Download citation
Download citation
link to html
Single crystals of penta­magnesium titanium(IV) tetra­oxide bis­(borate), Mg5TiO4(BO3)2, were prepared by slow cooling of the melt from 1623 K in air. The crystal is isostructural with the mineral ludwigite (Mg2FeO2BO3). The Mg and Ti atoms are coordinated by six O atoms and the B atom is coordinated by three O atoms. There are three Mg sites and one mixed site statistically occupied by Mg and Ti atoms. Atoms are at the following special positions: 2a (0, 0, 0) and 2d (0, 1 \over 2, 1 \over 2) for two Mg atoms, 4g (x, y, 0) for the mixed Ti/Mg site and the BO3 group, and 4h (x, y, 1 \over 2) for a third Mg and two oxide O atoms. MgO6 and (Ti/Mg)O6 octa­hedra are connected by sharing of edges to form zigzag folding layers along the c axis. Triangular prismatic tunnels are formed between the folding layers by sharing apical O atoms of the MgO6 and (Ti/Mg)O6 octa­hedra.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110036577/ku3033sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110036577/ku3033Isup2.hkl
Contains datablock I

Comment top

Some oxyborates with a structural chemical formula of MII5MIVO4(BO3)2 have been reported. The title compound, Mg5TiO4(BO3)2, and Mg5SnO4(BO3)2 were synthesized by Konijnendijk & Blasse (1985). They presumed that Mg5TiO4(BO3)2 and Mg5SnO4(BO3)2 were isostructural with ludwigite [Mg2FeO2BO3 or Mg4Fe2O4(BO3)2] (Takéuchi et al., 1950) and orthopinakiolite [Mg3Mn3O4(BO3)2] (Randmets, 1960; Takéuchi, 1978), respectively. They also synthesized solid solutions of Mg5Sn1–xTixO4(BO3)2 (0 x 1) and reported their photoluminescence properties. Crystal structure analysis of these compounds, however, was not carried out. Recently, the crystal structure of Mg5SnO4(BO3)2 has been found to be a novel ludwigite-type superstructure [triclinic, space group F1, a = 6.1295 (8), b = 18.714 (3), c = 24.719 (3) Å, α = 90.021 (5)°, β = 90.032 (4)° and γ = 90.041 (5)°] by single-crystal X-ray diffraction (Kawano & Yamane, 2010). On the other hand, no information on the crystal structure of Mg5TiO4(BO3)2 has been reported. In the present study, we confirmed Mg5TiO4(BO3)2 as isostructural with the mineral ludwigite (Mg2FeO2BO3, orthorhombic, space group Pbam) and analysed its crystal structure. Synthetic oxyborates having the ludwigite structure are, for example, Ni5MIVO4(BO3)2 [MIV = Ti (Stenger et al., 1973; Armbruster & Lager, 1985), V (Bluhm & Müller-Buschbaum, 1989a), Mn (Bluhm & Müller-Buschbaum, 1989a), Ge (Bluhm & Müller-Buschbaum, 1989b) and Zr (Bluhm & Müller-Buschbaum, 1989b)], Co5MIVO4(BO3)2 [MIV = Ti (Stenger et al., 1973), Mn (Utzolino & Bluhm, 1996) and Sn (Utzolino & Bluhm, 1996)] and Zn5MnO4(BO3)2 (Busche & Bluhm, 1995).

Figs. 1 and 2 show the coordination environments for Mg, Ti, B and O atoms, and the crystal structure of Mg5TiO4(BO3)2, respectively. Atoms in the crystal structure are at the following special positions: 2a (0, 0, 0) for Mg3, 2d (0, 1/2, 1/2) for Mg4, 4g (x, y, 0) for Ti1/Mg1, B1, O1, O2 and O3, and 4h (x, y, 1/2) for Mg2, O4 and O5. In the asymmetric unit, there are three Mg sites and one mixed site statistically occupied by Mg and Ti atoms with an occupancy of 0.5. The formula of Mg4(MgTi)O4(BO3)2 is obtained by replacing two Fe atoms in Mg4Fe2O4(BO3)2 (Takéuchi et al., 1950) by Mg and Ti atoms, i.e. 2Fe3+ Mg2+ + Ti4+.

