Download citation
Download citation
link to html
The crystal structure of the title compound, [Cu(C2O4)(C6H14N2O)(H2O)]·H2O, includes a CuN2O3 coordination polyhedron in the shape of a slightly distorted square pyramid with bidentate morpholine and oxalate ligands. Copper(II) is coordinated by 4-(2-amino­ethyl)morpholine (etMorph) N atoms, with Cu—N distances of 2.050 (3) and 1.985 (3) Å, and two carboxyl­ate O atoms from the oxalate ligand, with Cu—O distances of 1.955 (2) and 1.965 (2) Å; both ligands are located in the basal plane, whereas a water mol­ecule is apically positioned [Cu—O = 2.251 (3) Å]. The crystal packing is dominated by N—H...O and O—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805042091/kp6071sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805042091/kp6071Isup2.hkl
Contains datablock I

CCDC reference: 296597

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.046
  • wR factor = 0.131
  • Data-to-parameter ratio = 12.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT199_ALERT_1_C Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_C Check the Reported _diffrn_ambient_temperature . 293 K PLAT369_ALERT_2_C Long C(sp2)-C(sp2) Bond C7 - C8 ... 1.55 Ang. PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 8
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Copper ions, present in naturally occurring systems, are involved in the biochemical reactions. Morpholine can be used as a ligand in metal complexes but it can be a component of protective coatings on fresh fruits (McGuire & Hagenmaire, 1996 or Hagenmaine?) and used as an emulsifier in the preparation of pharmaceuticals and cosmetic products (Kuchowicz & Rydzynski, 1998). Its wide application is due to its relative safety for human health. Our initial aim was to investigate the activity of the [Cu(L)2]2+ complex where L is etMorph or 4-(2-aminoethyl)morpholine. In the synthesis we used different copper(II) salts, such as copper(II) chloride, nitrate and acetate using the same ligand; the products revealed to be compound (I) (Fig. 1).

The CuII atom is slightly distorted square pyramidal with two N atoms from etMorph ligand and two O atoms from the oxalate anion forming the basal plane, and atom O06 of the water molecule occupying the apical position (Fig. 2). The Cu—O06 apical bond (2.252 Å) is shorter than the reported values for complexes with heterocyclic amines and malonate as ligands, and significantly shorter than in oxalate complexes (Bouayad et al., 1995). The coordination geometry around the CuII atom is similar to those in some reported CuN2O3-type complexes, for example [Cu(bpym)(mal)(H2O)]·6H2O (Rodriguez-Martin or Rodrigez-Martin et al., 2001), [Cu(mal)(phen)(H2O)] (Kwik et al., 1986), [Cu(mal)(bpy)(H2O)] (Lu et al., 1996), [Cu(mal)(bpy)(H20)]·H20 (Suresh et al., 1997), [Cu(mal)(dmp)2(H2O)] (Xiong et al., 2001) (phen is 1,10-phenantroline, bpy is 2,2'-bipyridine, bpym is 2,2`-bipyrimidine, dmp is 3,5-dimethyl-1H-pyrazole and mal is malonic acid).

In the crystal structure, molecules are linked by: (i) N00—H···O hydrogen bonds in which the morpholine ligand is a double donor to oxalate O atoms (coordinated and uncoordinated); (ii) O—H···O hydrogen bonds in which an uncoordinated water molecule, O1W, acts as donor to oxalate O atom O5 and morpholine O atom O1; (iii) the coordinated water O06 which is a donor to the uncoodrinated water and uncoordinated oxalate O atom O3 (Table 2). Graph-set analysis (Bernstein et al., 1995) performed by the computer program RPLUTO (Motherwell et al., 2000) indicated that the unccordinated and coordinated water molecules O1W···O5 (a in Fig. 3), O1W···O1 (b in Fig. 3) and O06···O1W (c in Fig.3) form discrete D motifs. O06—H···O3 (d in Fig.3) links the complex molecules by translation along the axis a into the C (6) chain. N0···O4 (e in Fig. 3) and N0···O3 (f in Fig. 3) form the rings with graph-set motifs R22(8) and R22(12), respectively. Apart from these hydrogen bonds, in the structure of (I) there is also a weak intermolecular hydrogen bond of type C—H···O (g in Fig. 3) which connects the morpholine ring with the oxalate anion into a ring defined by the R22(14) descriptor.

Experimental top

To a warm aqueous solution of copper(II) acetate (0.05 mol, 0.998 g) dissolved in 30 ml of water, etMorph (0.34 ml, 0.1 mol) and then an ammonium oxalate (0.713 g, 0.05 mol) solution in 10 ml of water were added slowly with stirring. The mixture was wormed to 333 K and stirred for 30 min. Blue crystals of the title compound appeared within 3 d. Identical crystals were obtained using copper(II) chloride or nitrate instead of copper(II) acetate.

Refinement top

All H atoms bound to C atoms were treated as riding, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C). H atoms bound to O and N atoms were located in a difference Fourier map and normalized to have the O—H and N—H distances of 0.82 and 0.87 Å, respectively.

Computing details top

Data collection: KM4B8 Software (Galdecki et al., 1996); cell refinement: KM4B8 Software; data reduction: KM4B8 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia,1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing, viewed along the a axis.
[Figure 3] Fig. 3. The hydrogen-bond network in the structure of (I), showing O—H···O (a--d), N—H···O (e and f) and C—H···O (g, double dashed lines) interactions. H atoms not involved in these interactions have been omitted for clarity.
[4-(2-Aminoethyl)morpholine-k2N,N']aqua(oxalato-k2O,O')copper(II) monohydrate top
Crystal data top
[Cu(C2O4)(C6H14N2O)(H2O)]·H2OF(000) = 660
Mr = 317.79Dx = 1.672 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 30 reflections
a = 6.8240 (14) Åθ = 6–25°
b = 11.916 (2) ŵ = 2.75 mm1
c = 16.396 (3) ÅT = 293 K
β = 108.76 (3)°Column, blue
V = 1262.4 (5) Å30.35 × 0.10 × 0.06 mm
Z = 4
Data collection top
Kuma KM-4
diffractometer
1968 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 68.5°, θmin = 4.7°
ω–2θ scansh = 88
Absorption correction: part of the refinement model (ΔF)
(DIFABS; Walker & Stuart, 1983)
k = 140
Tmin = 0.755, Tmax = 0.838l = 197
2315 measured reflections3 standard reflections every 100 min
2315 independent reflections intensity decay: 1.2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.8891P]
where P = (Fo2 + 2Fc2)/3
2315 reflections(Δ/σ)max = 0.034
187 parametersΔρmax = 0.41 e Å3
6 restraintsΔρmin = 0.68 e Å3
Crystal data top
[Cu(C2O4)(C6H14N2O)(H2O)]·H2OV = 1262.4 (5) Å3
Mr = 317.79Z = 4
Monoclinic, P21/cCu Kα radiation
a = 6.8240 (14) ŵ = 2.75 mm1
b = 11.916 (2) ÅT = 293 K
c = 16.396 (3) Å0.35 × 0.10 × 0.06 mm
β = 108.76 (3)°
Data collection top
Kuma KM-4
diffractometer
1968 reflections with I > 2σ(I)
Absorption correction: part of the refinement model (ΔF)
(DIFABS; Walker & Stuart, 1983)
Rint = 0.000
Tmin = 0.755, Tmax = 0.8383 standard reflections every 100 min
2315 measured reflections intensity decay: 1.2%
2315 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0466 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.41 e Å3
2315 reflectionsΔρmin = 0.68 e Å3
187 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.25912 (6)0.16956 (4)0.01815 (3)0.0441 (2)
O20.0252 (4)0.21581 (19)0.04302 (16)0.0516 (6)
N10.3263 (4)0.3070 (2)0.09752 (19)0.0472 (6)
O30.3153 (4)0.1414 (2)0.13151 (18)0.0649 (7)
O40.1791 (4)0.03075 (19)0.04908 (17)0.0525 (6)
O10.1569 (5)0.5050 (2)0.1519 (2)0.0681 (7)
N00.5031 (5)0.0972 (2)0.1023 (2)0.0531 (7)
O060.4152 (5)0.2496 (3)0.0691 (2)0.0692 (8)
C70.0056 (5)0.0337 (3)0.1000 (2)0.0486 (8)
O50.0886 (4)0.0401 (2)0.15155 (19)0.0708 (8)
C80.1289 (5)0.1394 (3)0.0913 (2)0.0479 (7)
C40.1893 (7)0.3048 (3)0.1525 (3)0.0637 (10)
H4A0.04690.29570.11580.076*
H4B0.22510.24030.19050.076*
C10.2839 (6)0.4144 (3)0.0482 (3)0.0564 (9)
H1A0.38290.42280.01740.068*
H1B0.14690.41080.00590.068*
C60.5962 (7)0.1741 (3)0.1750 (3)0.0727 (12)
H6A0.74470.16260.19680.087*
H6B0.54010.15880.22120.087*
C50.5503 (6)0.2936 (3)0.1452 (3)0.0671 (10)
H5A0.58970.34340.19460.081*
H5B0.63050.31370.10820.081*
C30.2054 (8)0.4082 (4)0.2054 (3)0.0761 (12)
H3A0.11090.40280.23850.091*
H3B0.34480.41480.24540.091*
C20.2958 (6)0.5147 (3)0.1033 (3)0.0647 (10)
H2A0.43610.52300.14230.078*
H2B0.26170.58120.06740.078*
O1W0.1658 (9)0.1102 (7)0.3159 (3)0.154 (3)
H1WA0.171 (8)0.075 (4)0.275 (2)0.081 (16)*
H0A0.605 (5)0.074 (3)0.085 (3)0.066 (12)*
H0B0.458 (6)0.036 (2)0.117 (3)0.071 (13)*
H1WB0.052 (7)0.132 (8)0.317 (6)0.19 (4)*
H06A0.328 (7)0.275 (4)0.112 (2)0.088 (17)*
H06B0.501 (7)0.226 (4)0.090 (3)0.100 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0362 (3)0.0434 (3)0.0520 (3)0.00650 (17)0.0134 (2)0.0030 (2)
O20.0434 (12)0.0488 (12)0.0597 (14)0.0085 (10)0.0125 (10)0.0065 (11)
N10.0441 (15)0.0437 (14)0.0543 (17)0.0050 (11)0.0163 (13)0.0020 (12)
O30.0398 (13)0.0787 (17)0.0677 (17)0.0070 (12)0.0055 (12)0.0094 (15)
O40.0446 (13)0.0494 (12)0.0652 (14)0.0053 (10)0.0202 (11)0.0093 (11)
O10.0755 (18)0.0529 (14)0.086 (2)0.0136 (13)0.0404 (16)0.0033 (14)
N00.0441 (16)0.0494 (16)0.0649 (19)0.0111 (13)0.0162 (14)0.0024 (14)
O060.0712 (19)0.0771 (18)0.0725 (19)0.0208 (16)0.0417 (16)0.0194 (16)
C70.0504 (19)0.0498 (17)0.0521 (18)0.0021 (15)0.0253 (15)0.0035 (16)
O50.0704 (18)0.0694 (16)0.0733 (18)0.0106 (14)0.0239 (14)0.0280 (16)
C80.0433 (17)0.0546 (18)0.0475 (17)0.0047 (15)0.0170 (14)0.0017 (16)
C40.086 (3)0.0509 (19)0.069 (3)0.0038 (18)0.045 (2)0.0046 (18)
C10.060 (2)0.0470 (17)0.070 (2)0.0009 (16)0.0310 (18)0.0016 (18)
C60.064 (3)0.070 (3)0.068 (3)0.0160 (19)0.000 (2)0.008 (2)
C50.053 (2)0.063 (2)0.075 (3)0.0026 (18)0.0046 (19)0.013 (2)
C30.095 (3)0.072 (3)0.073 (3)0.013 (2)0.042 (3)0.004 (2)
C20.059 (2)0.0494 (19)0.088 (3)0.0040 (17)0.027 (2)0.0036 (19)
O1W0.134 (4)0.263 (7)0.085 (3)0.138 (4)0.063 (3)0.076 (4)
Geometric parameters (Å, º) top
Cu1—O21.955 (2)C7—C81.547 (5)
Cu1—O41.965 (2)C4—C31.490 (6)
Cu1—N01.985 (3)C4—H4A0.9700
Cu1—N12.050 (3)C4—H4B0.9700
Cu1—O062.252 (3)C1—C21.484 (5)
O2—C81.263 (4)C1—H1A0.9700
N1—C51.485 (5)C1—H1B0.9700
N1—C11.492 (4)C6—C51.504 (6)
N1—C41.493 (5)C6—H6A0.9700
O3—C81.230 (4)C6—H6B0.9700
O4—C71.268 (4)C5—H5A0.9700
O1—C31.422 (5)C5—H5B0.9700
O1—C21.425 (5)C3—H3A0.9700
N0—C61.475 (5)C3—H3B0.9700
N0—H0A0.88 (4)C2—H2A0.9700
N0—H0B0.86 (2)C2—H2B0.9700
O06—H06A0.82 (2)O1W—H1WA0.80 (2)
O06—H06B0.82 (5)O1W—H1WB0.82 (7)
C7—O51.225 (4)
O2—Cu1—O484.18 (10)N1—C4—H4A108.9
O2—Cu1—N0161.99 (13)C3—C4—H4B108.9
O4—Cu1—N092.53 (12)N1—C4—H4B108.9
O2—Cu1—N194.75 (11)H4A—C4—H4B107.8
O4—Cu1—N1173.50 (11)C2—C1—N1113.5 (3)
N0—Cu1—N186.52 (12)C2—C1—H1A108.9
O2—Cu1—O0698.55 (11)N1—C1—H1A108.9
O4—Cu1—O0695.90 (11)C2—C1—H1B108.9
N0—Cu1—O0699.40 (13)N1—C1—H1B108.9
N1—Cu1—O0690.60 (12)H1A—C1—H1B107.7
C8—O2—Cu1112.4 (2)N0—C6—C5109.6 (3)
C5—N1—C1111.4 (3)N0—C6—H6A109.7
C5—N1—C4114.7 (3)C5—C6—H6A109.7
C1—N1—C4107.0 (3)N0—C6—H6B109.7
C5—N1—Cu1103.3 (2)C5—C6—H6B109.7
C1—N1—Cu1112.1 (2)H6A—C6—H6B108.2
C4—N1—Cu1108.3 (2)N1—C5—C6110.1 (3)
C7—O4—Cu1112.6 (2)N1—C5—H5A109.6
C3—O1—C2110.2 (3)C6—C5—H5A109.6
C6—N0—Cu1109.8 (2)N1—C5—H5B109.6
C6—N0—H0A106 (3)C6—C5—H5B109.6
Cu1—N0—H0A119 (3)H5A—C5—H5B108.1
C6—N0—H0B114 (3)O1—C3—C4110.7 (3)
Cu1—N0—H0B106 (3)O1—C3—H3A109.5
H0A—N0—H0B102 (4)C4—C3—H3A109.5
Cu1—O06—H06A110 (4)O1—C3—H3B109.5
Cu1—O06—H06B132 (4)C4—C3—H3B109.5
H06A—O06—H06B101 (5)H3A—C3—H3B108.1
O5—C7—O4125.1 (3)O1—C2—C1111.0 (3)
O5—C7—C8120.3 (3)O1—C2—H2A109.4
O4—C7—C8114.6 (3)C1—C2—H2A109.4
O3—C8—O2126.6 (3)O1—C2—H2B109.4
O3—C8—C7117.7 (3)C1—C2—H2B109.4
O2—C8—C7115.7 (3)H2A—C2—H2B108.0
C3—C4—N1113.2 (3)H1WA—O1W—H1WB118 (7)
C3—C4—H4A108.9
O4—Cu1—O2—C83.3 (2)Cu1—O2—C8—O3173.4 (3)
N0—Cu1—O2—C876.9 (4)Cu1—O2—C8—C76.9 (4)
N1—Cu1—O2—C8170.2 (2)O5—C7—C8—O36.7 (5)
O06—Cu1—O2—C898.4 (2)O4—C7—C8—O3171.8 (3)
O2—Cu1—N1—C5174.4 (2)O5—C7—C8—O2173.1 (3)
N0—Cu1—N1—C523.6 (3)O4—C7—C8—O28.5 (4)
O06—Cu1—N1—C575.8 (2)C5—N1—C4—C372.3 (4)
O2—Cu1—N1—C154.3 (2)C1—N1—C4—C351.8 (5)
N0—Cu1—N1—C1143.7 (2)Cu1—N1—C4—C3172.8 (3)
O06—Cu1—N1—C144.3 (2)C5—N1—C1—C274.7 (4)
O2—Cu1—N1—C463.5 (2)C4—N1—C1—C251.4 (4)
N0—Cu1—N1—C498.5 (3)Cu1—N1—C1—C2170.0 (3)
O06—Cu1—N1—C4162.1 (2)Cu1—N0—C6—C526.9 (5)
O2—Cu1—O4—C71.6 (2)C1—N1—C5—C6165.3 (3)
N0—Cu1—O4—C7163.8 (2)C4—N1—C5—C672.9 (4)
O06—Cu1—O4—C796.5 (2)Cu1—N1—C5—C644.7 (4)
O2—Cu1—N0—C693.1 (4)N0—C6—C5—N149.3 (5)
O4—Cu1—N0—C6172.0 (3)C2—O1—C3—C459.7 (5)
N1—Cu1—N0—C61.6 (3)N1—C4—C3—O157.8 (5)
O06—Cu1—N0—C691.6 (3)C3—O1—C2—C159.4 (4)
Cu1—O4—C7—O5176.3 (3)N1—C1—C2—O156.9 (4)
Cu1—O4—C7—C85.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O5i0.80 (2)1.96 (3)2.706 (5)154 (5)
N0—H0A···O4ii0.88 (4)2.15 (2)3.002 (4)163 (4)
N0—H0B···O3i0.86 (2)2.37 (2)3.218 (4)170 (4)
O1W—H1WB···O1iii0.82 (7)2.25 (9)2.729 (5)118 (8)
O06—H06A···O1Wiv0.82 (2)1.91 (3)2.679 (5)156 (5)
O06—H06B···O3v0.82 (5)1.90 (5)2.702 (4)169 (6)
C4—H4B···O5i0.972.573.227 (5)126
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x, y1/2, z+1/2; (iv) x, y+1/2, z1/2; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C2O4)(C6H14N2O)(H2O)]·H2O
Mr317.79
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.8240 (14), 11.916 (2), 16.396 (3)
β (°) 108.76 (3)
V3)1262.4 (5)
Z4
Radiation typeCu Kα
µ (mm1)2.75
Crystal size (mm)0.35 × 0.10 × 0.06
Data collection
DiffractometerKuma KM-4
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(DIFABS; Walker & Stuart, 1983)
Tmin, Tmax0.755, 0.838
No. of measured, independent and
observed [I > 2σ(I)] reflections
2315, 2315, 1968
Rint0.000
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.131, 1.06
No. of reflections2315
No. of parameters187
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.68

Computer programs: KM4B8 Software (Galdecki et al., 1996), KM4B8 Software, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia,1997) and PLATON (Spek, 2003), SHELXL97.

Selected geometric parameters (Å, º) top
Cu1—O21.955 (2)N1—C51.485 (5)
Cu1—O41.965 (2)N1—C11.492 (4)
Cu1—N01.985 (3)N1—C41.493 (5)
Cu1—N12.050 (3)O3—C81.230 (4)
Cu1—O062.252 (3)O4—C71.268 (4)
O2—C81.263 (4)C7—O51.225 (4)
O2—Cu1—O484.18 (10)N0—Cu1—N186.52 (12)
O2—Cu1—N0161.99 (13)O2—Cu1—O0698.55 (11)
O4—Cu1—N092.53 (12)O4—Cu1—O0695.90 (11)
O2—Cu1—N194.75 (11)N0—Cu1—O0699.40 (13)
O4—Cu1—N1173.50 (11)N1—Cu1—O0690.60 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O5i0.80 (2)1.96 (3)2.706 (5)154 (5)
N0—H0A···O4ii0.88 (4)2.15 (2)3.002 (4)163 (4)
N0—H0B···O3i0.86 (2)2.37 (2)3.218 (4)170 (4)
O1W—H1WB···O1iii0.82 (7)2.25 (9)2.729 (5)118 (8)
O06—H06A···O1Wiv0.82 (2)1.91 (3)2.679 (5)156 (5)
O06—H06B···O3v0.82 (5)1.90 (5)2.702 (4)169 (6)
C4—H4B···O5i0.972.573.227 (5)126
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x, y1/2, z+1/2; (iv) x, y+1/2, z1/2; (v) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds