Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805042091/kp6071sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536805042091/kp6071Isup2.hkl |
CCDC reference: 296597
To a warm aqueous solution of copper(II) acetate (0.05 mol, 0.998 g) dissolved in 30 ml of water, etMorph (0.34 ml, 0.1 mol) and then an ammonium oxalate (0.713 g, 0.05 mol) solution in 10 ml of water were added slowly with stirring. The mixture was wormed to 333 K and stirred for 30 min. Blue crystals of the title compound appeared within 3 d. Identical crystals were obtained using copper(II) chloride or nitrate instead of copper(II) acetate.
All H atoms bound to C atoms were treated as riding, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C). H atoms bound to O and N atoms were located in a difference Fourier map and normalized to have the O—H and N—H distances of 0.82 and 0.87 Å, respectively.
Data collection: KM4B8 Software (Galdecki et al., 1996); cell refinement: KM4B8 Software; data reduction: KM4B8 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia,1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
[Cu(C2O4)(C6H14N2O)(H2O)]·H2O | F(000) = 660 |
Mr = 317.79 | Dx = 1.672 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54180 Å |
Hall symbol: -P 2ybc | Cell parameters from 30 reflections |
a = 6.8240 (14) Å | θ = 6–25° |
b = 11.916 (2) Å | µ = 2.75 mm−1 |
c = 16.396 (3) Å | T = 293 K |
β = 108.76 (3)° | Column, blue |
V = 1262.4 (5) Å3 | 0.35 × 0.10 × 0.06 mm |
Z = 4 |
Kuma KM-4 diffractometer | 1968 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.000 |
Graphite monochromator | θmax = 68.5°, θmin = 4.7° |
ω–2θ scans | h = −8→8 |
Absorption correction: part of the refinement model (ΔF) (DIFABS; Walker & Stuart, 1983) | k = −14→0 |
Tmin = 0.755, Tmax = 0.838 | l = −19→7 |
2315 measured reflections | 3 standard reflections every 100 min |
2315 independent reflections | intensity decay: 1.2% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.131 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0593P)2 + 0.8891P] where P = (Fo2 + 2Fc2)/3 |
2315 reflections | (Δ/σ)max = 0.034 |
187 parameters | Δρmax = 0.41 e Å−3 |
6 restraints | Δρmin = −0.68 e Å−3 |
[Cu(C2O4)(C6H14N2O)(H2O)]·H2O | V = 1262.4 (5) Å3 |
Mr = 317.79 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 6.8240 (14) Å | µ = 2.75 mm−1 |
b = 11.916 (2) Å | T = 293 K |
c = 16.396 (3) Å | 0.35 × 0.10 × 0.06 mm |
β = 108.76 (3)° |
Kuma KM-4 diffractometer | 1968 reflections with I > 2σ(I) |
Absorption correction: part of the refinement model (ΔF) (DIFABS; Walker & Stuart, 1983) | Rint = 0.000 |
Tmin = 0.755, Tmax = 0.838 | 3 standard reflections every 100 min |
2315 measured reflections | intensity decay: 1.2% |
2315 independent reflections |
R[F2 > 2σ(F2)] = 0.046 | 6 restraints |
wR(F2) = 0.131 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.41 e Å−3 |
2315 reflections | Δρmin = −0.68 e Å−3 |
187 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.25912 (6) | 0.16956 (4) | 0.01815 (3) | 0.0441 (2) | |
O2 | −0.0252 (4) | 0.21581 (19) | −0.04302 (16) | 0.0516 (6) | |
N1 | 0.3263 (4) | 0.3070 (2) | 0.09752 (19) | 0.0472 (6) | |
O3 | −0.3153 (4) | 0.1414 (2) | −0.13151 (18) | 0.0649 (7) | |
O4 | 0.1791 (4) | 0.03075 (19) | −0.04908 (17) | 0.0525 (6) | |
O1 | 0.1569 (5) | 0.5050 (2) | 0.1519 (2) | 0.0681 (7) | |
N0 | 0.5031 (5) | 0.0972 (2) | 0.1023 (2) | 0.0531 (7) | |
O06 | 0.4152 (5) | 0.2496 (3) | −0.0691 (2) | 0.0692 (8) | |
C7 | −0.0056 (5) | 0.0337 (3) | −0.1000 (2) | 0.0486 (8) | |
O5 | −0.0886 (4) | −0.0401 (2) | −0.15155 (19) | 0.0708 (8) | |
C8 | −0.1289 (5) | 0.1394 (3) | −0.0913 (2) | 0.0479 (7) | |
C4 | 0.1893 (7) | 0.3048 (3) | 0.1525 (3) | 0.0637 (10) | |
H4A | 0.0469 | 0.2957 | 0.1158 | 0.076* | |
H4B | 0.2251 | 0.2403 | 0.1905 | 0.076* | |
C1 | 0.2839 (6) | 0.4144 (3) | 0.0482 (3) | 0.0564 (9) | |
H1A | 0.3829 | 0.4228 | 0.0174 | 0.068* | |
H1B | 0.1469 | 0.4108 | 0.0059 | 0.068* | |
C6 | 0.5962 (7) | 0.1741 (3) | 0.1750 (3) | 0.0727 (12) | |
H6A | 0.7447 | 0.1626 | 0.1968 | 0.087* | |
H6B | 0.5401 | 0.1588 | 0.2212 | 0.087* | |
C5 | 0.5503 (6) | 0.2936 (3) | 0.1452 (3) | 0.0671 (10) | |
H5A | 0.5897 | 0.3434 | 0.1946 | 0.081* | |
H5B | 0.6305 | 0.3137 | 0.1082 | 0.081* | |
C3 | 0.2054 (8) | 0.4082 (4) | 0.2054 (3) | 0.0761 (12) | |
H3A | 0.1109 | 0.4028 | 0.2385 | 0.091* | |
H3B | 0.3448 | 0.4148 | 0.2454 | 0.091* | |
C2 | 0.2958 (6) | 0.5147 (3) | 0.1033 (3) | 0.0647 (10) | |
H2A | 0.4361 | 0.5230 | 0.1423 | 0.078* | |
H2B | 0.2617 | 0.5812 | 0.0674 | 0.078* | |
O1W | 0.1658 (9) | 0.1102 (7) | 0.3159 (3) | 0.154 (3) | |
H1WA | 0.171 (8) | 0.075 (4) | 0.275 (2) | 0.081 (16)* | |
H0A | 0.605 (5) | 0.074 (3) | 0.085 (3) | 0.066 (12)* | |
H0B | 0.458 (6) | 0.036 (2) | 0.117 (3) | 0.071 (13)* | |
H1WB | 0.052 (7) | 0.132 (8) | 0.317 (6) | 0.19 (4)* | |
H06A | 0.328 (7) | 0.275 (4) | −0.112 (2) | 0.088 (17)* | |
H06B | 0.501 (7) | 0.226 (4) | −0.090 (3) | 0.100 (18)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0362 (3) | 0.0434 (3) | 0.0520 (3) | 0.00650 (17) | 0.0134 (2) | −0.0030 (2) |
O2 | 0.0434 (12) | 0.0488 (12) | 0.0597 (14) | 0.0085 (10) | 0.0125 (10) | −0.0065 (11) |
N1 | 0.0441 (15) | 0.0437 (14) | 0.0543 (17) | 0.0050 (11) | 0.0163 (13) | −0.0020 (12) |
O3 | 0.0398 (13) | 0.0787 (17) | 0.0677 (17) | 0.0070 (12) | 0.0055 (12) | −0.0094 (15) |
O4 | 0.0446 (13) | 0.0494 (12) | 0.0652 (14) | 0.0053 (10) | 0.0202 (11) | −0.0093 (11) |
O1 | 0.0755 (18) | 0.0529 (14) | 0.086 (2) | 0.0136 (13) | 0.0404 (16) | −0.0033 (14) |
N0 | 0.0441 (16) | 0.0494 (16) | 0.0649 (19) | 0.0111 (13) | 0.0162 (14) | 0.0024 (14) |
O06 | 0.0712 (19) | 0.0771 (18) | 0.0725 (19) | 0.0208 (16) | 0.0417 (16) | 0.0194 (16) |
C7 | 0.0504 (19) | 0.0498 (17) | 0.0521 (18) | −0.0021 (15) | 0.0253 (15) | −0.0035 (16) |
O5 | 0.0704 (18) | 0.0694 (16) | 0.0733 (18) | −0.0106 (14) | 0.0239 (14) | −0.0280 (16) |
C8 | 0.0433 (17) | 0.0546 (18) | 0.0475 (17) | 0.0047 (15) | 0.0170 (14) | 0.0017 (16) |
C4 | 0.086 (3) | 0.0509 (19) | 0.069 (3) | 0.0038 (18) | 0.045 (2) | 0.0046 (18) |
C1 | 0.060 (2) | 0.0470 (17) | 0.070 (2) | 0.0009 (16) | 0.0310 (18) | 0.0016 (18) |
C6 | 0.064 (3) | 0.070 (3) | 0.068 (3) | 0.0160 (19) | 0.000 (2) | −0.008 (2) |
C5 | 0.053 (2) | 0.063 (2) | 0.075 (3) | 0.0026 (18) | 0.0046 (19) | −0.013 (2) |
C3 | 0.095 (3) | 0.072 (3) | 0.073 (3) | 0.013 (2) | 0.042 (3) | −0.004 (2) |
C2 | 0.059 (2) | 0.0494 (19) | 0.088 (3) | 0.0040 (17) | 0.027 (2) | 0.0036 (19) |
O1W | 0.134 (4) | 0.263 (7) | 0.085 (3) | −0.138 (4) | 0.063 (3) | −0.076 (4) |
Cu1—O2 | 1.955 (2) | C7—C8 | 1.547 (5) |
Cu1—O4 | 1.965 (2) | C4—C3 | 1.490 (6) |
Cu1—N0 | 1.985 (3) | C4—H4A | 0.9700 |
Cu1—N1 | 2.050 (3) | C4—H4B | 0.9700 |
Cu1—O06 | 2.252 (3) | C1—C2 | 1.484 (5) |
O2—C8 | 1.263 (4) | C1—H1A | 0.9700 |
N1—C5 | 1.485 (5) | C1—H1B | 0.9700 |
N1—C1 | 1.492 (4) | C6—C5 | 1.504 (6) |
N1—C4 | 1.493 (5) | C6—H6A | 0.9700 |
O3—C8 | 1.230 (4) | C6—H6B | 0.9700 |
O4—C7 | 1.268 (4) | C5—H5A | 0.9700 |
O1—C3 | 1.422 (5) | C5—H5B | 0.9700 |
O1—C2 | 1.425 (5) | C3—H3A | 0.9700 |
N0—C6 | 1.475 (5) | C3—H3B | 0.9700 |
N0—H0A | 0.88 (4) | C2—H2A | 0.9700 |
N0—H0B | 0.86 (2) | C2—H2B | 0.9700 |
O06—H06A | 0.82 (2) | O1W—H1WA | 0.80 (2) |
O06—H06B | 0.82 (5) | O1W—H1WB | 0.82 (7) |
C7—O5 | 1.225 (4) | ||
O2—Cu1—O4 | 84.18 (10) | N1—C4—H4A | 108.9 |
O2—Cu1—N0 | 161.99 (13) | C3—C4—H4B | 108.9 |
O4—Cu1—N0 | 92.53 (12) | N1—C4—H4B | 108.9 |
O2—Cu1—N1 | 94.75 (11) | H4A—C4—H4B | 107.8 |
O4—Cu1—N1 | 173.50 (11) | C2—C1—N1 | 113.5 (3) |
N0—Cu1—N1 | 86.52 (12) | C2—C1—H1A | 108.9 |
O2—Cu1—O06 | 98.55 (11) | N1—C1—H1A | 108.9 |
O4—Cu1—O06 | 95.90 (11) | C2—C1—H1B | 108.9 |
N0—Cu1—O06 | 99.40 (13) | N1—C1—H1B | 108.9 |
N1—Cu1—O06 | 90.60 (12) | H1A—C1—H1B | 107.7 |
C8—O2—Cu1 | 112.4 (2) | N0—C6—C5 | 109.6 (3) |
C5—N1—C1 | 111.4 (3) | N0—C6—H6A | 109.7 |
C5—N1—C4 | 114.7 (3) | C5—C6—H6A | 109.7 |
C1—N1—C4 | 107.0 (3) | N0—C6—H6B | 109.7 |
C5—N1—Cu1 | 103.3 (2) | C5—C6—H6B | 109.7 |
C1—N1—Cu1 | 112.1 (2) | H6A—C6—H6B | 108.2 |
C4—N1—Cu1 | 108.3 (2) | N1—C5—C6 | 110.1 (3) |
C7—O4—Cu1 | 112.6 (2) | N1—C5—H5A | 109.6 |
C3—O1—C2 | 110.2 (3) | C6—C5—H5A | 109.6 |
C6—N0—Cu1 | 109.8 (2) | N1—C5—H5B | 109.6 |
C6—N0—H0A | 106 (3) | C6—C5—H5B | 109.6 |
Cu1—N0—H0A | 119 (3) | H5A—C5—H5B | 108.1 |
C6—N0—H0B | 114 (3) | O1—C3—C4 | 110.7 (3) |
Cu1—N0—H0B | 106 (3) | O1—C3—H3A | 109.5 |
H0A—N0—H0B | 102 (4) | C4—C3—H3A | 109.5 |
Cu1—O06—H06A | 110 (4) | O1—C3—H3B | 109.5 |
Cu1—O06—H06B | 132 (4) | C4—C3—H3B | 109.5 |
H06A—O06—H06B | 101 (5) | H3A—C3—H3B | 108.1 |
O5—C7—O4 | 125.1 (3) | O1—C2—C1 | 111.0 (3) |
O5—C7—C8 | 120.3 (3) | O1—C2—H2A | 109.4 |
O4—C7—C8 | 114.6 (3) | C1—C2—H2A | 109.4 |
O3—C8—O2 | 126.6 (3) | O1—C2—H2B | 109.4 |
O3—C8—C7 | 117.7 (3) | C1—C2—H2B | 109.4 |
O2—C8—C7 | 115.7 (3) | H2A—C2—H2B | 108.0 |
C3—C4—N1 | 113.2 (3) | H1WA—O1W—H1WB | 118 (7) |
C3—C4—H4A | 108.9 | ||
O4—Cu1—O2—C8 | 3.3 (2) | Cu1—O2—C8—O3 | 173.4 (3) |
N0—Cu1—O2—C8 | −76.9 (4) | Cu1—O2—C8—C7 | −6.9 (4) |
N1—Cu1—O2—C8 | −170.2 (2) | O5—C7—C8—O3 | 6.7 (5) |
O06—Cu1—O2—C8 | 98.4 (2) | O4—C7—C8—O3 | −171.8 (3) |
O2—Cu1—N1—C5 | −174.4 (2) | O5—C7—C8—O2 | −173.1 (3) |
N0—Cu1—N1—C5 | 23.6 (3) | O4—C7—C8—O2 | 8.5 (4) |
O06—Cu1—N1—C5 | −75.8 (2) | C5—N1—C4—C3 | 72.3 (4) |
O2—Cu1—N1—C1 | −54.3 (2) | C1—N1—C4—C3 | −51.8 (5) |
N0—Cu1—N1—C1 | 143.7 (2) | Cu1—N1—C4—C3 | −172.8 (3) |
O06—Cu1—N1—C1 | 44.3 (2) | C5—N1—C1—C2 | −74.7 (4) |
O2—Cu1—N1—C4 | 63.5 (2) | C4—N1—C1—C2 | 51.4 (4) |
N0—Cu1—N1—C4 | −98.5 (3) | Cu1—N1—C1—C2 | 170.0 (3) |
O06—Cu1—N1—C4 | 162.1 (2) | Cu1—N0—C6—C5 | −26.9 (5) |
O2—Cu1—O4—C7 | 1.6 (2) | C1—N1—C5—C6 | −165.3 (3) |
N0—Cu1—O4—C7 | 163.8 (2) | C4—N1—C5—C6 | 72.9 (4) |
O06—Cu1—O4—C7 | −96.5 (2) | Cu1—N1—C5—C6 | −44.7 (4) |
O2—Cu1—N0—C6 | −93.1 (4) | N0—C6—C5—N1 | 49.3 (5) |
O4—Cu1—N0—C6 | −172.0 (3) | C2—O1—C3—C4 | −59.7 (5) |
N1—Cu1—N0—C6 | 1.6 (3) | N1—C4—C3—O1 | 57.8 (5) |
O06—Cu1—N0—C6 | 91.6 (3) | C3—O1—C2—C1 | 59.4 (4) |
Cu1—O4—C7—O5 | 176.3 (3) | N1—C1—C2—O1 | −56.9 (4) |
Cu1—O4—C7—C8 | −5.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O5i | 0.80 (2) | 1.96 (3) | 2.706 (5) | 154 (5) |
N0—H0A···O4ii | 0.88 (4) | 2.15 (2) | 3.002 (4) | 163 (4) |
N0—H0B···O3i | 0.86 (2) | 2.37 (2) | 3.218 (4) | 170 (4) |
O1W—H1WB···O1iii | 0.82 (7) | 2.25 (9) | 2.729 (5) | 118 (8) |
O06—H06A···O1Wiv | 0.82 (2) | 1.91 (3) | 2.679 (5) | 156 (5) |
O06—H06B···O3v | 0.82 (5) | 1.90 (5) | 2.702 (4) | 169 (6) |
C4—H4B···O5i | 0.97 | 2.57 | 3.227 (5) | 126 |
Symmetry codes: (i) −x, −y, −z; (ii) −x+1, −y, −z; (iii) −x, y−1/2, −z+1/2; (iv) x, −y+1/2, z−1/2; (v) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C2O4)(C6H14N2O)(H2O)]·H2O |
Mr | 317.79 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 6.8240 (14), 11.916 (2), 16.396 (3) |
β (°) | 108.76 (3) |
V (Å3) | 1262.4 (5) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 2.75 |
Crystal size (mm) | 0.35 × 0.10 × 0.06 |
Data collection | |
Diffractometer | Kuma KM-4 diffractometer |
Absorption correction | Part of the refinement model (ΔF) (DIFABS; Walker & Stuart, 1983) |
Tmin, Tmax | 0.755, 0.838 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2315, 2315, 1968 |
Rint | 0.000 |
(sin θ/λ)max (Å−1) | 0.604 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.131, 1.06 |
No. of reflections | 2315 |
No. of parameters | 187 |
No. of restraints | 6 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.41, −0.68 |
Computer programs: KM4B8 Software (Galdecki et al., 1996), KM4B8 Software, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia,1997) and PLATON (Spek, 2003), SHELXL97.
Cu1—O2 | 1.955 (2) | N1—C5 | 1.485 (5) |
Cu1—O4 | 1.965 (2) | N1—C1 | 1.492 (4) |
Cu1—N0 | 1.985 (3) | N1—C4 | 1.493 (5) |
Cu1—N1 | 2.050 (3) | O3—C8 | 1.230 (4) |
Cu1—O06 | 2.252 (3) | O4—C7 | 1.268 (4) |
O2—C8 | 1.263 (4) | C7—O5 | 1.225 (4) |
O2—Cu1—O4 | 84.18 (10) | N0—Cu1—N1 | 86.52 (12) |
O2—Cu1—N0 | 161.99 (13) | O2—Cu1—O06 | 98.55 (11) |
O4—Cu1—N0 | 92.53 (12) | O4—Cu1—O06 | 95.90 (11) |
O2—Cu1—N1 | 94.75 (11) | N0—Cu1—O06 | 99.40 (13) |
O4—Cu1—N1 | 173.50 (11) | N1—Cu1—O06 | 90.60 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O5i | 0.80 (2) | 1.96 (3) | 2.706 (5) | 154 (5) |
N0—H0A···O4ii | 0.88 (4) | 2.15 (2) | 3.002 (4) | 163 (4) |
N0—H0B···O3i | 0.86 (2) | 2.37 (2) | 3.218 (4) | 170 (4) |
O1W—H1WB···O1iii | 0.82 (7) | 2.25 (9) | 2.729 (5) | 118 (8) |
O06—H06A···O1Wiv | 0.82 (2) | 1.91 (3) | 2.679 (5) | 156 (5) |
O06—H06B···O3v | 0.82 (5) | 1.90 (5) | 2.702 (4) | 169 (6) |
C4—H4B···O5i | 0.97 | 2.57 | 3.227 (5) | 126 |
Symmetry codes: (i) −x, −y, −z; (ii) −x+1, −y, −z; (iii) −x, y−1/2, −z+1/2; (iv) x, −y+1/2, z−1/2; (v) x+1, y, z. |
Copper ions, present in naturally occurring systems, are involved in the biochemical reactions. Morpholine can be used as a ligand in metal complexes but it can be a component of protective coatings on fresh fruits (McGuire & Hagenmaire, 1996 or Hagenmaine?) and used as an emulsifier in the preparation of pharmaceuticals and cosmetic products (Kuchowicz & Rydzynski, 1998). Its wide application is due to its relative safety for human health. Our initial aim was to investigate the activity of the [Cu(L)2]2+ complex where L is etMorph or 4-(2-aminoethyl)morpholine. In the synthesis we used different copper(II) salts, such as copper(II) chloride, nitrate and acetate using the same ligand; the products revealed to be compound (I) (Fig. 1).
The CuII atom is slightly distorted square pyramidal with two N atoms from etMorph ligand and two O atoms from the oxalate anion forming the basal plane, and atom O06 of the water molecule occupying the apical position (Fig. 2). The Cu—O06 apical bond (2.252 Å) is shorter than the reported values for complexes with heterocyclic amines and malonate as ligands, and significantly shorter than in oxalate complexes (Bouayad et al., 1995). The coordination geometry around the CuII atom is similar to those in some reported CuN2O3-type complexes, for example [Cu(bpym)(mal)(H2O)]·6H2O (Rodriguez-Martin or Rodrigez-Martin et al., 2001), [Cu(mal)(phen)(H2O)] (Kwik et al., 1986), [Cu(mal)(bpy)(H2O)] (Lu et al., 1996), [Cu(mal)(bpy)(H20)]·H20 (Suresh et al., 1997), [Cu(mal)(dmp)2(H2O)] (Xiong et al., 2001) (phen is 1,10-phenantroline, bpy is 2,2'-bipyridine, bpym is 2,2`-bipyrimidine, dmp is 3,5-dimethyl-1H-pyrazole and mal is malonic acid).
In the crystal structure, molecules are linked by: (i) N00—H···O hydrogen bonds in which the morpholine ligand is a double donor to oxalate O atoms (coordinated and uncoordinated); (ii) O—H···O hydrogen bonds in which an uncoordinated water molecule, O1W, acts as donor to oxalate O atom O5 and morpholine O atom O1; (iii) the coordinated water O06 which is a donor to the uncoodrinated water and uncoordinated oxalate O atom O3 (Table 2). Graph-set analysis (Bernstein et al., 1995) performed by the computer program RPLUTO (Motherwell et al., 2000) indicated that the unccordinated and coordinated water molecules O1W···O5 (a in Fig. 3), O1W···O1 (b in Fig. 3) and O06···O1W (c in Fig.3) form discrete D motifs. O06—H···O3 (d in Fig.3) links the complex molecules by translation along the axis a into the C (6) chain. N0···O4 (e in Fig. 3) and N0···O3 (f in Fig. 3) form the rings with graph-set motifs R22(8) and R22(12), respectively. Apart from these hydrogen bonds, in the structure of (I) there is also a weak intermolecular hydrogen bond of type C—H···O (g in Fig. 3) which connects the morpholine ring with the oxalate anion into a ring defined by the R22(14) descriptor.