Mg and Ti atoms are situated in six-coordinated oxygen octahedra. MgO6 and (Ti/Mg)O6 octahedra are connected by sharing the edges to form zigzag folding layers along the c axis. As shown in Fig. 2, a repeating unit of the folding layers is composed of Mg2O6–Mg3O6–Mg2O6 stacking along the b axis and (Ti1/Mg1)O6–Mg4O6–(Ti1/Mg1)O6 stacking along the a axis. The folding layers are connected by sharing the apical O4 atoms of the Mg2O6, Mg4O6 and (Ti1/Mg1)O6 octahedra. Triangular prismatic tunnels are formed between the folding layers. The B1 atoms in the tunnels are coordinated by the O1, O2 and O3 atoms, forming isolated triangular borate groups of B1O3. The O4 and O5 belonging to the Mg2O6, Mg4O6 and (Ti1/Mg1)O6 octahedra make no bond with the B1 atoms.

Bond valence sums (BVS) (Brown & Altermatt, 1985) of the Mg, Ti and B atoms were calculated with the bond valence parameters of l0(Mg2+) = 1.693, l0(Ti4+) = 1.815 and l0(B3+) = 1.371 Å (Brese & O'Keeffe, 1991). The BVS values of the Mg2, Mg3 and Mg4 atoms were 2.1, 2.0 and 2.1, respectively. Those of the Ti1 and Mg1 atoms at the Ti1/Mg1 site were 3.33 and 2.39, respectively. The average of these values was 2.86 and close to the mean valence (+3) of Mg2+ and Ti4+. The B1—O distances are in the range 1.377 (4)–1.388 (4) Å, and these values are consistent with those of MII5MIVO4(BO3)2 [1.32 (3)–1.43 (3) Å] mentioned above (Stenger et al., 1973; Armbruster & Lager, 1985; Bluhm & Müller-Buschbaum, 1989a,b; Stenger et al., 1973; Utzolino & Bluhm, 1996; Busche & Bluhm, 1995). The O—B1—O angles of 119.0 (3)–121.9 (3)° indicate an almost planar triangle of B1O3.

Related literature top

For related literature, see: Armbruster & Lager (1985); Bluhm & Müller-Buschbaum (1989a, 1989b); Brese & O'Keeffe (1991); Brown & Altermatt (1985); Busche & Bluhm (1995); Kawano & Yamane (2010); Konijnendijk & Blasse (1985); Randmets (1960); Stenger et al. (1973); Takéuchi (1978); Takéuchi et al. (1950); Utzolino & Bluhm (1996).

Experimental top

The starting materials were powders of MgO (99.9%, Rare Metallic), TiO2 (99.9%, Rare Metallic) and H3BO3 (99.99%, Sigma-Aldrich). MgO was heated at 1173–1273 K for 6–12 h in air before weighing. The powders were weighed with a molar ratio of MgO: TiO2: H3BO3 = 5: 1: 2.7 and mixed in an agate mortar with a pestle. The mixture was pressed into a pellet, placed in a platinum boat and heated at 1623 K for 6 h in air. Heating and cooling rates were 200 and 15 K h-1, respectively. The pellet partially melted, and single crystals were formed on its edge. A colourless and transparent single crystal showing blue emission under 254 nm ultraviolet excitation was selected.

Refinement top

Anisotropic displacement parameters were refined for Mg, Ti and O atoms. Site-occupation factors (SOFs) of the Ti and Mg atoms at the Ti1/Mg1, Mg2, Mg3 and Mg4 sites were fixed to 0.5/0.5, 1.0, 1.0 and 1.0, respectively, in the final refinement, because the refined SOF values of the Ti and Mg atoms at the Ti1/Mg1 site were close to 1/2, and those of the Mg atoms at the Mg2, Mg3 and Mg4 sites were around 1.0. The highest (0.41 e Å-3) peak and the deepest hole (–0.42 e Å-3) in the Fo - Fc map were observed at (0.2108, 0.1396, 0), 0.59 Å from B1 and at (0.0030, 0.7446, 1/2), 0.46 Å from Mg2, respectively.

Computing details top

Data collection: PROCESS-AUTO (Rigaku/MSC, 2005); cell refinement: PROCESS-AUTO (Rigaku/MSC, 2005); data reduction: CrystalStructure (Rigaku/MSC, 2005); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: VESTA (Momma & Izumi, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The atomic arrangement around Mg, Ti, B and O atoms in the structure of Mg5TiO4(BO3)2. Displacement ellipsoids are drawn at the 90% probability level. [Symmetry codes: (i) x, y, z-1; (ii) -x+1/2, y+1/2, z; (iii) x-1/2, -y+1/2, -z+1; (iv) x, y, z+1; (v) x-1/2, -y+1/2, -z; (vi) -x+1/2, y-1/2, z; (vii) -x+1/2, y-1/2, z-1; (viii) -x, -y, -z; (ix) -x, -y+1, -z+1; (x) -x+1/2, y+1/2, z+1.]
[Figure 2] Fig. 2. Crystal structure of Mg5TiO4(BO3)2 in a representation using cation-centred oxygen polyhedra. The area surrounded by a dashed line indicates the repeating unit of the zigzag folding layers.
pentamagnesium titanium(IV) tetraoxide bis(borate) top
Crystal data top
Mg5TiO4(BO3)2F(000) = 344
Mr = 351.07Dx = 3.396 Mg m3
Orthorhombic, PbamMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2 2abCell parameters from 2730 reflections
a = 9.2636 (5) Åθ = 3.3–27.5°
b = 12.2989 (5) ŵ = 1.76 mm1
c = 3.01309 (15) ÅT = 298 K
V = 343.29 (3) Å3Block, colourless
Z = 20.13 × 0.09 × 0.08 mm
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
463 independent reflections
Radiation source: fine-focus sealed tube413 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 3.3°
ω scansh = 1212
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1515
Tmin = 0.864, Tmax = 0.925l = 33
3166 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.020Secondary atom site location: difference Fourier map
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0422P)2 + 0.0192P]
where P = (Fo2 + 2Fc2)/3
S = 1.29(Δ/σ)max < 0.001
463 reflectionsΔρmax = 0.41 e Å3
54 parametersΔρmin = 0.42 e Å3
Crystal data top
Mg5TiO4(BO3)2V = 343.29 (3) Å3
Mr = 351.07Z = 2
Orthorhombic, PbamMo Kα radiation
a = 9.2636 (5) ŵ = 1.76 mm1
b = 12.2989 (5) ÅT = 298 K
c = 3.01309 (15) Å0.13 × 0.09 × 0.08 mm
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
463 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
413 reflections with I > 2σ(I)
Tmin = 0.864, Tmax = 0.925Rint = 0.027
3166 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02054 parameters
wR(F2) = 0.0700 restraints
S = 1.29Δρmax = 0.41 e Å3
463 reflectionsΔρmin = 0.42 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ti10.23863 (5)0.38402 (4)0.00000.0043 (2)0.50
Mg10.23863 (5)0.38402 (4)0.00000.0043 (2)0.50
Mg20.00149 (7)0.21804 (6)0.50000.0060 (3)
Mg30.00000.00000.00000.0083 (3)
Mg40.00000.50000.50000.0061 (3)
O10.12572 (18)0.14254 (11)0.00000.0071 (4)
O20.35021 (16)0.04263 (12)0.00000.0068 (4)
O30.35034 (16)0.23704 (13)0.00000.0070 (4)
O40.10946 (19)0.35677 (11)0.50000.0090 (4)
O50.38167 (17)0.42350 (12)0.50000.0080 (4)
B10.2745 (3)0.1398 (2)0.00000.0065 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti1/Mg10.0035 (3)0.0052 (3)0.0042 (4)0.0006 (2)0.0000.000
Mg20.0060 (5)0.0054 (5)0.0065 (5)0.0007 (2)0.0000.000
Mg30.0110 (6)0.0066 (6)0.0072 (6)0.0009 (4)0.0000.000
Mg40.0057 (6)0.0049 (6)0.0077 (7)0.0007 (4)0.0000.000
O10.0065 (8)0.0091 (8)0.0057 (9)0.0007 (6)0.0000.000
O20.0072 (8)0.0063 (8)0.0070 (9)0.0005 (6)0.0000.000
O30.0077 (8)0.0070 (8)0.0064 (8)0.0001 (6)0.0000.000
O40.0061 (9)0.0029 (8)0.0179 (11)0.0001 (6)0.0000.000
O50.0050 (8)0.0059 (8)0.0132 (10)0.0002 (6)0.0000.000
Geometric parameters (Å, º) top
Ti1/Mg1—O4i1.9528 (11)Mg3—Ti1/Mg1vi2.8102 (5)
Ti1/Mg1—O41.9528 (11)Mg3—Mg3i3.0131 (2)
Ti1/Mg1—O52.0643 (11)Mg3—Mg3iv3.0131 (2)
Ti1/Mg1—O5i2.0643 (11)Mg4—O42.0326 (15)
Ti1/Mg1—O32.0829 (16)Mg4—O4x2.0326 (15)
Ti1/Mg1—O2ii2.1172 (16)Mg4—O2xi2.1142 (11)
Ti1/Mg1—Mg3iii2.8102 (5)Mg4—O2vi2.1142 (11)
Ti1/Mg1—Ti1/Mg1i3.0131 (2)Mg4—O2ii2.1142 (11)
Ti1/Mg1—Ti1/Mg1iv3.0131 (2)Mg4—O2v2.1142 (11)
Ti1/Mg1—Mg4i3.0316 (4)Mg4—Mg4iv3.0131 (2)
Mg2—O41.9778 (16)Mg4—Mg4i3.0131 (2)
Mg2—O5v2.0645 (17)Mg4—Ti1/Mg1xii3.0316 (4)
Mg2—O1iv2.1110 (12)Mg4—Ti1/Mg1x3.0316 (4)
Mg2—O12.1110 (12)O1—B11.379 (3)
Mg2—O3vi2.1296 (12)O1—Mg2i2.1110 (12)
Mg2—O3v2.1296 (12)O2—B11.385 (3)
Mg2—Mg2iv3.0131 (2)O2—Mg4xiii2.1142 (11)
Mg2—Mg2i3.0131 (2)O2—Mg4iii2.1142 (11)
Mg2—Mg33.0759 (7)O2—Ti1/Mg1vii2.1172 (16)
Mg2—Mg3iv3.0759 (7)O3—B11.387 (3)
Mg2—Ti1/Mg1vi3.1264 (7)O3—Mg2xiii2.1296 (12)
Mg3—O5vii2.0872 (11)O3—Mg2iii2.1296 (12)
Mg3—O5vi2.0872 (11)O4—Ti1/Mg1iv1.9528 (11)
Mg3—O5viii2.0872 (11)O5—Ti1/Mg1iv2.0643 (11)
Mg3—O5v2.0872 (11)O5—Mg2xiii2.0645 (17)
Mg3—O12.1047 (15)O5—Mg3xiii2.0872 (11)
Mg3—O1ix2.1047 (15)O5—Mg3iii2.0872 (11)
Mg3—Ti1/Mg1vii2.8102 (5)
O4i—Ti1/Mg1—O4100.97 (8)O1—Mg3—O1ix180.00 (4)
O4i—Ti1/Mg1—O5175.33 (5)O5vii—Mg3—Ti1/Mg1vii47.05 (3)
O4—Ti1/Mg1—O582.57 (5)O5vi—Mg3—Ti1/Mg1vii132.95 (3)
O4i—Ti1/Mg1—O5i82.57 (5)O5viii—Mg3—Ti1/Mg1vii47.05 (3)
O4—Ti1/Mg1—O5i175.33 (5)O5v—Mg3—Ti1/Mg1vii132.95 (3)
O5—Ti1/Mg1—O5i93.74 (7)O1—Mg3—Ti1/Mg1vii86.91 (5)
O4i—Ti1/Mg1—O398.94 (5)O1ix—Mg3—Ti1/Mg1vii93.09 (5)
O4—Ti1/Mg1—O398.94 (5)O5vii—Mg3—Ti1/Mg1vi132.95 (3)
O5—Ti1/Mg1—O383.41 (5)O5vi—Mg3—Ti1/Mg1vi47.05 (3)
O5i—Ti1/Mg1—O383.41 (5)O5viii—Mg3—Ti1/Mg1vi132.95 (3)
O4i—Ti1/Mg1—O2ii85.41 (5)O5v—Mg3—Ti1/Mg1vi47.05 (3)
O4—Ti1/Mg1—O2ii85.41 (5)O1—Mg3—Ti1/Mg1vi93.09 (4)
O5—Ti1/Mg1—O2ii91.88 (5)O1ix—Mg3—Ti1/Mg1vi86.91 (5)
O5i—Ti1/Mg1—O2ii91.88 (5)Ti1/Mg1vii—Mg3—Ti1/Mg1vi180.00 (2)
O3—Ti1/Mg1—O2ii173.08 (6)O5vii—Mg3—Mg3i136.20 (3)
O4i—Ti1/Mg1—Mg3iii127.95 (4)O5vi—Mg3—Mg3i43.80 (3)
O4—Ti1/Mg1—Mg3iii127.95 (4)O5viii—Mg3—Mg3i43.80 (3)
O5—Ti1/Mg1—Mg3iii47.74 (3)O5v—Mg3—Mg3i136.20 (3)
O5i—Ti1/Mg1—Mg3iii47.74 (3)O1—Mg3—Mg3i90
O3—Ti1/Mg1—Mg3iii90.71 (4)O1ix—Mg3—Mg3i90
O2ii—Ti1/Mg1—Mg3iii82.37 (4)Ti1/Mg1vii—Mg3—Mg3i90
O4i—Ti1/Mg1—Ti1/Mg1i39.51 (4)Ti1/Mg1vi—Mg3—Mg3i90
O4—Ti1/Mg1—Ti1/Mg1i140.49 (4)O5vii—Mg3—Mg3iv43.80 (3)
O5—Ti1/Mg1—Ti1/Mg1i136.87 (3)O5vi—Mg3—Mg3iv136.20 (3)
O5i—Ti1/Mg1—Ti1/Mg1i43.13 (3)O5viii—Mg3—Mg3iv136.20 (3)
O3—Ti1/Mg1—Ti1/Mg1i90O5v—Mg3—Mg3iv43.80 (3)
O2ii—Ti1/Mg1—Ti1/Mg1i90O1—Mg3—Mg3iv90
Mg3iii—Ti1/Mg1—Ti1/Mg1i90O1ix—Mg3—Mg3iv90
O4i—Ti1/Mg1—Ti1/Mg1iv140.49 (4)Ti1/Mg1vii—Mg3—Mg3iv90
O4—Ti1/Mg1—Ti1/Mg1iv39.51 (4)Ti1/Mg1vi—Mg3—Mg3iv90
O5—Ti1/Mg1—Ti1/Mg1iv43.13 (3)Mg3i—Mg3—Mg3iv180
O5i—Ti1/Mg1—Ti1/Mg1iv136.87 (3)O4—Mg4—O4x180
O3—Ti1/Mg1—Ti1/Mg1iv90O4—Mg4—O2xi83.54 (5)
O2ii—Ti1/Mg1—Ti1/Mg1iv90O4x—Mg4—O2xi96.46 (5)
Mg3iii—Ti1/Mg1—Ti1/Mg1iv90O4—Mg4—O2vi96.46 (5)
Ti1/Mg1i—Ti1/Mg1—Ti1/Mg1iv180.00 (4)O4x—Mg4—O2vi83.54 (5)
O4i—Ti1/Mg1—Mg4i41.46 (4)O2xi—Mg4—O2vi180
O4—Ti1/Mg1—Mg4i91.00 (5)O4—Mg4—O2ii83.54 (5)
O5—Ti1/Mg1—Mg4i136.06 (5)O4x—Mg4—O2ii96.46 (5)
O5i—Ti1/Mg1—Mg4i89.70 (4)O2xi—Mg4—O2ii90.89 (6)
O3—Ti1/Mg1—Mg4i140.41 (3)O2vi—Mg4—O2ii89.11 (6)
O2ii—Ti1/Mg1—Mg4i44.20 (3)O4—Mg4—O2v96.46 (5)
Mg3iii—Ti1/Mg1—Mg4i112.918 (15)O4x—Mg4—O2v83.54 (5)
Ti1/Mg1i—Ti1/Mg1—Mg4i60.202 (5)O2xi—Mg4—O2v89.11 (6)
Ti1/Mg1iv—Ti1/Mg1—Mg4i119.798 (5)O2vi—Mg4—O2v90.89 (6)
O4—Mg2—O5v177.86 (7)O2ii—Mg4—O2v180.00 (8)
O4—Mg2—O1iv95.95 (6)O4—Mg4—Mg4iv90
O5v—Mg2—O1iv85.54 (6)O4x—Mg4—Mg4iv90
O4—Mg2—O195.95 (6)O2xi—Mg4—Mg4iv44.56 (3)
O5v—Mg2—O185.54 (6)O2vi—Mg4—Mg4iv135.44 (3)
O1iv—Mg2—O191.07 (7)O2ii—Mg4—Mg4iv135.44 (3)
O4—Mg2—O3vi96.24 (6)O2v—Mg4—Mg4iv44.56 (3)
O5v—Mg2—O3vi82.26 (5)O4—Mg4—Mg4i90
O1iv—Mg2—O3vi167.79 (7)O4x—Mg4—Mg4i90
O1—Mg2—O3vi88.15 (4)O2xi—Mg4—Mg4i135.44 (3)
O4—Mg2—O3v96.24 (6)O2vi—Mg4—Mg4i44.56 (3)
O5v—Mg2—O3v82.26 (5)O2ii—Mg4—Mg4i44.56 (3)
O1iv—Mg2—O3v88.15 (4)O2v—Mg4—Mg4i135.44 (3)
O1—Mg2—O3v167.79 (7)Mg4iv—Mg4—Mg4i180
O3vi—Mg2—O3v90.05 (6)O4—Mg4—Ti1/Mg1xii140.49 (3)
O4—Mg2—Mg2iv90O4x—Mg4—Ti1/Mg1xii39.51 (3)
O5v—Mg2—Mg2iv90O2xi—Mg4—Ti1/Mg1xii135.72 (4)
O1iv—Mg2—Mg2iv44.47 (3)O2vi—Mg4—Ti1/Mg1xii44.28 (4)
O1—Mg2—Mg2iv135.53 (3)O2ii—Mg4—Ti1/Mg1xii90.45 (4)
O3vi—Mg2—Mg2iv135.03 (3)O2v—Mg4—Ti1/Mg1xii89.55 (4)
O3v—Mg2—Mg2iv44.97 (3)Mg4iv—Mg4—Ti1/Mg1xii119.798 (5)
O4—Mg2—Mg2i90Mg4i—Mg4—Ti1/Mg1xii60.202 (5)
O5v—Mg2—Mg2i90O4—Mg4—Ti1/Mg1x140.49 (3)
O1iv—Mg2—Mg2i135.53 (3)O4x—Mg4—Ti1/Mg1x39.51 (3)
O1—Mg2—Mg2i44.47 (3)O2xi—Mg4—Ti1/Mg1x90.45 (4)
O3vi—Mg2—Mg2i44.97 (3)O2vi—Mg4—Ti1/Mg1x89.55 (4)
O3v—Mg2—Mg2i135.03 (3)O2ii—Mg4—Ti1/Mg1x135.72 (4)
Mg2iv—Mg2—Mg2i180O2v—Mg4—Ti1/Mg1x44.28 (4)
O4—Mg2—Mg3138.97 (4)Mg4iv—Mg4—Ti1/Mg1x60.202 (5)
O5v—Mg2—Mg342.48 (3)Mg4i—Mg4—Ti1/Mg1x119.798 (5)
O1iv—Mg2—Mg388.20 (4)Ti1/Mg1xii—Mg4—Ti1/Mg1x59.596 (10)
O1—Mg2—Mg343.06 (4)B1—O1—Mg3122.18 (14)
O3vi—Mg2—Mg382.92 (4)B1—O1—Mg2i123.77 (8)
O3v—Mg2—Mg3124.73 (5)Mg3—O1—Mg2i93.71 (6)
Mg2iv—Mg2—Mg3119.327 (7)B1—O1—Mg2123.77 (8)
Mg2i—Mg2—Mg360.673 (7)Mg3—O1—Mg293.71 (6)
O4—Mg2—Mg3iv138.97 (4)Mg2i—O1—Mg291.07 (7)
O5v—Mg2—Mg3iv42.48 (3)B1—O2—Mg4xiii123.09 (8)
O1iv—Mg2—Mg3iv43.06 (4)B1—O2—Mg4iii123.09 (8)
O1—Mg2—Mg3iv88.19 (4)Mg4xiii—O2—Mg4iii90.89 (6)
O3vi—Mg2—Mg3iv124.73 (5)B1—O2—Ti1/Mg1vii126.73 (15)
O3v—Mg2—Mg3iv82.92 (4)Mg4xiii—O2—Ti1/Mg1vii91.53 (5)
Mg2iv—Mg2—Mg3iv60.673 (7)Mg4iii—O2—Ti1/Mg1vii91.52 (5)
Mg2i—Mg2—Mg3iv119.327 (7)B1—O3—Ti1/Mg1119.79 (14)
Mg3—Mg2—Mg3iv58.653 (15)B1—O3—Mg2xiii123.82 (8)
O4—Mg2—Ti1/Mg1vi137.75 (4)Ti1/Mg1—O3—Mg2xiii95.83 (6)
O5v—Mg2—Ti1/Mg1vi40.78 (3)B1—O3—Mg2iii123.82 (8)
O1iv—Mg2—Ti1/Mg1vi126.29 (5)Ti1/Mg1—O3—Mg2iii95.83 (6)
O1—Mg2—Ti1/Mg1vi84.50 (4)Mg2xiii—O3—Mg2iii90.05 (6)
O3vi—Mg2—Ti1/Mg1vi41.51 (4)Ti1/Mg1iv—O4—Ti1/Mg1100.97 (8)
O3v—Mg2—Ti1/Mg1vi86.16 (4)Ti1/Mg1iv—O4—Mg2117.25 (5)
Mg2iv—Mg2—Ti1/Mg1vi118.808 (8)Ti1/Mg1—O4—Mg2117.25 (5)
Mg2i—Mg2—Ti1/Mg1vi61.192 (8)Ti1/Mg1iv—O4—Mg499.03 (5)
Mg3—Mg2—Ti1/Mg1vi53.876 (13)Ti1/Mg1—O4—Mg499.03 (5)
Mg3iv—Mg2—Ti1/Mg1vi83.25 (2)Mg2—O4—Mg4119.69 (9)
O5vii—Mg3—O5vi180.00 (10)Ti1/Mg1—O5—Ti1/Mg1iv93.74 (7)
O5vii—Mg3—O5viii92.41 (6)Ti1/Mg1—O5—Mg2xiii98.44 (6)
O5vi—Mg3—O5viii87.59 (6)Ti1/Mg1iv—O5—Mg2xiii98.44 (6)
O5vii—Mg3—O5v87.59 (6)Ti1/Mg1—O5—Mg3xiii165.91 (9)
O5vi—Mg3—O5v92.41 (6)Ti1/Mg1iv—O5—Mg3xiii85.203 (14)
O5viii—Mg3—O5v180.00 (10)Mg2xiii—O5—Mg3xiii95.61 (6)
O5vii—Mg3—O194.87 (5)Ti1/Mg1—O5—Mg3iii85.203 (14)
O5vi—Mg3—O185.13 (5)Ti1/Mg1iv—O5—Mg3iii165.91 (9)
O5viii—Mg3—O194.87 (5)Mg2xiii—O5—Mg3iii95.61 (6)
O5v—Mg3—O185.13 (5)Mg3xiii—O5—Mg3iii92.41 (6)
O5vii—Mg3—O1ix85.13 (5)O1—B1—O2121.8 (2)
O5vi—Mg3—O1ix94.87 (5)O1—B1—O3119.00 (19)
O5viii—Mg3—O1ix85.13 (5)O2—B1—O3119.2 (2)
O5v—Mg3—O1ix94.87 (5)
Symmetry codes: (i) x, y, z1; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+1/2, z; (iv) x, y, z+1; (v) x1/2, y+1/2, z+1; (vi) x1/2, y+1/2, z; (vii) x+1/2, y1/2, z; (viii) x+1/2, y1/2, z1; (ix) x, y, z; (x) x, y+1, z+1; (xi) x+1/2, y+1/2, z+1; (xii) x, y+1, z; (xiii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaMg5TiO4(BO3)2
Mr351.07
Crystal system, space groupOrthorhombic, Pbam
Temperature (K)298
a, b, c (Å)9.2636 (5), 12.2989 (5), 3.01309 (15)
V3)343.29 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.76
Crystal size (mm)0.13 × 0.09 × 0.08
Data collection
DiffractometerRigaku R-AXIS RAPID II
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.864, 0.925
No. of measured, independent and
observed [I > 2σ(I)] reflections
3166, 463, 413
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.070, 1.29
No. of reflections463
No. of parameters54
Δρmax, Δρmin (e Å3)0.41, 0.42

Computer programs: PROCESS-AUTO (Rigaku/MSC, 2005), CrystalStructure (Rigaku/MSC, 2005), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), VESTA (Momma & Izumi, 2008).

Selected geometric parameters (Å, º) top
Ti1/Mg1—O41.9528 (11)Mg3—O5ii2.0872 (11)
Ti1/Mg1—O52.0643 (11)Mg3—O12.1047 (15)
Ti1/Mg1—O32.0829 (16)Mg4—O42.0326 (15)
Ti1/Mg1—O2i2.1172 (16)Mg4—O2i2.1142 (11)
Mg2—O41.9778 (16)O1—B11.379 (3)
Mg2—O5ii2.0645 (17)O2—B11.385 (3)
Mg2—O12.1110 (12)O3—B11.387 (3)
Mg2—O3ii2.1296 (12)
O1—B1—O2121.8 (2)O2—B1—O3119.2 (2)
O1—B1—O3119.00 (19)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y+1/2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds