-centred O···H···O bond in a single-well (SW) potential (Gilli et al., 2004). In the longer hydrogen bond [O3···O3i = 2.495 (2) Å], the H atom is disordered, with a site occupancy factor of 0.50; the system can be described as a disordered state between two O—H···O and O···H—O tautomers in a double-well (DW) potential.

Furthermore, there are two weak C—H···O interactions and three ππ stacking interactions between the benzene rings of the ligands in the dimeric structure (Fig. 2). The Cg1···Cg1i distance is 3.4647 (15) Å [Cg1 is the centroid of ring 1 (C5–C10)]. The perpendicular distance of Cg1 from ring 1i is 3.424 Å, with an interplanar angle of 11.81 (8)°. The Cg2···Cg3i (or Cg3···Cg2i) distance is 3.5452 (15) Å [Cg2 and Cg3 are the centroids of rings 2 (C13–C18) and 3 (C21–C26), respectively]. The perpendicular distances of Cg2 from ring 3i and Cg3 from ring 2i are 3.268 and 3.357 Å, respectively, with an interplanar angle of 10.62 (11)°.

The extended crystal structure of (I) involves several hydrogen bonds involving CH3OH and Cl- (Table 2). Fig. 3 shows the three-dimensional hydrogen-bond network. The Cl- anion is disordered over two positions with equal occupancies. The hydroxyl group of the methanol molecule is also disordered over two orientations, each pointing towards one site of the disordered Cl- anion. Fig. 4 shows an enlarged view of the circled area of Fig. 3.

In (II), the asymmetric unit consists of two crystallographically independent mononuclear Zn units, one perchlorate anion and three methanol solvent molecules. Each ZnII ion is coordinated by the ligand in an N3O3 coordination sphere (Fig. 5). Coordinate bond lengths for (II) are listed in Table 3. The two mononuclear Zn units are linked by three O(phenol)—H···O(phenolate) hydrogen bonds (Table 4), forming a dimeric structure in a similar fashion to (I). However, the mode of hydrogen bonding connecting the two mononuclear units is slightly different. The hydrogen-bond distances are slightly longer than those in (I) and the three phenolic H atoms are located near atoms O1, O3 and O6. Therefore atoms O2, O4 and O5 are the phenolate O atoms and the dimeric structure is described as [Zn(H2L)][Zn(HL)]. Although the O6—H6 bond length is long, as described below, the Zn1—O2 and Zn2—O6 bond lengths imply that atoms O2 and O6 are phenolate and phenol O atoms, respectively.

The benzene rings of the ligands in the dimer are also stacked through ππ interactions. The Cg1···Cg5 distance is 3.571 (2) Å [Cg1 and Cg5 are the centroids of rings 1 (C5–C10) and 5 (C39–C44), respectively], with an average perpendicular distance of ca 3.3 Å and an interplanar angle of 11.28 (13)°. The Cg2···Cg4 distance is 3.772 (2) Å [Cg2 and Cg4 are the centroids of rings 2 (C13–C18) and 4 (C31–C36), respectively], with an average perpendicular distance of ca 3.5 Å and [an interplanar?] angle of 17.96 (13)°. The Cg3···Cg6 distance is 3.590 (2) Å [Cg3 and Cg6 are the centroids of rings 3 (C21–C26) and 6 (C47–C52), respectively], with an average perpendicular distance of ca 3.4 Å and [an interplanar?] angle of 13.04 (12)°.

In the crystal structure of (II), there are also several hydrogen bonds involving CH3OH and ClO4- (Table 4). Fig. 6 shows hydrogen bonds forming a three-dimensional structure. One perchlorate anion and three methanol molecules connected by C—H···O hydrogen bonds are connected in the shape of a curve. Furthermore, methanol molecules and a perchlorate anion are linked with neighbouring Zn dimeric units by C—H···O hydrogen bonds.

In (I) and (II), each mononuclear unit is chiral with either a Δ or a Λ configuration because of the screw coordination arrangement of the achiral tripodal ligand around the 3d metal ion. When two chiral units associate to form a dimeric structure, homochiral (Δ–Δ or ΛΛ) and heterochiral (Δ–Λ) pairs are possible. As shown in Figs. 1 and 5, both the Ni and Zn dinuclear units are homochiral pairs. The stability of the homochiral pairs is supported by examination of molecular models, which indicates that the heterochiral pair involves severe steric repulsion between the units. On the other hand, strong hydrogen bonding is possible in the homochiral pair. Moreover, in the homochiral pair, aromatic rings in neighbouring molecules can stack efficiently. Because compounds (I) and (II) crystallize in centrosymmetric space groups, the Δ–Δ and ΛΛ pairs coexist in the crystal structure to form a racemic crystal.

In (I) and (II), a remarkable difference between the M—O(phenol) and M—O(phenolate) bond lengths is observed, as pointed out by Okabe & Muranishi (2002) and Sokolowski et al. (1997). For (I), the Ni1—O1(phenol) bond [2.0926 (15) Å] is longer than the Ni1—O2(phenolate) bond [2.0594 (15) Å]. The Ni1—O3 bond [2.0754 (14) Å] is approximately intermediate between these lengths because of the disordering of the H atom. For (II), the difference is apparent; the Zn1—O1(phenol) [2.1507 (19) Å], Zn1—O3(phenol) [2.2036 (18) Å] and Zn2—O6(phenol) [2.1622 (18) Å] bonds are longer than the Zn1—O2(phenolate) [2.0860 (17) Å], Zn2—O4(phenolate) [2.1243 (17) Å] and Zn2—O5(phenolate) [2.1043 (18) Å] bonds. This difference has also been observed in Ni complexes (Adams et al., 2004; Chaudhuri et al., 2006; You & Chi, 2006) and Zn complexes (Flassbeck et al., 1992).

As expected from the difference in ionic radii (Shannon, 1976) between Ni2+ (0.83 Å, six-coordinate) and Zn2+ (0.88 Å, six-coordinate), the coordinate bond lengths of (II) [mean Zn—O = 2.139 Å and mean Zn—N = 2.135 Å] are slightly longer than those of (I) [mean Ni—O = 2.076 Å and mean Ni—N = 2.047 Å]. The same is true for other metal complexes, e.g. Ga3+ (0.62 Å, six-coordinate), with mean Ga—O = 1.920 Å and mean Ga—N = 2.131 Å (Liu et al., 1993), and Fe3+ (0.785 Å, six-coordinate in high-spin state), with mean Fe—O = 1.944 Å and Fe—N = 2.150 Å (Deeney et al., 1998). As the ionic radius of a metal ion decreases, the M—O and M—N bond distances decrease. The difference in reactivity between Ni and Zn ligand complexes, as observed in the synthesis of heteronuclear complexes [(MIIL)2LnIII(NO3)] (M = Ni and Zn, Ln = Eu, Gd, Tb and Dy; Yamaguchi et al., 2008), may be related to the difference in coordinate bond lengths.

Related literature top

For related literature, see: Adams et al. (2004); Chaudhuri et al. (2006); Deeney et al. (1998); Flassbeck et al. (1992); Fleischer et al. (1971); Gilli et al. (2004); Kahn (1993); Kobayashi et al. (2006); Kojima & Ohta (2001); Liu et al. (1993); Ohta et al. (2001); Okabe & Muranishi (2002); Shannon (1976); Sokolowski et al. (1997); Yamaguchi et al. (2004, 2008); You & Chi (2006).

Experimental top

The H3L ligand was prepared according to the method of Fleischer et al. (1971).

Compound (I) was prepared as follows. A methanol solution (100 ml) of NiCl2·6H2O (0.48 g, 2.0 mmol) was added slowly with stirring to a dichloromethane solution (50 ml) of H3L (0.90 g, 2.0 mmol). After the addition was complete, water (50 ml) was added and the organic solvents were removed using a rotary evaporator. A pale-green precipitate was collected by filtration and recrystallized from methanol (yield 0.71 g, 72%). Analysis calculated for [Ni(H1.5L)]2Cl·4H2O = C52H59ClN3Ni2O10: C 57.78, H 5.50, N 7.78%; found: C 57.70, H 5.18, N 7.48%. IR (KBr disk): ν(CN) 1635 cm-1. ΛM: 37.2 S mol-1 cm2 in methanol (10-3 M).

Compound (II) was prepared as follows. A methanol solution (100 ml) of Zn(ClO4)2·6H2O (1.49 g, 4.0 mmol) was added slowly with stirring to a dichloromethane solution (50 ml) of H3L (1.72 g, 4.0 mmol). After the addition was complete, water (50 ml) was added and the organic solvents were removed using a rotary evaporator. A pale-yellow precipitate was collected by filtration and recrystallized from methanol (yield 0.947 g, 44%). Analysis, calculated for C55H63ClN6O13Zn2 = [Zn(H2L)][Zn(HL)](ClO4)·3CH3OH: C 55.87, H 5.37, N 7.10%; found: C 55.88, H 4.45, N 7.43%. IR (KBr disk): ν(CN) 1636 cm-1, ν(ClO4-) 1093 cm-1.

Refinement top

For both compounds, the hydroxyl H atoms of the methanol solvent molecules and the phenolic H atoms of the ligands were located in a difference Fourier map. The hydroxyl H atoms were then treated as riding, with O—H = 0.82 Å and Uiso(H) = 1.2Ueq(O), while the phenolic H atoms were refined isotropically. The methyl groups of the ligand and of the methanol molecule were refined as rigid groups, with C—H = 0.97 Å and tetrahedral angles, and with Uiso(H) = 1.5Ueq(C), allowing for rotation around the C—O and C—C bond axes, respectively. Other H atoms attached to C were treated as riding, with C—H distances of 0.98 Å (CH2) and 0.95 Å (CH), and with Uiso(H) = 1.2Ueq(C). For (I), atom H3, one of the phenolic H atoms, was found to be disordered over two sites from the difference Fourier map, where two peaks of almost equal height related approximately by a crystallographic twofold rotation axis were observed between atoms O3 and O3i. The occupancy factor was constrained to 0.5. The hydroxyl H atom of the methanol molecule was also found to be disordered over two positions from two peaks of almost equal height in the difference Fourier map. The occupancy factors were fixed to 0.5 in the refinement. In (I), the highest residual electron-density peak is located 0.27 Å from atom Cl1.

Computing details top

For both compounds, data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO (Rigaku/MSC, 2004); data reduction: CrystalStructure (Rigaku/MSC, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2007) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the dimeric unit, linked by O—H···O hydrogen bonds (dotted lines), and the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms not involved in the hydrogen bonds have been omitted. [Symmetry code: (i) -x + 1, y, -z + 1/2.]
[Figure 2] Fig. 2. A diagram, viewed along the pseudo-threefold axis, of the dimeric unit of (I), linked by ππ interactions (dotted lines). Displacement ellipsoids are drawn at the 50% probability level. H atoms not involved in the hydrogen bonds have been omitted.
[Figure 3] Fig. 3. A packing view of (I), showing the molecules linked by O—H···Cl, C—H···O and C—H···Cl hydrogen bonds (dotted lines). The hydroxyl H atom of the methanol molecule is disordered over the two positions.
[Figure 4] Fig. 4. An enlarged view of the circled area of Fig. 3, showing the packing of (I). Intermolecular hydrogen bonds are shown as dotted lines. [Symmetry codes: (i) -x + 1, y, -z + 1/2; (iv) -x + 1, -y, -z + 1; (v) x, y - 1, z; (vi) -x + 1, -y + 1, -z + 1; (vii) x, -y, z + 1/2.]
[Figure 5] Fig. 5. The molecular structure of (II), showing the dimeric unit linked by O—H···O hydrogen bonds (dotted lines), and the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms not involved in the hydrogen bonds have been omitted.
[Figure 6] Fig. 6. A packing view of (II), showing the molecules linked by hydrogen bonds (dotted lines). [Symmetry code: (iii) -x + 1, -y + 1, -z + 2.]
(I) [1,3-bis(2-hydroxybenzylidene)-2-methyl-2-(2- oxidobenzylideneaminomethyl)propane-1,3-diamine]nickel(II) [2-(2-hydroxybenzylideneaminomethyl)-2-methyl-1,3-bis(2- oxidobenzylidene)propane-1,3-diamine]nickel(II) chloride methanol disolvate top
Crystal data top
[Ni(C26H25.5N3O3)]2Cl·2CH4OF(000) = 2248.00
Mr = 1072.95Dx = 1.451 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -C 2ycCell parameters from 40443 reflections
a = 18.530 (4) Åθ = 3.0–32.2°
b = 13.409 (2) ŵ = 0.88 mm1
c = 19.792 (3) ÅT = 173 K
β = 92.969 (7)°Block, green
V = 4911.3 (15) Å30.40 × 0.20 × 0.15 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
6018 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.034
ω scansθmax = 30.0°
Absorption correction: numerical
(ABSCOR; Higashi, 1999)
h = 2626
Tmin = 0.767, Tmax = 0.876k = 1818
47265 measured reflectionsl = 2724
7140 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0875P)2 + 7.1937P]
where P = (Fo2 + 2Fc2)/3
7140 reflections(Δ/σ)max = 0.001
335 parametersΔρmax = 2.01 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Ni(C26H25.5N3O3)]2Cl·2CH4OV = 4911.3 (15) Å3
Mr = 1072.95Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.530 (4) ŵ = 0.88 mm1
b = 13.409 (2) ÅT = 173 K
c = 19.792 (3) Å0.40 × 0.20 × 0.15 mm
β = 92.969 (7)°
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
7140 independent reflections
Absorption correction: numerical
(ABSCOR; Higashi, 1999)
6018 reflections with I > 2σ(I)
Tmin = 0.767, Tmax = 0.876Rint = 0.034
47265 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 2.01 e Å3
7140 reflectionsΔρmin = 0.30 e Å3
335 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.423013 (13)0.405501 (18)0.150240 (12)0.01700 (9)
Cl10.41997 (6)0.08275 (8)0.45267 (5)0.0265 (2)0.50
O10.41997 (8)0.49547 (11)0.23643 (7)0.0211 (3)
O20.53376 (8)0.42053 (11)0.15600 (7)0.0203 (3)
O30.44021 (8)0.28873 (11)0.21799 (7)0.0193 (3)
O40.42395 (16)0.0501 (2)0.57005 (13)0.0618 (7)
H4A0.42220.01720.53510.074*0.50
H4B0.46610.06270.56280.074*0.50
N10.39696 (10)0.53089 (13)0.09482 (8)0.0206 (3)
N20.43309 (10)0.32997 (13)0.06119 (9)0.0210 (3)
N30.31662 (9)0.36637 (14)0.13922 (9)0.0202 (3)
C10.27191 (14)0.4278 (2)0.04337 (12)0.0301 (5)
H1B0.30030.43820.08260.045*
H1A0.23940.48370.03860.045*
H1C0.24410.36690.04920.045*
C20.32238 (12)0.41936 (16)0.02018 (10)0.0220 (4)
C30.37213 (12)0.51112 (16)0.02426 (10)0.0236 (4)
H3B0.41400.49960.00310.028*
H3A0.34590.56940.00580.028*
C40.38690 (11)0.61908 (16)0.11644 (11)0.0215 (4)
H40.36990.66670.08380.026*
C50.39850 (11)0.65506 (15)0.18544 (10)0.0202 (4)
C60.41318 (10)0.59459 (14)0.24222 (11)0.0189 (4)
C70.42062 (11)0.63945 (17)0.30641 (11)0.0234 (4)
H70.42990.59920.34540.028*
C80.41455 (13)0.74187 (18)0.31332 (12)0.0298 (5)
H80.42040.77120.35690.036*
C90.39998 (14)0.80223 (17)0.25709 (13)0.0315 (5)
H90.39550.87240.26210.038*
C100.39217 (12)0.75894 (16)0.19438 (12)0.0262 (4)
H100.38220.80010.15590.031*
C110.36765 (12)0.32422 (17)0.01527 (11)0.0244 (4)
H11A0.33860.26640.02730.029*
H11B0.38180.31540.03140.029*
C120.49068 (12)0.29109 (16)0.04006 (10)0.0225 (4)
H120.48630.25520.00130.027*
C130.56182 (11)0.29660 (16)0.07332 (10)0.0219 (4)
C140.58167 (11)0.36205 (15)0.12697 (10)0.0199 (4)
C150.65478 (12)0.36666 (19)0.14906 (11)0.0268 (4)
H150.66960.41250.18360.032*
C160.70548 (13)0.3058 (2)0.12151 (13)0.0340 (5)
H160.75450.30940.13790.041*
C170.68572 (14)0.2391 (2)0.06998 (13)0.0338 (5)
H170.72080.19670.05160.041*
C180.61501 (13)0.23542 (17)0.04602 (11)0.0273 (4)
H180.60160.19070.01030.033*
C190.27586 (11)0.41478 (17)0.08261 (11)0.0233 (4)
H19B0.26230.48240.09570.028*
H19A0.23150.37720.07140.028*
C200.28841 (11)0.28750 (16)0.16296 (10)0.0212 (4)
H200.24030.27310.14700.025*
C210.32096 (11)0.21749 (15)0.21131 (10)0.0198 (4)
C220.39330 (10)0.21964 (14)0.23723 (10)0.0180 (3)
C230.41559 (11)0.14701 (15)0.28496 (10)0.0218 (4)
H230.46380.14830.30380.026*
C240.36895 (13)0.07364 (17)0.30510 (11)0.0263 (4)
H240.38520.02600.33800.032*
C250.29863 (13)0.06906 (18)0.27762 (12)0.0288 (5)
H250.26710.01720.29020.035*
C260.27530 (12)0.14094 (17)0.23177 (11)0.0250 (4)
H260.22690.13860.21350.030*
C270.4216 (2)0.0142 (3)0.62596 (18)0.0563 (9)
H27A0.43600.08070.61290.084*
H27C0.37280.01620.64150.084*
H27B0.45430.00990.66220.084*
H10.438 (2)0.454 (3)0.289 (2)0.062 (11)*
H30.482 (3)0.284 (4)0.240 (3)0.023 (14)*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01834 (14)0.01699 (14)0.01559 (14)0.00032 (8)0.00018 (9)0.00012 (9)
Cl10.0318 (5)0.0223 (4)0.0248 (5)0.0018 (4)0.0033 (4)0.0040 (4)
O10.0277 (7)0.0181 (6)0.0171 (6)0.0052 (5)0.0016 (5)0.0001 (5)
O20.0201 (7)0.0230 (7)0.0179 (6)0.0025 (5)0.0022 (5)0.0032 (5)
O30.0179 (6)0.0185 (6)0.0212 (7)0.0028 (5)0.0009 (5)0.0031 (5)
O40.0790 (18)0.0585 (15)0.0496 (13)0.0199 (13)0.0182 (12)0.0249 (12)
N10.0233 (8)0.0219 (8)0.0163 (7)0.0025 (6)0.0011 (6)0.0018 (6)
N20.0227 (8)0.0212 (8)0.0189 (8)0.0030 (6)0.0005 (6)0.0016 (6)
N30.0183 (8)0.0238 (8)0.0186 (8)0.0018 (6)0.0003 (6)0.0007 (6)
C10.0326 (11)0.0362 (12)0.0205 (10)0.0057 (9)0.0074 (8)0.0040 (9)
C20.0245 (9)0.0245 (9)0.0167 (9)0.0030 (7)0.0030 (7)0.0015 (7)
C30.0306 (10)0.0229 (9)0.0170 (9)0.0032 (8)0.0017 (7)0.0025 (7)
C40.0216 (9)0.0214 (9)0.0211 (9)0.0001 (7)0.0016 (7)0.0040 (8)
C50.0180 (8)0.0194 (9)0.0229 (9)0.0011 (7)0.0000 (7)0.0008 (7)
C60.0152 (8)0.0197 (9)0.0219 (9)0.0024 (6)0.0003 (7)0.0016 (7)
C70.0212 (9)0.0265 (10)0.0223 (9)0.0033 (7)0.0005 (7)0.0044 (8)
C80.0311 (11)0.0283 (11)0.0297 (11)0.0010 (9)0.0006 (9)0.0100 (9)
C90.0353 (12)0.0203 (10)0.0387 (13)0.0019 (8)0.0009 (10)0.0064 (9)
C100.0267 (10)0.0194 (9)0.0322 (11)0.0028 (8)0.0004 (8)0.0004 (8)
C110.0256 (10)0.0259 (10)0.0214 (9)0.0036 (8)0.0018 (7)0.0051 (8)
C120.0280 (10)0.0206 (9)0.0189 (9)0.0021 (7)0.0020 (7)0.0033 (7)
C130.0248 (10)0.0224 (9)0.0190 (9)0.0002 (7)0.0057 (7)0.0005 (7)
C140.0205 (9)0.0215 (9)0.0180 (8)0.0014 (7)0.0041 (7)0.0035 (7)
C150.0219 (10)0.0357 (11)0.0230 (10)0.0017 (8)0.0023 (7)0.0041 (9)
C160.0224 (10)0.0479 (14)0.0321 (12)0.0053 (10)0.0050 (9)0.0095 (11)
C170.0309 (12)0.0371 (12)0.0342 (12)0.0108 (10)0.0112 (9)0.0057 (10)
C180.0331 (11)0.0255 (10)0.0239 (10)0.0061 (8)0.0085 (8)0.0016 (8)
C190.0201 (9)0.0290 (10)0.0204 (9)0.0016 (7)0.0006 (7)0.0046 (8)
C200.0174 (8)0.0263 (10)0.0197 (9)0.0011 (7)0.0010 (7)0.0004 (8)
C210.0200 (9)0.0216 (9)0.0179 (8)0.0021 (7)0.0022 (7)0.0004 (7)
C220.0193 (8)0.0170 (8)0.0176 (8)0.0014 (6)0.0025 (6)0.0023 (7)
C230.0245 (9)0.0197 (9)0.0213 (9)0.0008 (7)0.0013 (7)0.0002 (7)
C240.0352 (12)0.0213 (9)0.0226 (10)0.0015 (8)0.0044 (8)0.0032 (8)
C250.0336 (12)0.0269 (10)0.0264 (10)0.0093 (9)0.0052 (9)0.0041 (9)
C260.0231 (9)0.0286 (10)0.0234 (10)0.0065 (8)0.0024 (7)0.0019 (8)
C270.069 (2)0.056 (2)0.0448 (17)0.0099 (16)0.0103 (15)0.0194 (15)
Geometric parameters (Å, º) top
Ni1—N12.0514 (18)C8—C91.391 (4)
Ni1—N22.0496 (17)C8—H80.9500
Ni1—N32.0409 (18)C9—C101.371 (3)
Ni1—O12.0926 (15)C9—H90.9500
Ni1—O22.0594 (15)C10—H100.9500
Ni1—O32.0754 (14)C11—H11A0.9800
O1—C61.341 (2)C11—H11B0.9800
O1—H11.21 (4)C12—C131.445 (3)
O2—C141.336 (2)C12—H120.9500
O3—C221.339 (2)C13—C181.411 (3)
O3—H30.87 (5)C13—C141.412 (3)
O4—C271.405 (4)C14—C151.403 (3)
O4—H4A0.8200C15—C161.378 (3)
O4—H4B0.8200C15—H150.9500
N1—C41.275 (3)C16—C171.391 (4)
N1—C31.472 (3)C16—H160.9500
N2—C121.277 (3)C17—C181.371 (4)
N2—C111.479 (3)C17—H170.9500
N3—C201.280 (3)C18—H180.9500
N3—C191.470 (3)C19—H19B0.9800
C1—C21.532 (3)C19—H19A0.9800
C1—H1B0.9700C20—C211.450 (3)
C1—H1A0.9700C20—H200.9500
C1—H1C0.9700C21—C261.403 (3)
C2—C111.533 (3)C21—C221.410 (3)
C2—C31.537 (3)C22—C231.404 (3)
C2—C191.544 (3)C23—C241.382 (3)
C3—H3B0.9800C23—H230.9500
C3—H3A0.9800C24—C251.387 (3)
C4—C51.454 (3)C24—H240.9500
C4—H40.9500C25—C261.378 (3)
C5—C61.401 (3)C25—H250.9500
C5—C101.410 (3)C26—H260.9500
C6—C71.406 (3)C27—H27A0.9700
C7—C81.385 (3)C27—H27C0.9700
C7—H70.9500C27—H27B0.9700
N3—Ni1—N284.93 (7)C10—C9—C8119.0 (2)
N3—Ni1—N187.38 (7)C10—C9—H9120.5
N2—Ni1—N188.55 (7)C8—C9—H9120.5
N3—Ni1—O2170.21 (6)C9—C10—C5121.8 (2)
N2—Ni1—O287.77 (6)C9—C10—H10119.1
N1—Ni1—O298.95 (7)C5—C10—H10119.1
N3—Ni1—O389.44 (6)N2—C11—C2110.59 (17)
N2—Ni1—O399.49 (7)N2—C11—H11A109.5
N1—Ni1—O3171.06 (7)C2—C11—H11A109.5
O2—Ni1—O385.34 (6)N2—C11—H11B109.5
N3—Ni1—O199.71 (7)C2—C11—H11B109.5
N2—Ni1—O1173.42 (6)H11A—C11—H11B108.1
N1—Ni1—O187.01 (6)N2—C12—C13126.02 (19)
O2—Ni1—O188.13 (6)N2—C12—H12117.0
O3—Ni1—O185.29 (6)C13—C12—H12117.0
C6—O1—Ni1130.38 (13)C18—C13—C14119.3 (2)
C6—O1—H1113.9 (19)C18—C13—C12115.77 (19)
Ni1—O1—H1114.7 (19)C14—C13—C12124.80 (19)
C14—O2—Ni1126.94 (13)O2—C14—C15119.49 (19)
C22—O3—Ni1128.71 (12)O2—C14—C13122.36 (18)
C22—O3—H3113 (4)C15—C14—C13118.13 (19)
Ni1—O3—H3118 (4)C16—C15—C14121.2 (2)
C27—O4—H4A109.5C16—C15—H15119.4
C27—O4—H4B109.5C14—C15—H15119.4
H4A—O4—H4B87.7C15—C16—C17120.8 (2)
C4—N1—C3116.21 (18)C15—C16—H16119.6
C4—N1—Ni1127.98 (15)C17—C16—H16119.6
C3—N1—Ni1114.40 (13)C18—C17—C16119.2 (2)
C12—N2—C11116.72 (18)C18—C17—H17120.4
C12—N2—Ni1126.73 (15)C16—C17—H17120.4
C11—N2—Ni1116.47 (13)C17—C18—C13121.4 (2)
C20—N3—C19116.19 (18)C17—C18—H18119.3
C20—N3—Ni1125.73 (14)C13—C18—H18119.3
C19—N3—Ni1115.05 (13)N3—C19—C2109.98 (17)
C2—C1—H1B109.5N3—C19—H19B109.7
C2—C1—H1A109.5C2—C19—H19B109.7
H1B—C1—H1A109.5N3—C19—H19A109.7
C2—C1—H1C109.5C2—C19—H19A109.7
H1B—C1—H1C109.5H19B—C19—H19A108.2
H1A—C1—H1C109.5N3—C20—C21127.85 (19)
C1—C2—C11108.81 (18)N3—C20—H20116.1
C1—C2—C3108.83 (18)C21—C20—H20116.1
C11—C2—C3109.93 (18)C26—C21—C22119.06 (19)
C1—C2—C19108.52 (18)C26—C21—C20115.32 (18)
C11—C2—C19110.35 (17)C22—C21—C20125.60 (18)
C3—C2—C19110.36 (17)O3—C22—C23119.90 (18)
N1—C3—C2110.56 (16)O3—C22—C21121.96 (17)
N1—C3—H3B109.5C23—C22—C21118.13 (18)
C2—C3—H3B109.5C24—C23—C22121.4 (2)
N1—C3—H3A109.5C24—C23—H23119.3
C2—C3—H3A109.5C22—C23—H23119.3
H3B—C3—H3A108.1C23—C24—C25120.5 (2)
N1—C4—C5127.31 (19)C23—C24—H24119.8
N1—C4—H4116.3C25—C24—H24119.8
C5—C4—H4116.3C26—C25—C24118.9 (2)
C6—C5—C10119.01 (19)C26—C25—H25120.5
C6—C5—C4125.08 (18)C24—C25—H25120.5
C10—C5—C4115.89 (19)C25—C26—C21121.9 (2)
O1—C6—C5121.36 (18)C25—C26—H26119.0
O1—C6—C7119.75 (19)C21—C26—H26119.0
C5—C6—C7118.89 (18)O4—C27—H27A109.5
C8—C7—C6120.6 (2)O4—C27—H27C109.5
C8—C7—H7119.7H27A—C27—H27C109.5
C6—C7—H7119.7O4—C27—H27B109.5
C7—C8—C9120.7 (2)H27A—C27—H27B109.5
C7—C8—H8119.6H27C—C27—H27B109.5
C9—C8—H8119.6
N3—Ni1—O1—C694.61 (17)O1—C6—C7—C8179.3 (2)
N1—Ni1—O1—C67.78 (17)C5—C6—C7—C80.9 (3)
O2—Ni1—O1—C691.28 (17)C6—C7—C8—C90.9 (4)
O3—Ni1—O1—C6176.76 (17)C7—C8—C9—C100.4 (4)
N2—Ni1—O2—C1424.21 (16)C8—C9—C10—C50.0 (4)
N1—Ni1—O2—C14112.39 (16)C6—C5—C10—C90.0 (3)
O3—Ni1—O2—C1475.51 (16)C4—C5—C10—C9178.3 (2)
O1—Ni1—O2—C14160.94 (16)C12—N2—C11—C2143.44 (19)
N3—Ni1—O3—C223.06 (16)Ni1—N2—C11—C233.7 (2)
N2—Ni1—O3—C2281.70 (16)C1—C2—C11—N2160.09 (18)
O2—Ni1—O3—C22168.65 (16)C3—C2—C11—N241.0 (2)
O1—Ni1—O3—C22102.85 (16)C19—C2—C11—N280.9 (2)
N3—Ni1—N1—C4100.64 (19)C11—N2—C12—C13173.57 (19)
N2—Ni1—N1—C4174.38 (19)Ni1—N2—C12—C133.2 (3)
O2—Ni1—N1—C486.87 (19)N2—C12—C13—C18170.7 (2)
O1—Ni1—N1—C40.76 (19)N2—C12—C13—C1413.4 (3)
N3—Ni1—N1—C365.20 (15)Ni1—O2—C14—C15164.07 (15)
N2—Ni1—N1—C319.79 (15)Ni1—O2—C14—C1317.4 (3)
O2—Ni1—N1—C3107.30 (14)C18—C13—C14—O2178.66 (19)
O1—Ni1—N1—C3165.07 (15)C12—C13—C14—O25.6 (3)
N3—Ni1—N2—C12156.43 (19)C18—C13—C14—C152.8 (3)
N1—Ni1—N2—C12116.07 (19)C12—C13—C14—C15173.0 (2)
O2—Ni1—N2—C1217.05 (18)O2—C14—C15—C16178.4 (2)
O3—Ni1—N2—C1267.85 (19)C13—C14—C15—C163.0 (3)
N3—Ni1—N2—C1126.75 (15)C14—C15—C16—C171.2 (4)
N1—Ni1—N2—C1160.75 (15)C15—C16—C17—C180.9 (4)
O2—Ni1—N2—C11159.77 (15)C16—C17—C18—C131.1 (4)
O3—Ni1—N2—C11115.33 (14)C14—C13—C18—C170.8 (3)
N2—Ni1—N3—C2091.14 (18)C12—C13—C18—C17175.3 (2)
N1—Ni1—N3—C20179.91 (18)C20—N3—C19—C2120.8 (2)
O3—Ni1—N3—C208.44 (18)Ni1—N3—C19—C240.7 (2)
O1—Ni1—N3—C2093.57 (18)C1—C2—C19—N3156.59 (18)
N2—Ni1—N3—C1968.29 (15)C11—C2—C19—N337.5 (2)
N1—Ni1—N3—C1920.48 (15)C3—C2—C19—N384.2 (2)
O3—Ni1—N3—C19167.87 (15)C19—N3—C20—C21170.3 (2)
O1—Ni1—N3—C19107.00 (14)Ni1—N3—C20—C2111.1 (3)
C4—N1—C3—C2127.2 (2)N3—C20—C21—C26175.8 (2)
Ni1—N1—C3—C240.4 (2)N3—C20—C21—C225.6 (4)
C1—C2—C3—N1154.50 (19)Ni1—O3—C22—C23179.04 (14)
C11—C2—C3—N186.4 (2)Ni1—O3—C22—C210.5 (3)
C19—C2—C3—N135.5 (2)C26—C21—C22—O3177.74 (18)
C3—N1—C4—C5172.3 (2)C20—C21—C22—O30.8 (3)
Ni1—N1—C4—C56.7 (3)C26—C21—C22—C232.7 (3)
N1—C4—C5—C69.7 (3)C20—C21—C22—C23178.69 (19)
N1—C4—C5—C10172.1 (2)O3—C22—C23—C24178.91 (19)
Ni1—O1—C6—C57.3 (3)C21—C22—C23—C241.6 (3)
Ni1—O1—C6—C7172.93 (14)C22—C23—C24—C251.0 (3)
C10—C5—C6—O1179.75 (19)C23—C24—C25—C262.3 (4)
C4—C5—C6—O12.1 (3)C24—C25—C26—C211.1 (4)
C10—C5—C6—C70.5 (3)C22—C21—C26—C251.5 (3)
C4—C5—C6—C7177.71 (19)C20—C21—C26—C25179.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i1.21 (4)1.27 (4)2.468 (2)170 (3)
O3—H3···O3i0.87 (6)1.63 (6)2.495 (2)174 (5)
O4—H4A···Cl10.822.112.925 (3)173
C7—H7···O2i0.952.493.134 (3)125
C8—H8···Cl1ii0.952.733.622 (3)158
C12—H12···Cl1iii0.952.753.504 (2)137
C18—H18···O4i0.952.503.435 (4)170
C24—H24···Cl10.952.753.679 (3)167
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y+1, z; (iii) x, y, z1/2.
(II) [1,3-bis(2-hydroxybenzylidene)-2-methyl-2-(2- oxidobenzylideneaminomethyl)propane-1,3-diamine]zinc(II) perchlorate [2-(2-hydroxybenzylideneaminomethyl)-2-methyl-1,3-bis(2- oxidobenzylidene)propane-1,3-diamine]zinc(II)methanol trisolvate top
Crystal data top
[Zn(C26H25N3O3)]ClO4·[Zn(C26H26N3O3)]·3CH4OF(000) = 2464.00
Mr = 1182.35Dx = 1.439 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 2737 reflections
a = 13.626 (5) Åθ = 3.0–27.3°
b = 19.383 (6) ŵ = 1.00 mm1
c = 21.522 (7) ÅT = 103 K
β = 106.270 (7)°Prism, yellow
V = 5457 (3) Å30.40 × 0.30 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
9143 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.045
ω scansθmax = 27.3°
Absorption correction: numerical
(ABSCOR; Higashi, 1999)
h = 1717
Tmin = 0.834, Tmax = 0.905k = 2424
31274 measured reflectionsl = 2727
11737 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.066P)2 + 0.3272P]
where P = (Fo2 + 2Fc2)/3
11737 reflections(Δ/σ)max = 0.001
711 parametersΔρmax = 0.90 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Zn(C26H25N3O3)]ClO4·[Zn(C26H26N3O3)]·3CH4OV = 5457 (3) Å3
Mr = 1182.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.626 (5) ŵ = 1.00 mm1
b = 19.383 (6) ÅT = 103 K
c = 21.522 (7) Å0.40 × 0.30 × 0.10 mm
β = 106.270 (7)°
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
11737 independent reflections
Absorption correction: numerical
(ABSCOR; Higashi, 1999)
9143 reflections with I > 2σ(I)
Tmin = 0.834, Tmax = 0.905Rint = 0.045
31274 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.90 e Å3
11737 reflectionsΔρmin = 0.59 e Å3
711 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.77897 (2)0.589404 (13)0.304923 (13)0.01527 (9)
Zn20.66471 (2)0.737809 (14)0.452202 (13)0.01549 (9)
Cl10.75736 (5)0.56866 (3)1.00343 (3)0.02203 (14)
O10.67793 (14)0.56661 (8)0.36311 (8)0.0169 (4)
O20.69908 (14)0.68229 (8)0.28456 (8)0.0167 (4)
O30.87139 (14)0.63911 (9)0.39429 (8)0.0171 (4)
O40.57713 (14)0.66752 (8)0.38280 (8)0.0174 (4)
O50.77881 (14)0.66153 (8)0.47818 (8)0.0169 (4)
O60.73260 (14)0.76622 (8)0.37628 (8)0.0162 (4)
O70.83487 (18)0.51550 (10)1.01491 (11)0.0388 (6)
O80.65861 (17)0.53871 (11)0.99801 (11)0.0383 (6)
O90.7817 (2)0.61808 (12)1.05564 (11)0.0453 (6)
O100.7554 (2)0.60492 (11)0.94389 (10)0.0368 (5)
O110.4960 (3)0.76251 (11)0.70464 (12)0.0493 (7)
H110.52680.72570.71130.059*
O120.59244 (18)0.63194 (10)0.71704 (10)0.0324 (5)
H120.63180.61520.74950.039*
O130.7136 (2)0.55863 (17)0.81858 (12)0.0633 (8)
H130.71660.55890.85720.076*
N10.82150 (17)0.48331 (10)0.32139 (10)0.0178 (4)
N20.70598 (17)0.56124 (10)0.20777 (10)0.0180 (4)
N30.91713 (18)0.59961 (10)0.27728 (10)0.0170 (4)
N40.52891 (17)0.79983 (10)0.42935 (10)0.0168 (4)
N50.63294 (18)0.71642 (10)0.54118 (10)0.0178 (4)
N60.74166 (17)0.82842 (10)0.49929 (10)0.0170 (4)
C10.9029 (2)0.44241 (13)0.16991 (13)0.0234 (6)
H1A0.90080.46650.13010.035*
H1B0.86110.40120.16000.035*
H1C0.97290.42960.19170.035*
C20.8615 (2)0.49000 (12)0.21429 (12)0.0183 (5)
C30.8855 (2)0.45590 (12)0.28137 (12)0.0197 (5)
H3A0.87440.40610.27590.024*
H3B0.95770.46340.30420.024*
C40.7974 (2)0.44002 (13)0.35983 (12)0.0197 (5)
H40.82300.39450.35950.024*
C50.7353 (2)0.45249 (12)0.40386 (12)0.0189 (5)
C60.6776 (2)0.51397 (12)0.40445 (11)0.0163 (5)
C70.6203 (2)0.51879 (13)0.44945 (12)0.0210 (5)
H70.58100.55910.45020.025*
C80.6199 (2)0.46568 (14)0.49292 (13)0.0258 (6)
H80.58130.47030.52320.031*
C90.6765 (2)0.40540 (14)0.49203 (14)0.0289 (7)
H90.67690.36920.52190.035*
C100.7313 (2)0.39927 (14)0.44744 (14)0.0257 (6)
H100.76770.35770.44610.031*
C110.7454 (2)0.49799 (12)0.18438 (12)0.0200 (5)
H11A0.73030.49990.13710.024*
H11B0.71050.45760.19550.024*
C120.6402 (2)0.59650 (12)0.16504 (12)0.0184 (5)
H12A0.62130.57870.12220.022*
C130.5915 (2)0.66095 (12)0.17537 (12)0.0171 (5)
C140.62169 (19)0.70056 (12)0.23382 (11)0.0144 (5)
C150.5659 (2)0.76178 (12)0.23637 (12)0.0187 (5)
H150.58450.78940.27440.022*
C160.4841 (2)0.78257 (13)0.18448 (13)0.0207 (5)
H160.44780.82360.18780.025*
C170.4553 (2)0.74335 (13)0.12758 (13)0.0209 (5)
H170.39950.75720.09240.025*
C180.5097 (2)0.68423 (13)0.12372 (12)0.0215 (6)
H180.49140.65820.08480.026*
C190.9167 (2)0.56077 (12)0.21732 (12)0.0195 (5)
H19A0.98730.55310.21620.023*
H19B0.88200.58830.17930.023*
C201.0018 (2)0.62941 (11)0.30612 (12)0.0164 (5)
H201.05440.62660.28510.020*
C211.0269 (2)0.66709 (11)0.36734 (12)0.0155 (5)
C220.9645 (2)0.67120 (12)0.40942 (11)0.0153 (5)
C230.9988 (2)0.70915 (12)0.46729 (12)0.0192 (5)
H230.95790.71140.49640.023*
C241.0919 (2)0.74329 (13)0.48198 (13)0.0237 (6)
H241.11290.76980.52060.028*
C251.1553 (2)0.73946 (13)0.44121 (14)0.0243 (6)
H251.21920.76270.45180.029*
C261.1231 (2)0.70108 (12)0.38505 (12)0.0199 (5)
H261.16650.69730.35750.024*
C270.5551 (2)0.89234 (14)0.58864 (12)0.0239 (6)
H27A0.59920.88780.63250.036*
H27B0.48530.88160.58790.036*
H27C0.55850.93930.57370.036*
C280.5908 (2)0.84209 (13)0.54392 (12)0.0185 (5)
C290.5320 (2)0.85946 (12)0.47305 (12)0.0188 (5)
H29A0.46190.87320.47110.023*
H29B0.56510.89860.45820.023*
C300.4412 (2)0.78535 (13)0.38984 (12)0.0183 (5)
H300.38620.81480.39130.022*
C310.4165 (2)0.72901 (13)0.34323 (12)0.0188 (5)
C320.4833 (2)0.67302 (12)0.34098 (12)0.0163 (5)
C330.4482 (2)0.62211 (13)0.29252 (12)0.0216 (6)
H330.49130.58420.29010.026*
C340.3522 (2)0.62666 (14)0.24853 (14)0.0277 (6)
H340.33060.59190.21650.033*
C350.2865 (2)0.68160 (15)0.25058 (14)0.0293 (6)
H350.22090.68450.22020.035*
C360.3188 (2)0.73137 (14)0.29745 (13)0.0232 (6)
H360.27420.76850.29920.028*
C370.5664 (2)0.76743 (12)0.56119 (12)0.0192 (5)
H37B0.57640.76400.60800.023*
H37A0.49460.75690.53950.023*
C380.6773 (2)0.67153 (13)0.58408 (12)0.0200 (5)
H380.66040.67270.62400.024*
C390.7506 (2)0.61911 (13)0.57771 (11)0.0186 (5)
C400.7988 (2)0.61605 (12)0.52703 (12)0.0167 (5)
C410.8708 (2)0.56250 (13)0.52930 (12)0.0204 (5)
H410.90650.56090.49720.025*
C420.8901 (2)0.51250 (14)0.57721 (13)0.0259 (6)
H420.93720.47650.57680.031*
C430.8408 (2)0.51467 (14)0.62620 (13)0.0279 (6)
H430.85300.47980.65850.033*
C440.7743 (2)0.56814 (13)0.62703 (13)0.0233 (6)
H440.74350.57090.66150.028*
C450.7074 (2)0.85246 (13)0.55523 (11)0.0180 (5)
H45A0.72390.90150.56280.022*
H45B0.74450.82700.59400.022*
C460.8059 (2)0.86739 (12)0.48246 (11)0.0160 (5)
H460.82800.90730.50810.019*
C470.8490 (2)0.85704 (12)0.42795 (11)0.0150 (5)
C480.8128 (2)0.80887 (11)0.37721 (11)0.0142 (5)
C490.8600 (2)0.80559 (13)0.32710 (12)0.0199 (5)
H490.83490.77430.29230.024*
C500.9432 (2)0.84772 (13)0.32770 (13)0.0227 (6)
H500.97500.84430.29380.027*
C510.9801 (2)0.89505 (13)0.37811 (13)0.0215 (5)
H511.03700.92360.37870.026*
C520.9328 (2)0.89975 (12)0.42681 (12)0.0191 (5)
H520.95700.93250.46050.023*
C530.3915 (4)0.75046 (18)0.66782 (18)0.0486 (10)
H53A0.37040.70490.67780.073*
H53B0.38590.75330.62200.073*
H53C0.34770.78500.67890.073*
C540.5268 (3)0.57941 (15)0.68195 (15)0.0335 (7)
H54B0.48920.59700.63980.050*
H54A0.47910.56550.70560.050*
H54C0.56730.53990.67650.050*
C550.8114 (3)0.54661 (18)0.81136 (16)0.0416 (8)
H55B0.85910.53790.85350.062*
H55C0.83350.58680.79200.062*
H55A0.80920.50680.78370.062*
H10.644 (4)0.611 (2)0.375 (2)0.078 (14)*
H60.718 (3)0.729 (2)0.332 (2)0.068 (13)*
H30.841 (3)0.6468 (19)0.4266 (19)0.056 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01556 (17)0.01558 (15)0.01445 (15)0.00074 (10)0.00385 (12)0.00137 (10)
Zn20.01672 (17)0.01626 (15)0.01403 (15)0.00180 (11)0.00517 (12)0.00010 (10)
Cl10.0198 (3)0.0224 (3)0.0219 (3)0.0010 (2)0.0025 (3)0.0022 (2)
O10.0182 (10)0.0143 (8)0.0196 (9)0.0005 (7)0.0079 (7)0.0012 (7)
O20.0206 (10)0.0157 (8)0.0122 (8)0.0027 (7)0.0018 (7)0.0014 (6)
O30.0131 (10)0.0239 (9)0.0141 (9)0.0028 (7)0.0033 (7)0.0028 (7)
O40.0148 (10)0.0168 (8)0.0191 (9)0.0009 (7)0.0025 (7)0.0029 (6)
O50.0175 (10)0.0194 (8)0.0140 (8)0.0039 (7)0.0049 (7)0.0032 (6)
O60.0173 (10)0.0184 (8)0.0131 (8)0.0043 (7)0.0046 (7)0.0015 (6)
O70.0284 (14)0.0287 (11)0.0523 (14)0.0084 (9)0.0002 (11)0.0019 (10)
O80.0212 (13)0.0396 (12)0.0509 (14)0.0059 (9)0.0048 (10)0.0139 (10)
O90.0469 (17)0.0484 (13)0.0343 (13)0.0019 (11)0.0010 (11)0.0198 (10)
O100.0478 (16)0.0342 (11)0.0307 (12)0.0018 (10)0.0148 (11)0.0095 (9)
O110.087 (2)0.0306 (12)0.0343 (13)0.0052 (12)0.0228 (14)0.0035 (9)
O120.0314 (13)0.0377 (11)0.0279 (11)0.0083 (9)0.0078 (10)0.0075 (8)
O130.0380 (17)0.126 (3)0.0248 (13)0.0070 (17)0.0069 (12)0.0040 (14)
N10.0156 (12)0.0190 (10)0.0181 (10)0.0005 (8)0.0037 (9)0.0021 (8)
N20.0181 (12)0.0177 (10)0.0173 (10)0.0013 (8)0.0032 (9)0.0035 (8)
N30.0218 (12)0.0175 (10)0.0123 (10)0.0009 (8)0.0056 (9)0.0032 (8)
N40.0191 (12)0.0173 (10)0.0141 (10)0.0028 (8)0.0046 (9)0.0006 (8)
N50.0192 (12)0.0176 (10)0.0182 (10)0.0013 (8)0.0077 (9)0.0017 (8)
N60.0190 (12)0.0188 (10)0.0131 (10)0.0014 (8)0.0041 (9)0.0009 (8)
C10.0252 (16)0.0217 (13)0.0251 (14)0.0003 (11)0.0098 (12)0.0053 (10)
C20.0208 (14)0.0185 (12)0.0155 (12)0.0002 (10)0.0049 (10)0.0033 (9)
C30.0199 (15)0.0180 (12)0.0220 (13)0.0038 (10)0.0074 (11)0.0010 (9)
C40.0194 (15)0.0175 (12)0.0210 (13)0.0037 (10)0.0039 (11)0.0013 (9)
C50.0183 (14)0.0196 (12)0.0184 (12)0.0008 (10)0.0042 (11)0.0018 (9)
C60.0145 (13)0.0175 (11)0.0156 (12)0.0018 (9)0.0020 (10)0.0022 (9)
C70.0186 (15)0.0223 (13)0.0216 (13)0.0016 (10)0.0045 (11)0.0005 (10)
C80.0219 (16)0.0318 (14)0.0258 (14)0.0009 (11)0.0103 (12)0.0036 (11)
C90.0307 (18)0.0291 (15)0.0279 (15)0.0017 (12)0.0098 (13)0.0128 (11)
C100.0242 (16)0.0245 (13)0.0275 (15)0.0047 (11)0.0056 (12)0.0071 (11)
C110.0223 (15)0.0171 (12)0.0182 (12)0.0001 (10)0.0018 (11)0.0048 (9)
C120.0169 (14)0.0232 (13)0.0142 (12)0.0019 (10)0.0028 (10)0.0051 (9)
C130.0178 (14)0.0207 (12)0.0132 (11)0.0014 (10)0.0050 (10)0.0003 (9)
C140.0122 (13)0.0173 (11)0.0129 (11)0.0008 (9)0.0023 (9)0.0019 (9)
C150.0193 (14)0.0166 (12)0.0194 (12)0.0001 (9)0.0043 (11)0.0012 (9)
C160.0196 (15)0.0182 (12)0.0238 (13)0.0058 (10)0.0050 (11)0.0039 (10)
C170.0174 (14)0.0262 (13)0.0163 (12)0.0017 (10)0.0004 (10)0.0043 (10)
C180.0215 (15)0.0252 (13)0.0164 (12)0.0008 (10)0.0032 (11)0.0004 (10)
C190.0241 (15)0.0203 (12)0.0168 (12)0.0009 (10)0.0100 (11)0.0034 (9)
C200.0167 (14)0.0149 (11)0.0191 (12)0.0032 (9)0.0075 (10)0.0036 (9)
C210.0149 (13)0.0130 (11)0.0183 (12)0.0026 (9)0.0041 (10)0.0034 (9)
C220.0162 (13)0.0137 (11)0.0144 (11)0.0016 (9)0.0016 (10)0.0005 (9)
C230.0194 (14)0.0196 (12)0.0176 (12)0.0026 (10)0.0037 (11)0.0017 (9)
C240.0244 (16)0.0200 (13)0.0219 (13)0.0012 (10)0.0015 (11)0.0053 (10)
C250.0194 (15)0.0198 (13)0.0307 (15)0.0020 (10)0.0021 (12)0.0004 (10)
C260.0170 (14)0.0189 (12)0.0236 (13)0.0015 (10)0.0052 (11)0.0011 (10)
C270.0272 (16)0.0278 (14)0.0168 (13)0.0080 (11)0.0062 (12)0.0007 (10)
C280.0197 (14)0.0232 (13)0.0133 (12)0.0028 (10)0.0055 (10)0.0015 (9)
C290.0222 (15)0.0181 (12)0.0157 (12)0.0040 (10)0.0047 (11)0.0008 (9)
C300.0162 (14)0.0218 (12)0.0177 (12)0.0054 (10)0.0063 (10)0.0015 (9)
C310.0159 (14)0.0231 (12)0.0180 (12)0.0005 (10)0.0060 (10)0.0005 (9)
C320.0132 (13)0.0188 (12)0.0170 (12)0.0023 (9)0.0043 (10)0.0017 (9)
C330.0216 (15)0.0205 (12)0.0226 (13)0.0011 (10)0.0063 (11)0.0023 (10)
C340.0263 (17)0.0301 (14)0.0243 (14)0.0068 (12)0.0030 (12)0.0087 (11)
C350.0208 (16)0.0403 (16)0.0228 (14)0.0017 (12)0.0005 (12)0.0051 (12)
C360.0175 (15)0.0277 (14)0.0240 (14)0.0016 (11)0.0054 (11)0.0009 (10)
C370.0194 (15)0.0231 (13)0.0173 (12)0.0039 (10)0.0086 (11)0.0028 (9)
C380.0223 (15)0.0247 (13)0.0138 (12)0.0008 (10)0.0065 (11)0.0006 (9)
C390.0210 (15)0.0211 (12)0.0117 (11)0.0003 (10)0.0014 (10)0.0011 (9)
C400.0156 (13)0.0163 (11)0.0155 (12)0.0017 (9)0.0001 (10)0.0004 (9)
C410.0165 (14)0.0238 (13)0.0201 (13)0.0039 (10)0.0037 (11)0.0018 (10)
C420.0258 (16)0.0224 (13)0.0265 (14)0.0082 (11)0.0025 (12)0.0052 (11)
C430.0322 (18)0.0294 (14)0.0198 (13)0.0068 (12)0.0034 (12)0.0104 (11)
C440.0241 (16)0.0272 (13)0.0185 (13)0.0039 (11)0.0057 (11)0.0056 (10)
C450.0209 (15)0.0212 (12)0.0117 (11)0.0045 (10)0.0043 (10)0.0002 (9)
C460.0158 (13)0.0150 (11)0.0138 (11)0.0026 (9)0.0013 (10)0.0020 (9)
C470.0129 (13)0.0161 (11)0.0140 (11)0.0027 (9)0.0005 (10)0.0007 (9)
C480.0141 (13)0.0141 (11)0.0137 (11)0.0026 (9)0.0030 (10)0.0025 (8)
C490.0218 (15)0.0209 (12)0.0173 (12)0.0014 (10)0.0056 (11)0.0008 (9)
C500.0229 (16)0.0267 (13)0.0214 (13)0.0021 (11)0.0113 (12)0.0017 (10)
C510.0146 (14)0.0243 (13)0.0251 (14)0.0028 (10)0.0048 (11)0.0015 (10)
C520.0172 (14)0.0189 (12)0.0190 (12)0.0017 (10)0.0015 (11)0.0017 (9)
C530.074 (3)0.0379 (18)0.0369 (19)0.0014 (18)0.021 (2)0.0030 (14)
C540.0295 (18)0.0333 (16)0.0341 (17)0.0039 (13)0.0028 (14)0.0040 (12)
C550.042 (2)0.0452 (19)0.0335 (18)0.0070 (15)0.0047 (16)0.0032 (14)
Geometric parameters (Å, º) top
Zn1—N12.139 (2)C16—H160.9500
Zn1—N22.120 (2)C17—C181.380 (4)
Zn1—N32.136 (2)C17—H170.9500
Zn1—O12.1507 (19)C18—H180.9500
Zn1—O22.0860 (17)C19—H19A0.9800
Zn1—O32.2036 (18)C19—H19B0.9800
Zn2—N42.145 (2)C20—C211.461 (3)
Zn2—N52.119 (2)C20—H200.9500
Zn2—N62.148 (2)C21—C221.408 (4)
Zn2—O42.1243 (17)C21—C261.420 (4)
Zn2—O52.1043 (18)C22—C231.409 (3)
Zn2—O62.1622 (18)C23—C241.386 (4)
Cl1—O81.440 (2)C23—H230.9500
Cl1—O91.443 (2)C24—C251.395 (4)
Cl1—O71.446 (2)C24—H240.9500
Cl1—O101.455 (2)C25—C261.382 (4)
O1—C61.355 (3)C25—H250.9500
O1—H11.04 (5)C26—H260.9500
O2—C141.336 (3)C27—C281.540 (3)
O2—H61.34 (4)C27—H27A0.9700
O3—C221.368 (3)C27—H27B0.9700
O3—H30.91 (4)C27—H27C0.9700
O4—C321.346 (3)C28—C291.548 (3)
O4—H11.46 (5)C28—C451.552 (4)
O5—C401.340 (3)C28—C371.553 (4)
O6—C481.366 (3)C29—H29A0.9800
O6—H61.17 (4)C29—H29B0.9800
O11—C531.442 (5)C30—C311.457 (4)
O11—H110.8200C30—H300.9500
O12—C541.424 (3)C31—C361.418 (4)
O12—H120.8200C31—C321.426 (4)
O13—C551.404 (5)C32—C331.418 (3)
O13—H130.8200C33—C341.387 (4)
N1—C41.284 (3)C33—H330.9500
N1—C31.485 (3)C34—C351.399 (4)
N2—C121.286 (3)C34—H340.9500
N2—C111.482 (3)C35—C361.376 (4)
N3—C201.283 (3)C35—H350.9500
N3—C191.493 (3)C36—H360.9500
N4—C301.289 (3)C37—H37B0.9800
N4—C291.483 (3)C37—H37A0.9800
N5—C381.289 (3)C38—C391.458 (4)
N5—C371.485 (3)C38—H380.9500
N6—C461.283 (3)C39—C441.420 (3)
N6—C451.483 (3)C39—C401.424 (4)
C1—C21.544 (3)C40—C411.419 (4)
C1—H1A0.9700C41—C421.386 (4)
C1—H1B0.9700C41—H410.9500
C1—H1C0.9700C42—C431.401 (4)
C2—C31.537 (3)C42—H420.9500
C2—C111.539 (4)C43—C441.380 (4)
C2—C191.557 (3)C43—H430.9500
C3—H3A0.9800C44—H440.9500
C3—H3B0.9800C45—H45A0.9800
C4—C51.457 (4)C45—H45B0.9800
C4—H40.9500C46—C471.465 (4)
C5—C101.405 (4)C46—H460.9500
C5—C61.429 (4)C47—C521.415 (4)
C6—C71.408 (4)C47—C481.416 (3)
C7—C81.392 (4)C48—C491.403 (4)
C7—H70.9500C49—C501.394 (4)
C8—C91.403 (4)C49—H490.9500
C8—H80.9500C50—C511.402 (4)
C9—C101.377 (4)C50—H500.9500
C9—H90.9500C51—C521.379 (4)
C10—H100.9500C51—H510.9500
C11—H11A0.9800C52—H520.9500
C11—H11B0.9800C53—H53A0.9700
C12—C131.461 (3)C53—H53B0.9700
C12—H12A0.9500C53—H53C0.9700
C13—C181.409 (4)C54—H54B0.9700
C13—C141.432 (3)C54—H54A0.9700
C14—C151.419 (3)C54—H54C0.9700
C15—C161.398 (4)C55—H55B0.9700
C15—H150.9500C55—H55C0.9700
C16—C171.401 (4)C55—H55A0.9700
O2—Zn1—N286.68 (7)N3—C19—C2111.5 (2)
O2—Zn1—N3108.07 (8)N3—C19—H19A109.3
N2—Zn1—N387.46 (9)C2—C19—H19A109.3
O2—Zn1—N1164.98 (8)N3—C19—H19B109.3
N2—Zn1—N186.92 (8)C2—C19—H19B109.3
N3—Zn1—N185.20 (8)H19A—C19—H19B108.0
O2—Zn1—O185.30 (7)N3—C20—C21127.8 (2)
N2—Zn1—O1108.75 (8)N3—C20—H20116.1
N3—Zn1—O1159.88 (7)C21—C20—H20116.1
N1—Zn1—O183.91 (8)C22—C21—C26118.7 (2)
O2—Zn1—O386.73 (7)C22—C21—C20125.3 (2)
N2—Zn1—O3165.68 (8)C26—C21—C20116.1 (2)
N3—Zn1—O382.52 (8)O3—C22—C21120.5 (2)
N1—Zn1—O3102.34 (7)O3—C22—C23120.3 (2)
O1—Zn1—O383.35 (7)C21—C22—C23119.2 (2)
O5—Zn2—N586.86 (8)C24—C23—C22120.5 (3)
O5—Zn2—O487.93 (7)C24—C23—H23119.8
N5—Zn2—O4107.05 (8)C22—C23—H23119.8
O5—Zn2—N4168.61 (8)C23—C24—C25121.3 (2)
N5—Zn2—N486.29 (8)C23—C24—H24119.4
O4—Zn2—N485.39 (8)C25—C24—H24119.4
O5—Zn2—N6102.85 (8)C26—C25—C24118.5 (3)
N5—Zn2—N685.98 (8)C26—C25—H25120.7
O4—Zn2—N6163.69 (7)C24—C25—H25120.7
N4—Zn2—N685.73 (8)C25—C26—C21121.8 (3)
O5—Zn2—O686.51 (7)C25—C26—H26119.1
N5—Zn2—O6166.31 (8)C21—C26—H26119.1
O4—Zn2—O684.66 (7)C28—C27—H27A109.5
N4—Zn2—O6102.02 (7)C28—C27—H27B109.5
N6—Zn2—O683.84 (7)H27A—C27—H27B109.5
O8—Cl1—O9109.69 (16)C28—C27—H27C109.5
O8—Cl1—O7110.34 (14)H27A—C27—H27C109.5
O9—Cl1—O7110.01 (15)H27B—C27—H27C109.5
O8—Cl1—O10109.72 (14)C27—C28—C29108.1 (2)
O9—Cl1—O10107.98 (15)C27—C28—C45107.9 (2)
O7—Cl1—O10109.06 (15)C29—C28—C45110.5 (2)
C6—O1—Zn1131.12 (16)C27—C28—C37108.3 (2)
C6—O1—H1112 (2)C29—C28—C37110.6 (2)
Zn1—O1—H1113 (3)C45—C28—C37111.2 (2)
C14—O2—Zn1130.27 (14)N4—C29—C28111.72 (19)
C14—O2—H6112.5 (18)N4—C29—H29A109.3
Zn1—O2—H6116.8 (18)C28—C29—H29A109.3
C22—O3—Zn1132.21 (15)N4—C29—H29B109.3
C22—O3—H3109 (3)C28—C29—H29B109.3
Zn1—O3—H3118 (3)H29A—C29—H29B107.9
C32—O4—Zn2131.35 (15)N4—C30—C31127.6 (2)
C32—O4—H1119.3 (18)N4—C30—H30116.2
Zn2—O4—H1108.3 (18)C31—C30—H30116.2
C40—O5—Zn2130.05 (17)C36—C31—C32119.0 (2)
C48—O6—Zn2130.77 (15)C36—C31—C30116.4 (2)
C48—O6—H6109 (2)C32—C31—C30124.6 (2)
Zn2—O6—H6117 (2)O4—C32—C33119.9 (2)
C53—O11—H11109.5O4—C32—C31122.2 (2)
C54—O12—H12109.5C33—C32—C31117.9 (2)
C55—O13—H13109.5C34—C33—C32121.1 (3)
C4—N1—C3116.0 (2)C34—C33—H33119.4
C4—N1—Zn1128.94 (18)C32—C33—H33119.4
C3—N1—Zn1115.06 (15)C33—C34—C35121.1 (2)
C12—N2—C11116.3 (2)C33—C34—H34119.5
C12—N2—Zn1127.50 (17)C35—C34—H34119.5
C11—N2—Zn1115.68 (16)C36—C35—C34118.7 (3)
C20—N3—C19115.5 (2)C36—C35—H35120.6
C20—N3—Zn1130.50 (17)C34—C35—H35120.6
C19—N3—Zn1113.80 (16)C35—C36—C31122.1 (3)
C30—N4—C29116.4 (2)C35—C36—H36118.9
C30—N4—Zn2127.61 (17)C31—C36—H36118.9
C29—N4—Zn2114.97 (16)N5—C37—C28111.2 (2)
C38—N5—C37116.3 (2)N5—C37—H37B109.4
C38—N5—Zn2127.30 (19)C28—C37—H37B109.4
C37—N5—Zn2115.34 (15)N5—C37—H37A109.4
C46—N6—C45116.0 (2)C28—C37—H37A109.4
C46—N6—Zn2129.02 (17)H37B—C37—H37A108.0
C45—N6—Zn2114.63 (16)N5—C38—C39126.8 (2)
C2—C1—H1A109.5N5—C38—H38116.6
C2—C1—H1B109.5C39—C38—H38116.6
H1A—C1—H1B109.5C44—C39—C40119.1 (2)
C2—C1—H1C109.5C44—C39—C38115.6 (2)
H1A—C1—H1C109.5C40—C39—C38125.2 (2)
H1B—C1—H1C109.5O5—C40—C41119.7 (2)
C3—C2—C11111.0 (2)O5—C40—C39122.5 (2)
C3—C2—C1107.8 (2)C41—C40—C39117.8 (2)
C11—C2—C1108.2 (2)C42—C41—C40121.5 (3)
C3—C2—C19111.5 (2)C42—C41—H41119.2
C11—C2—C19110.9 (2)C40—C41—H41119.2
C1—C2—C19107.3 (2)C41—C42—C43120.5 (3)
N1—C3—C2112.7 (2)C41—C42—H42119.7
N1—C3—H3A109.0C43—C42—H42119.7
C2—C3—H3A109.0C44—C43—C42119.2 (2)
N1—C3—H3B109.0C44—C43—H43120.4
C2—C3—H3B109.0C42—C43—H43120.4
H3A—C3—H3B107.8C43—C44—C39121.7 (3)
N1—C4—C5127.7 (2)C43—C44—H44119.2
N1—C4—H4116.2C39—C44—H44119.2
C5—C4—H4116.2N6—C45—C28111.9 (2)
C10—C5—C6118.8 (2)N6—C45—H45A109.2
C10—C5—C4116.7 (2)C28—C45—H45A109.2
C6—C5—C4124.4 (2)N6—C45—H45B109.2
O1—C6—C7120.4 (2)C28—C45—H45B109.2
O1—C6—C5121.3 (2)H45A—C45—H45B107.9
C7—C6—C5118.3 (2)N6—C46—C47127.1 (2)
C8—C7—C6121.4 (3)N6—C46—H46116.4
C8—C7—H7119.3C47—C46—H46116.4
C6—C7—H7119.3C52—C47—C48118.7 (2)
C7—C8—C9120.1 (3)C52—C47—C46116.1 (2)
C7—C8—H8120.0C48—C47—C46125.2 (2)
C9—C8—H8120.0O6—C48—C49119.9 (2)
C10—C9—C8119.3 (2)O6—C48—C47121.0 (2)
C10—C9—H9120.4C49—C48—C47119.1 (2)
C8—C9—H9120.4C50—C49—C48120.8 (2)
C9—C10—C5122.1 (3)C50—C49—H49119.6
C9—C10—H10119.0C48—C49—H49119.6
C5—C10—H10119.0C49—C50—C51120.3 (3)
N2—C11—C2111.7 (2)C49—C50—H50119.8
N2—C11—H11A109.3C51—C50—H50119.8
C2—C11—H11A109.3C52—C51—C50119.3 (3)
N2—C11—H11B109.3C52—C51—H51120.4
C2—C11—H11B109.3C50—C51—H51120.4
H11A—C11—H11B107.9C51—C52—C47121.7 (2)
N2—C12—C13126.9 (2)C51—C52—H52119.2
N2—C12—H12A116.5C47—C52—H52119.2
C13—C12—H12A116.5O11—C53—H53A109.5
C18—C13—C14119.4 (2)O11—C53—H53B109.5
C18—C13—C12116.5 (2)H53A—C53—H53B109.5
C14—C13—C12124.1 (2)O11—C53—H53C109.5
O2—C14—C15119.9 (2)H53A—C53—H53C109.5
O2—C14—C13122.9 (2)H53B—C53—H53C109.5
C15—C14—C13117.2 (2)O12—C54—H54B109.5
C16—C15—C14121.7 (2)O12—C54—H54A109.5
C16—C15—H15119.1H54B—C54—H54A109.5
C14—C15—H15119.1O12—C54—H54C109.5
C15—C16—C17120.5 (2)H54B—C54—H54C109.5
C15—C16—H16119.8H54A—C54—H54C109.5
C17—C16—H16119.8O13—C55—H55B109.5
C18—C17—C16118.7 (2)O13—C55—H55C109.5
C18—C17—H17120.7H55B—C55—H55C109.5
C16—C17—H17120.7O13—C55—H55A109.5
C17—C18—C13122.5 (2)H55B—C55—H55A109.5
C17—C18—H18118.7H55C—C55—H55A109.5
C13—C18—H18118.7
O2—Zn1—O1—C6172.5 (2)C4—C5—C10—C9179.0 (3)
N2—Zn1—O1—C6102.6 (2)C12—N2—C11—C2137.8 (2)
N3—Zn1—O1—C639.6 (3)Zn1—N2—C11—C234.6 (3)
N1—Zn1—O1—C617.9 (2)C3—C2—C11—N283.8 (2)
O3—Zn1—O1—C685.3 (2)C1—C2—C11—N2158.1 (2)
N2—Zn1—O2—C1411.9 (2)C19—C2—C11—N240.7 (3)
N3—Zn1—O2—C1498.1 (2)C11—N2—C12—C13178.9 (2)
N1—Zn1—O2—C1453.1 (4)Zn1—N2—C12—C137.5 (4)
O1—Zn1—O2—C1497.3 (2)N2—C12—C13—C18170.0 (3)
O3—Zn1—O2—C14179.2 (2)N2—C12—C13—C149.9 (4)
O2—Zn1—O3—C2297.0 (2)Zn1—O2—C14—C15167.30 (17)
N2—Zn1—O3—C2234.3 (4)Zn1—O2—C14—C1313.0 (4)
N3—Zn1—O3—C2211.7 (2)C18—C13—C14—O2179.2 (2)
N1—Zn1—O3—C2295.1 (2)C12—C13—C14—O20.9 (4)
O1—Zn1—O3—C22177.3 (2)C18—C13—C14—C150.5 (4)
O5—Zn2—O4—C32178.5 (2)C12—C13—C14—C15179.4 (2)
N5—Zn2—O4—C3292.4 (2)O2—C14—C15—C16179.7 (2)
N4—Zn2—O4—C327.7 (2)C13—C14—C15—C160.6 (4)
N6—Zn2—O4—C3249.5 (4)C14—C15—C16—C170.6 (4)
O6—Zn2—O4—C3294.9 (2)C15—C16—C17—C180.5 (4)
N5—Zn2—O5—C409.4 (2)C16—C17—C18—C131.6 (4)
O4—Zn2—O5—C4097.8 (2)C14—C13—C18—C171.6 (4)
N4—Zn2—O5—C4043.7 (5)C12—C13—C18—C17178.3 (2)
N6—Zn2—O5—C4094.6 (2)C20—N3—C19—C2137.3 (2)
O6—Zn2—O5—C40177.4 (2)Zn1—N3—C19—C238.1 (2)
O5—Zn2—O6—C4884.9 (2)C3—C2—C19—N338.5 (3)
N5—Zn2—O6—C4823.7 (4)C11—C2—C19—N385.7 (3)
O4—Zn2—O6—C48173.1 (2)C1—C2—C19—N3156.3 (2)
N4—Zn2—O6—C48102.7 (2)C19—N3—C20—C21175.8 (2)
N6—Zn2—O6—C4818.4 (2)Zn1—N3—C20—C211.4 (4)
O2—Zn1—N1—C453.3 (4)N3—C20—C21—C227.0 (4)
N2—Zn1—N1—C4118.2 (2)N3—C20—C21—C26173.8 (2)
N3—Zn1—N1—C4154.1 (2)Zn1—O3—C22—C2110.5 (3)
O1—Zn1—N1—C49.0 (2)Zn1—O3—C22—C23169.13 (16)
O3—Zn1—N1—C472.8 (2)C26—C21—C22—O3179.9 (2)
O2—Zn1—N1—C3124.9 (3)C20—C21—C22—O30.7 (4)
N2—Zn1—N1—C360.01 (18)C26—C21—C22—C230.5 (3)
N3—Zn1—N1—C327.70 (18)C20—C21—C22—C23179.6 (2)
O1—Zn1—N1—C3169.25 (18)O3—C22—C23—C24178.3 (2)
O3—Zn1—N1—C3108.95 (18)C21—C22—C23—C241.4 (4)
O2—Zn1—N2—C121.7 (2)C22—C23—C24—C251.9 (4)
N3—Zn1—N2—C12110.0 (2)C23—C24—C25—C260.5 (4)
N1—Zn1—N2—C12164.7 (2)C24—C25—C26—C211.4 (4)
O1—Zn1—N2—C1282.2 (2)C22—C21—C26—C251.9 (4)
O3—Zn1—N2—C1264.4 (4)C20—C21—C26—C25178.9 (2)
O2—Zn1—N2—C11169.71 (18)C30—N4—C29—C28132.9 (2)
N3—Zn1—N2—C1161.43 (18)Zn2—N4—C29—C2836.3 (3)
N1—Zn1—N2—C1123.89 (18)C27—C28—C29—N4157.6 (2)
O1—Zn1—N2—C11106.39 (18)C45—C28—C29—N484.5 (3)
O3—Zn1—N2—C11107.0 (3)C37—C28—C29—N439.1 (3)
O2—Zn1—N3—C2078.6 (2)C29—N4—C30—C31178.4 (2)
N2—Zn1—N3—C20164.3 (2)Zn2—N4—C30—C3110.9 (4)
N1—Zn1—N3—C20108.6 (2)N4—C30—C31—C36169.1 (3)
O1—Zn1—N3—C2051.2 (3)N4—C30—C31—C3210.9 (4)
O3—Zn1—N3—C205.5 (2)Zn2—O4—C32—C33170.30 (17)
O2—Zn1—N3—C19106.91 (16)Zn2—O4—C32—C319.5 (4)
N2—Zn1—N3—C1921.24 (16)C36—C31—C32—O4179.9 (2)
N1—Zn1—N3—C1965.88 (16)C30—C31—C32—O40.1 (4)
O1—Zn1—N3—C19123.3 (2)C36—C31—C32—C330.1 (4)
O3—Zn1—N3—C19169.02 (16)C30—C31—C32—C33179.9 (2)
O5—Zn2—N4—C3052.0 (5)O4—C32—C33—C34179.6 (2)
N5—Zn2—N4—C30105.1 (2)C31—C32—C33—C340.2 (4)
O4—Zn2—N4—C302.3 (2)C32—C33—C34—C350.1 (4)
N6—Zn2—N4—C30168.6 (2)C33—C34—C35—C360.2 (5)
O6—Zn2—N4—C3085.9 (2)C34—C35—C36—C310.5 (5)
O5—Zn2—N4—C29115.7 (4)C32—C31—C36—C350.4 (4)
N5—Zn2—N4—C2962.58 (17)C30—C31—C36—C35179.5 (3)
O4—Zn2—N4—C29170.04 (17)C38—N5—C37—C28131.3 (2)
N6—Zn2—N4—C2923.66 (17)Zn2—N5—C37—C2837.9 (3)
O6—Zn2—N4—C29106.43 (17)C27—C28—C37—N5156.8 (2)
O5—Zn2—N5—C380.6 (2)C29—C28—C37—N584.8 (3)
O4—Zn2—N5—C3886.3 (2)C45—C28—C37—N538.4 (3)
N4—Zn2—N5—C38170.3 (2)C37—N5—C38—C39176.0 (2)
N6—Zn2—N5—C38103.7 (2)Zn2—N5—C38—C398.4 (4)
O6—Zn2—N5—C3861.7 (4)N5—C38—C39—C44169.1 (3)
O5—Zn2—N5—C37167.21 (18)N5—C38—C39—C4011.3 (4)
O4—Zn2—N5—C37105.92 (18)Zn2—O5—C40—C41170.65 (17)
N4—Zn2—N5—C3721.89 (18)Zn2—O5—C40—C399.5 (4)
N6—Zn2—N5—C3764.08 (18)C44—C39—C40—O5178.6 (2)
O6—Zn2—N5—C37106.1 (3)C38—C39—C40—O51.7 (4)
O5—Zn2—N6—C4677.6 (2)C44—C39—C40—C411.5 (4)
N5—Zn2—N6—C46163.4 (2)C38—C39—C40—C41178.2 (2)
O4—Zn2—N6—C4652.8 (4)O5—C40—C41—C42176.9 (2)
N4—Zn2—N6—C46110.0 (2)C39—C40—C41—C423.2 (4)
O6—Zn2—N6—C467.4 (2)C40—C41—C42—C431.8 (4)
O5—Zn2—N6—C45109.06 (16)C41—C42—C43—C441.4 (5)
N5—Zn2—N6—C4523.21 (16)C42—C43—C44—C393.2 (5)
O4—Zn2—N6—C45120.5 (3)C40—C39—C44—C431.7 (4)
N4—Zn2—N6—C4563.36 (16)C38—C39—C44—C43178.6 (3)
O6—Zn2—N6—C45165.96 (17)C46—N6—C45—C28137.8 (2)
C4—N1—C3—C2146.5 (2)Zn2—N6—C45—C2836.4 (2)
Zn1—N1—C3—C232.0 (3)C27—C28—C45—N6157.8 (2)
C11—C2—C3—N142.6 (3)C29—C28—C45—N639.7 (3)
C1—C2—C3—N1161.0 (2)C37—C28—C45—N683.6 (2)
C19—C2—C3—N181.5 (3)C45—N6—C46—C47177.8 (2)
C3—N1—C4—C5179.5 (3)Zn2—N6—C46—C474.5 (4)
Zn1—N1—C4—C51.3 (4)N6—C46—C47—C52168.2 (2)
N1—C4—C5—C10171.5 (3)N6—C46—C47—C4812.4 (4)
N1—C4—C5—C69.8 (5)Zn2—O6—C48—C49163.31 (17)
Zn1—O1—C6—C7163.65 (18)Zn2—O6—C48—C4717.1 (3)
Zn1—O1—C6—C516.1 (3)C52—C47—C48—O6179.6 (2)
C10—C5—C6—O1179.4 (2)C46—C47—C48—O61.1 (4)
C4—C5—C6—O10.7 (4)C52—C47—C48—C490.8 (3)
C10—C5—C6—C70.8 (4)C46—C47—C48—C49178.5 (2)
C4—C5—C6—C7179.5 (3)O6—C48—C49—C50178.8 (2)
O1—C6—C7—C8179.2 (2)C47—C48—C49—C501.7 (4)
C5—C6—C7—C80.6 (4)C48—C49—C50—C511.0 (4)
C6—C7—C8—C90.8 (4)C49—C50—C51—C520.4 (4)
C7—C8—C9—C100.6 (4)C50—C51—C52—C471.3 (4)
C8—C9—C10—C52.0 (5)C48—C47—C52—C510.7 (4)
C6—C5—C10—C92.2 (4)C46—C47—C52—C51180.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O41.04 (4)1.46 (5)2.494 (3)168 (5)
O3—H3···O50.92 (4)1.60 (4)2.513 (3)175 (4)
O6—H6···O21.17 (4)1.34 (4)2.499 (2)175 (4)
O11—H11···O120.822.012.830 (4)173
O12—H12···O130.821.932.738 (4)169
O13—H13···O100.822.002.746 (3)151
C1—H1A···O7i0.972.573.502 (4)161
C7—H7···O40.952.553.200 (3)126
C15—H15···O60.952.573.225 (3)126
C23—H23···O50.952.553.207 (4)126
C38—H38···O120.952.563.460 (4)159
C46—H46···O8ii0.952.563.365 (3)143
C49—H49···O20.952.543.199 (3)126
Symmetry codes: (i) x, y, z1; (ii) x+3/2, y+1/2, z+3/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Ni(C26H25.5N3O3)]2Cl·2CH4O[Zn(C26H25N3O3)]ClO4·[Zn(C26H26N3O3)]·3CH4O
Mr1072.951182.35
Crystal system, space groupMonoclinic, C2/cMonoclinic, P21/n
Temperature (K)173103
a, b, c (Å)18.530 (4), 13.409 (2), 19.792 (3)13.626 (5), 19.383 (6), 21.522 (7)
β (°) 92.969 (7) 106.270 (7)
V3)4911.3 (15)5457 (3)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.881.00
Crystal size (mm)0.40 × 0.20 × 0.150.40 × 0.30 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID II
diffractometer
Rigaku R-AXIS RAPID II
diffractometer
Absorption correctionNumerical
(ABSCOR; Higashi, 1999)
Numerical
(ABSCOR; Higashi, 1999)
Tmin, Tmax0.767, 0.8760.834, 0.905
No. of measured, independent and
observed [I > 2σ(I)] reflections
47265, 7140, 6018 31274, 11737, 9143
Rint0.0340.045
(sin θ/λ)max1)0.7030.646
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.146, 1.09 0.037, 0.124, 1.12
No. of reflections714011737
No. of parameters335711
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)2.01, 0.300.90, 0.59

Computer programs: PROCESS-AUTO (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), CrystalStructure (Rigaku/MSC, 2007) and PLATON (Spek, 2003).

Selected bond lengths (Å) for (I) top
Ni1—N12.0514 (18)Ni1—O12.0926 (15)
Ni1—N22.0496 (17)Ni1—O22.0594 (15)
Ni1—N32.0409 (18)Ni1—O32.0754 (14)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i1.21 (4)1.27 (4)2.468 (2)170 (3)
O3—H3···O3i0.87 (6)1.63 (6)2.495 (2)174 (5)
O4—H4A···Cl10.822.112.925 (3)173
C7—H7···O2i0.952.493.134 (3)125
C8—H8···Cl1ii0.952.733.622 (3)158
C12—H12···Cl1iii0.952.753.504 (2)137
C18—H18···O4i0.952.503.435 (4)170
C24—H24···Cl10.952.753.679 (3)167
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y+1, z; (iii) x, y, z1/2.
Selected bond lengths (Å) for (II) top
Zn1—N12.139 (2)Zn2—N42.145 (2)
Zn1—N22.120 (2)Zn2—N52.119 (2)
Zn1—N32.136 (2)Zn2—N62.148 (2)
Zn1—O12.1507 (19)Zn2—O42.1243 (17)
Zn1—O22.0860 (17)Zn2—O52.1043 (18)
Zn1—O32.2036 (18)Zn2—O62.1622 (18)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O41.04 (4)1.46 (5)2.494 (3)168 (5)
O3—H3···O50.92 (4)1.60 (4)2.513 (3)175 (4)
O6—H6···O21.17 (4)1.34 (4)2.499 (2)175 (4)
O11—H11···O120.822.012.830 (4)173
O12—H12···O130.821.932.738 (4)169
O13—H13···O100.822.002.746 (3)151
C1—H1A···O7i0.972.573.502 (4)161
C7—H7···O40.952.553.200 (3)126
C15—H15···O60.952.573.225 (3)126
C23—H23···O50.952.553.207 (4)126
C38—H38···O120.952.563.460 (4)159
C46—H46···O8ii0.952.563.365 (3)143
C49—H49···O20.952.543.199 (3)126
Symmetry codes: (i) x, y, z1; (ii) x+3/2, y+1/2, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds