Download citation
Download citation
link to html
The crystal structure and the local atomic order of a series of nanocrystalline ZrO2-CaO solid solutions with varying CaO content were studied by synchrotron radiation X-ray powder diffraction and extended X-ray absorption fine structure (EXAFS) spectroscopy. These samples were synthesized by a pH-controlled nitrate-glycine gel-combustion process. For CaO contents up to 8 mol%, the t' form of the tetragonal phase (c/a > 1) was identified, whereas for 10 and 12 mol% CaO, the t'' form (c/a = 1; oxygen anions displaced from their ideal positions in the cubic phase) was detected. Finally, the cubic phase was observed for solid solutions with CaO content of 14 mol% CaO or higher. The t'/t'' and t''/cubic compositional boundaries were determined to be at 9 (1) and 13 (1) mol% CaO, respectively. The EXAFS study demonstrated that this transition is related to a tetragonal-to-cubic symmetry change of the first oxygen coordination shell around the Zr atoms.

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds