Download citation
Download citation
link to html
A rhombohedral modification of europium penta­nickel indide, r-EuNi5In, crystallizes in the R\overline{3}m space group and adopts the UCu5In structure type. The structure is closely related to the hexa­gonal, h-EuNi5In, form (CeNi5Sn type). Both EuNi5In modifications are composed of CaCu5 (EuNi5)-, MgCu2 (InNi2)- and NiAs (EuNi)-type slabs in a 1:2:1 ratio. The atoms in the structure have high coordination numbers, viz. 20 and 18 for europium, 14 for indium, and 12 and 10 for nickel. The structure features a two-dimensional network of 2[Ni8] tetra­hedral clusters arranged in the ab plane.

Supporting information


Crystallographic Information File (CIF)
Contains datablocks I, global


Structure factor file (CIF format)
Contains datablock I

Comment top

Extensive investigations focused on the interaction of rare earths (RE) with transition metals and indium have clearly demonstrated that the formation of numerous intermetallic compounds is typical for RE–Ni–In systems (Kalychak et al., 2004; Kalychak, 1997). More than 25 structure types have been reported for these intermetallics (Kalychak et al., 2004). Besides the large structural variety, the RxNiyInz compounds have attracted considerable interest owing to their distinctive magnetic and electrical properties as well as their hydrogen-storage behavior. In this context the representatives with cerium, europium and ytterbium are the most interesting. Several of these compounds show valence instabilities or unusual magnetic ordering phenomena. Rare earth intermetallics containing europium exhibit a wide range of interesting and unusual physical properties, which are mostly related to their mixed-valence nature (II/III) (Zaremba et al., 2006; Pöttgen et al., 1996). Unfortunately, these systems remain much less well known, which, along with other reasons, may be explained by the experimental difficulties of alloy synthesis. To date, the existence of seven compounds in the Eu–Ni–In system has been confirmed: EuNi7+ xIn6 -x (LaNi7In6 structure type) (Zaremba et al., 2006), EuNi9In2 (YNi9In2 structure type) (Kalychak et al., 1984), EuNi3In6 (LaNi3In6 structure type) (Kalychak et al., 1997), EuNi5In (CeNi5Sn structure type) (Baranyak et al., 1992), EuNiIn4 (YNiAl4 structure type) (Kalychak et al., 1988; Pöttgen et al., 1996), EuNiIn2 (MgCuAl2 structure type) (Kalychak et al., 1997) and EuNi0.5In1.5 (AlB2 structure type) (Baranyak, Dmytrakh et al., 1988).

During the study of the ternary Eu–Ni–In phase diagram, the novel modification of EuNi5In was found and its crystal structure determined by single-crystal X-ray diffraction. The compound adopts the UCu5In (Stępień-Damm et al., 1999; Hlukhyy, 2003) structure type. An orthorhombic projection of the unit cell and the coordination polyhedra of atoms are shown in Fig. 1. Two types of polyhedra were observed for Eu1 and Eu2 atoms on Wyckoff sites 3a and 3b, namely eight-capped hexagonal [Eu1Ni18In2] prisms and six-equatorially and two-base capped pentagonal [Eu2Ni12In6] antiprisms. Distorted [Ni1Ni9Eu3] and [Ni3Ni7In2Eu3] icosahedra are filled by Ni1 and Ni3 atoms, respectively, Ni2 has ten-vertex [Ni2Ni3In4Eu3] polyhedra. Indium atoms are located in the centers of [InNi10Eu4] polyhedra.

EuNi5In is a nickel-rich compound. Three crystallographically different nickel sites with Ni—Ni distances ranging from 2.4330 (16) to 2.4785 (17) Å can be found within the rhomobhedral EuNi5In (r-EuNi5In) structure. Compared to the Ni—Ni distance of 2.49 Å in the face-centered cubic (f.c.c.) nickel (Donohue, 1974), we can assume a significant degree of Ni—Ni bonding. Here the central building unit is a distorted tetrahedron formed by three Ni3 in the 18h position and one Ni1 or Ni2, both occupying the 6c sites. The tetrahedra now alternately share vertices and faces along the c axis, thereby forming a [Ni8] unit (Fig. 2a). Each fragment is connected through Ni3 atoms with three other fragments turned by 180°. Six [Ni8] units are linked together by vertices in the ab plane, building up ring units of 18 tetrahedra (Fig. 2b). The resulting substructure of Ni atoms features a two-dimensional network in the ab plane (Fig. 2c). Eu1 atoms fill holes in the hexagonal rings [thus] formed; Eu2 and In1 atoms separate different sheets of nickel networks. The vertices of the tetrahedra in the next layer are located under the centers of the hexagonal rings. The orientation of the layers in the structure can be described as an ABC sequence (Fig. 2d). The different nickel clusters have been found for several compounds with a high content of transition element in R–Ni–In systems: a three-dimensional network of 3[Ni4] corner-sharing tetrahedra is a characteristic of CeNi4In (Koterlin et al., 1998), two-dimensional 2[Ni2] fragments occur in LaNi2In (Kalychak & Zaremba, 1994) and one-dimensional 1[Ni5] and 1[Ni7] cluster chains are present in Ce4Ni7In8 (Baranyak, Kalychak et al., 1988) and EuNi7In6 (Zaremba et al., 2006), respectively.

Previously, the hexagonal EuNi5In (h-EuNi5In) (Baranyak et al., 1992) intermetallic of the CeNi5Sn type was observed at 670 K. The synthesis of our compound was carried out at 870 K. Therefore we believe that the new compound with the UCu5In type is probably a high-temperature polymorphic modification of h-EuNi5In with the CeNi5Sn type. Structures of both intermetallics can be considered as an intergrowth of the CaCu5 (Bruzzone, 1971), MgCu2 (Ohba et al., 1984) and NiAs (Brand & Briest, 1965) related slabs (Fig. 3) with the compositions EuNi5, InNi2 and EuNi in the ratio of 1:2:1: 2EuNi5In = EuNi5 + 2InNi2 + EuNi. Hence, the unit cell of each compound in the orthorhombic projection is deduced as follows: for the UCu5In structure type: 3Eu2Ni10 (6CaCu5) + 6In2Ni4 (12MgCu2) + 3Eu2Ni2 (6NiAs) = Eu12Ni60In12 = 12 r-EuNi5In and for the CeNi5Sn structure type: 2Eu2Ni10 (4CaCu5) + 4In2Ni4 (8MgCu2) + 2Eu2Ni2 (4NiAs) = Eu8Ni40In8 = 8 h-EuNi5In. In both structures the fragments alternate along the c axis. Consequently, the unit-cell dimension c is proportional to the number of the layers: the hexagonal phase has two sets of fragments and c 20 Å, the rhombohedral phase has three sets of fragments and c 30 Å. It should be noticed that the original prototype UCu5In of the novel compound (Stępień-Damm et al., 1999; Hlukhyy, 2003) has three polymorphic modifications, two of which have the same structure as reported herein.

Related literature top

For related literature, see: Baranyak et al. (1992); Baranyak, Dmytrakh et al. (1988); Baranyak, Kalychak et al. (1988); Brand & Briest (1965); Bruzzone (1971); Donohue (1974); Hlukhyy (2003); Kalychak (1997); Kalychak & Zaremba (1994); Kalychak et al. (1984, 1988, 2004); Kalychak, Galadzhun & Stepien-Damm (1997); Koterlin et al. (1998); Ohba et al. (1984); Pöttgen et al. (1996); Stępień-Damm, Zaremba & Hlukhyy (1999); Zaremba et al. (2006).

Experimental top

The sample with the composition EuNi4In and weight of ~2 g was prepared by arc-melting of the pure components (the purity of the ingredients was higher than 99.9 wt%) under a high-purity argon atmosphere. The ingot was remelted twice to ensure homogeneity. The sample was wrapped in a tantalum foil and sealed in an evacuated quartz tube. The ampoule was heated to 1070 K, followed by cooling to 870 K for 24 h. The annealing was carried out at this temperature for 75 h. After the thermal treatment the ampoule with samples was quenched in water. The sample obtained showed a small weight loss which could be explained by evaporation of Eu. The sample is air and moisture sensitive and decomposes outside of the inert atmosphere within a few days. The X-ray diffraction powder pattern was collected using monochromatic Cu Kα radiation on a DRON-3 diffractometer. X-ray phase analysis revealed the presence of two phases: EuNi5In and a small amount of In, which could be explained by a partial decomposition of the sample. Single crystals of EuNi5In of an irregular form were extracted from the crushed sample. In contrast to the powder these remain stable in air for a long time.

Refinement top

Analyses of the systematic absences for the single-crystal data led to the possible space groups R3 (No. 148), R3 (No. 146), R3m (No. 160), R32 (No. 155), R3m (No. 166). The space group with the highest symmetry, R3m, was found to be correct during the structure refinement. The starting atomic parameters were deduced from an automatic interpretation of direct methods and the structure was successfully refined using full-matrix least squares on F2 with anisotropic atomic displacement parameters for all atoms. All crystallographic positions are fully occupied. Final difference Fourier synthesis revealed a slightly elevated, but not significant, residual peak of 2.55 e. However, it was too close to a nickel (0.90 Å) position to be indicative of an additional atomic site. It is probably due to the irregular shape of the crystal and consequently an incomplete absorption correction.

Computing details top

Data collection: SMART (Bruker, 1996); cell refinement: SAINT (Bruker, 1996); data reduction: SAINT (Bruker,1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A projection of the EuNi5In unit cell in an orthorhombic aspect and a view of the coordination polyhedra of the atoms.
[Figure 2] Fig. 2. (a) The [Ni8] tetrahedral unit; (b) the hexagonal ring of six [Ni8] units; (c) the 2[Ni8] two-dimensional layer; (d) the ABC sequence of 2[Ni8] layers in the EuNi5In structure. (Bond lengths are given in Å.)
[Figure 3] Fig. 3. The packing of CaCu5, MgCu2 and NiAs related slabs in the (a) UCu5In and (b) CeNi5Sn forms of EuNi5In. The atoms designs in (c) CaCu5, (e) MgCu2 and (d) NiAs structures are given as the designs of Eu, Ni and In atoms, respectively. [please clarify]
europium pentanickel indide top
Crystal data top
EuNi5InDx = 9.041 Mg m3
Mr = 560.33Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3mCell parameters from 1820 reflections
a = 4.8956 (7) Åθ = 2.1–28.3°
c = 29.751 (6) ŵ = 42.64 mm1
V = 617.51 (18) Å3T = 293 K
Z = 6Xenomorphic fragment, metallic-grey
F(000) = 15120.15 × 0.10 × 0.05 mm
Data collection top
Bruker CCD
229 independent reflections
Radiation source: fine-focus sealed tube209 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: empirical (using intensity measurements)
(Blessing, 1995)
h = 66
Tmin = 0.003, Tmax = 0.100k = 66
1820 measured reflectionsl = 3939
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.022Secondary atom site location: difference Fourier map
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0246P)2 + 10.2303P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
229 reflectionsΔρmax = 2.55 e Å3
20 parametersΔρmin = 1.31 e Å3
Crystal data top
EuNi5InZ = 6
Mr = 560.33Mo Kα radiation
Trigonal, R3mµ = 42.64 mm1
a = 4.8956 (7) ÅT = 293 K
c = 29.751 (6) Å0.15 × 0.10 × 0.05 mm
V = 617.51 (18) Å3
Data collection top
Bruker CCD
229 independent reflections
Absorption correction: empirical (using intensity measurements)
(Blessing, 1995)
209 reflections with I > 2σ(I)
Tmin = 0.003, Tmax = 0.100Rint = 0.035
1820 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0246P)2 + 10.2303P]
where P = (Fo2 + 2Fc2)/3
S = 1.08Δρmax = 2.55 e Å3
229 reflectionsΔρmin = 1.31 e Å3
20 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
Eu10.00000.00000.00000.0098 (2)
Eu20.00000.00000.50000.0095 (2)
In10.00000.00000.11026 (3)0.0091 (2)
Ni10.00000.00000.33355 (5)0.0099 (4)
Ni20.00000.00000.19824 (5)0.0130 (4)
Ni30.49899 (10)0.50101 (10)0.06802 (3)0.0089 (2)
Atomic displacement parameters (Å2) top
Eu10.0094 (3)0.0094 (3)0.0107 (4)0.00472 (14)0.0000.000
Eu20.0087 (3)0.0087 (3)0.0111 (4)0.00433 (14)0.0000.000
In10.0092 (3)0.0092 (3)0.0091 (4)0.00458 (14)0.0000.000
Ni10.0107 (5)0.0107 (5)0.0085 (7)0.0053 (3)0.0000.000
Ni20.0146 (6)0.0146 (6)0.0098 (8)0.0073 (3)0.0000.000
Ni30.0086 (3)0.0086 (3)0.0111 (5)0.0055 (4)0.00014 (18)0.00014 (18)
Geometric parameters (Å, º) top
Eu1—Ni1i2.8265 (4)In1—Ni2v2.9214 (6)
Eu1—Ni1ii2.8265 (4)In1—Eu2iii3.2870 (6)
Eu1—Ni1iii2.8265 (4)Ni1—Ni3xv2.4581 (15)
Eu1—Ni1iv2.8265 (4)Ni1—Ni3xxi2.4581 (15)
Eu1—Ni1v2.8265 (4)Ni1—Ni3xix2.4581 (15)
Eu1—Ni1vi2.8265 (4)Ni1—Ni3i2.4784 (16)
Eu1—Ni33.1760 (7)Ni1—Ni3xxv2.4784 (16)
Eu1—Ni3vii3.1760 (7)Ni1—Ni3xxvi2.4784 (16)
Eu1—Ni3viii3.1760 (7)Ni1—Eu1xiii2.8265 (4)
Eu1—Ni3ix3.1760 (7)Ni1—Eu1xv2.8265 (4)
Eu1—Ni3x3.1760 (7)Ni1—Ni1xii2.8265 (4)
Eu1—Ni3xi3.1760 (7)Ni1—Ni1xiv2.8265 (4)
Eu2—Ni2xii2.9785 (6)Ni1—Eu1xvii2.8265 (4)
Eu2—Ni2xiii2.9785 (6)Ni1—Ni1xvi2.8265 (4)
Eu2—Ni2xiv2.9785 (6)Ni2—Ni3i2.4502 (16)
Eu2—Ni2xv2.9785 (6)Ni2—Ni3xxvi2.4503 (16)
Eu2—Ni2xvi2.9785 (6)Ni2—Ni3xxv2.4503 (16)
Eu2—Ni2xvii2.9785 (6)Ni2—In1i2.9214 (6)
Eu2—Ni3xiv3.2536 (10)Ni2—In1ii2.9214 (6)
Eu2—Ni3xv3.2536 (10)Ni2—In1v2.9214 (6)
Eu2—Ni3xviii3.2537 (10)Ni2—Eu2iv2.9785 (6)
Eu2—Ni3xix3.2537 (10)Ni2—Eu2iii2.9785 (6)
Eu2—Ni3xx3.2537 (10)Ni2—Eu2vi2.9785 (6)
Eu2—Ni3xxi3.2537 (10)Ni3—Ni3ix2.4330 (15)
In1—Ni22.6175 (19)Ni3—Ni3xxvii2.4330 (15)
In1—Ni3xxii2.7516 (7)Ni3—Ni2i2.4502 (16)
In1—Ni3xxiii2.7516 (7)Ni3—Ni1iii2.4581 (15)
In1—Ni3xxiv2.7516 (7)Ni3—Ni3xxviii2.4626 (15)
In1—Ni32.7516 (7)Ni3—Ni3x2.4626 (15)
In1—Ni3x2.7516 (7)Ni3—Ni1i2.4784 (16)
In1—Ni3ix2.7516 (7)Ni3—In1xxix2.7516 (7)
In1—Ni2i2.9214 (6)Ni3—Eu1xxix3.1760 (7)
In1—Ni2ii2.9214 (6)Ni3—Eu2iii3.2536 (10)
Ni1i—Eu1—Ni1ii120.0Ni3xxii—In1—Eu2iii153.418 (18)
Ni1i—Eu1—Ni1iii60.0Ni3xxiii—In1—Eu2iii103.642 (18)
Ni1ii—Eu1—Ni1iii180.0Ni3xxiv—In1—Eu2iii153.417 (18)
Ni1i—Eu1—Ni1iv180.0Ni3—In1—Eu2iii64.49 (2)
Ni1ii—Eu1—Ni1iv60.0Ni3x—In1—Eu2iii103.641 (18)
Ni1iii—Eu1—Ni1iv120.0Ni3ix—In1—Eu2iii64.49 (2)
Ni1i—Eu1—Ni1v120.0Ni2i—In1—Eu2iii56.971 (15)
Ni1ii—Eu1—Ni1v120.0Ni2ii—In1—Eu2iii134.66 (4)
Ni1iii—Eu1—Ni1v60.0Ni2v—In1—Eu2iii56.972 (15)
Ni1iv—Eu1—Ni1v60.0Eu1—In1—Eu2iii120.696 (14)
Ni1i—Eu1—Ni1vi60.0Ni3xv—Ni1—Ni3xxi59.32 (5)
Ni1ii—Eu1—Ni1vi60.0Ni3xv—Ni1—Ni3xix59.32 (5)
Ni1iii—Eu1—Ni1vi120.0Ni3xxi—Ni1—Ni3xix59.32 (5)
Ni1iv—Eu1—Ni1vi120.0Ni3xv—Ni1—Ni3i110.14 (3)
Ni1v—Eu1—Ni1vi180.0Ni3xxi—Ni1—Ni3i146.730 (12)
Ni1i—Eu1—Ni348.34 (3)Ni3xix—Ni1—Ni3i146.730 (11)
Ni1ii—Eu1—Ni3132.09 (3)Ni3xv—Ni1—Ni3xxv146.730 (11)
Ni1iii—Eu1—Ni347.91 (3)Ni3xxi—Ni1—Ni3xxv146.728 (11)
Ni1iv—Eu1—Ni3131.66 (3)Ni3xix—Ni1—Ni3xxv110.14 (3)
Ni1v—Eu1—Ni389.93 (2)Ni3i—Ni1—Ni3xxv59.58 (5)
Ni1vi—Eu1—Ni390.07 (2)Ni3xv—Ni1—Ni3xxvi146.730 (12)
Ni1i—Eu1—Ni3vii131.66 (3)Ni3xxi—Ni1—Ni3xxvi110.14 (3)
Ni1ii—Eu1—Ni3vii47.91 (3)Ni3xix—Ni1—Ni3xxvi146.728 (11)
Ni1iii—Eu1—Ni3vii132.09 (3)Ni3i—Ni1—Ni3xxvi59.58 (5)
Ni1iv—Eu1—Ni3vii48.34 (3)Ni3xxv—Ni1—Ni3xxvi59.58 (5)
Ni1v—Eu1—Ni3vii90.07 (2)Ni3xv—Ni1—Eu1xiii73.51 (2)
Ni1vi—Eu1—Ni3vii89.93 (2)Ni3xxi—Ni1—Eu1xiii73.51 (2)
Ni3—Eu1—Ni3vii180.00 (3)Ni3xix—Ni1—Eu1xiii124.98 (5)
Ni1i—Eu1—Ni3viii90.07 (2)Ni3i—Ni1—Eu1xiii73.221 (19)
Ni1ii—Eu1—Ni3viii47.91 (3)Ni3xxv—Ni1—Eu1xiii124.88 (6)
Ni1iii—Eu1—Ni3viii132.09 (3)Ni3xxvi—Ni1—Eu1xiii73.221 (19)
Ni1iv—Eu1—Ni3viii89.93 (2)Ni3xv—Ni1—Eu1xv73.51 (2)
Ni1v—Eu1—Ni3viii131.66 (3)Ni3xxi—Ni1—Eu1xv124.98 (5)
Ni1vi—Eu1—Ni3viii48.34 (3)Ni3xix—Ni1—Eu1xv73.51 (2)
Ni3—Eu1—Ni3viii134.96 (3)Ni3i—Ni1—Eu1xv73.221 (19)
Ni3vii—Eu1—Ni3viii45.04 (3)Ni3xxv—Ni1—Eu1xv73.221 (19)
Ni1i—Eu1—Ni3ix89.93 (2)Ni3xxvi—Ni1—Eu1xv124.88 (6)
Ni1ii—Eu1—Ni3ix132.09 (3)Eu1xiii—Ni1—Eu1xv120.0
Ni1iii—Eu1—Ni3ix47.91 (3)Ni3xv—Ni1—Ni1xii106.83 (6)
Ni1iv—Eu1—Ni3ix90.07 (2)Ni3xxi—Ni1—Ni1xii106.83 (6)
Ni1v—Eu1—Ni3ix48.34 (3)Ni3xix—Ni1—Ni1xii55.41 (5)
Ni1vi—Eu1—Ni3ix131.66 (3)Ni3i—Ni1—Ni1xii106.44 (6)
Ni3—Eu1—Ni3ix45.04 (3)Ni3xxv—Ni1—Ni1xii54.73 (5)
Ni3vii—Eu1—Ni3ix134.96 (3)Ni3xxvi—Ni1—Ni1xii106.44 (6)
Ni3viii—Eu1—Ni3ix180.00 (5)Eu1xiii—Ni1—Ni1xii179.61 (9)
Ni1i—Eu1—Ni3x48.34 (3)Eu1xv—Ni1—Ni1xii60.0
Ni1ii—Eu1—Ni3x89.93 (2)Ni3xv—Ni1—Ni1xiv106.83 (6)
Ni1iii—Eu1—Ni3x90.07 (2)Ni3xxi—Ni1—Ni1xiv55.41 (5)
Ni1iv—Eu1—Ni3x131.66 (3)Ni3xix—Ni1—Ni1xiv106.83 (6)
Ni1v—Eu1—Ni3x132.09 (3)Ni3i—Ni1—Ni1xiv106.44 (6)
Ni1vi—Eu1—Ni3x47.91 (3)Ni3xxv—Ni1—Ni1xiv106.44 (6)
Ni3—Eu1—Ni3x45.62 (3)Ni3xxvi—Ni1—Ni1xiv54.73 (5)
Ni3vii—Eu1—Ni3x134.38 (3)Eu1xiii—Ni1—Ni1xiv60.0
Ni3viii—Eu1—Ni3x96.26 (2)Eu1xv—Ni1—Ni1xiv179.61 (9)
Ni3ix—Eu1—Ni3x83.74 (2)Ni1xii—Ni1—Ni1xiv119.999 (1)
Ni1i—Eu1—Ni3xi131.66 (3)Ni3xv—Ni1—Eu1xvii124.98 (5)
Ni1ii—Eu1—Ni3xi90.07 (2)Ni3xxi—Ni1—Eu1xvii73.51 (2)
Ni1iii—Eu1—Ni3xi89.93 (2)Ni3xix—Ni1—Eu1xvii73.51 (2)
Ni1iv—Eu1—Ni3xi48.34 (3)Ni3i—Ni1—Eu1xvii124.88 (6)
Ni1v—Eu1—Ni3xi47.91 (3)Ni3xxv—Ni1—Eu1xvii73.220 (19)
Ni1vi—Eu1—Ni3xi132.09 (3)Ni3xxvi—Ni1—Eu1xvii73.220 (19)
Ni3—Eu1—Ni3xi134.38 (3)Eu1xiii—Ni1—Eu1xvii120.0
Ni3vii—Eu1—Ni3xi45.62 (3)Eu1xv—Ni1—Eu1xvii120.0
Ni3viii—Eu1—Ni3xi83.74 (2)Ni1xii—Ni1—Eu1xvii60.0
Ni3ix—Eu1—Ni3xi96.26 (2)Ni1xiv—Ni1—Eu1xvii60.0
Ni3x—Eu1—Ni3xi180.00 (2)Ni3xv—Ni1—Ni1xvi55.41 (5)
Ni2xii—Eu2—Ni2xiii180.00 (6)Ni3xxi—Ni1—Ni1xvi106.83 (6)
Ni2xii—Eu2—Ni2xiv110.53 (3)Ni3xix—Ni1—Ni1xvi106.83 (6)
Ni2xiii—Eu2—Ni2xiv69.47 (3)Ni3i—Ni1—Ni1xvi54.73 (5)
Ni2xii—Eu2—Ni2xv69.47 (3)Ni3xxv—Ni1—Ni1xvi106.44 (6)
Ni2xiii—Eu2—Ni2xv110.53 (3)Ni3xxvi—Ni1—Ni1xvi106.44 (6)
Ni2xii—Eu2—Ni2xvi110.53 (3)Eu1xv—Ni1—Ni1xvi60.0
Ni2xiii—Eu2—Ni2xvi69.47 (3)Ni1xii—Ni1—Ni1xvi119.998 (1)
Ni2xiv—Eu2—Ni2xvi110.53 (3)Ni1xiv—Ni1—Ni1xvi119.998 (1)
Ni2xv—Eu2—Ni2xvi69.47 (3)Eu1xvii—Ni1—Ni1xvi179.61 (9)
Ni2xii—Eu2—Ni2xvii69.47 (3)Ni3i—Ni2—Ni3xxvi60.33 (5)
Ni2xiii—Eu2—Ni2xvii110.53 (3)Ni3i—Ni2—Ni3xxv60.33 (5)
Ni2xiv—Eu2—Ni2xvii69.47 (3)Ni3xxvi—Ni2—Ni3xxv60.33 (5)
Ni2xv—Eu2—Ni2xvii110.53 (3)Ni3i—Ni2—In1144.53 (3)
Ni2xvi—Eu2—Ni2xvii180.00 (6)Ni3xxvi—Ni2—In1144.53 (3)
Ni2xii—Eu2—Ni3xiv94.57 (3)Ni3xxv—Ni2—In1144.53 (3)
Ni2xiii—Eu2—Ni3xiv85.43 (3)Ni3i—Ni2—In1i60.88 (2)
Ni2xiv—Eu2—Ni3xiv94.57 (3)Ni3xxvi—Ni2—In1i60.88 (2)
Ni2xv—Eu2—Ni3xiv85.43 (3)Ni3xxv—Ni2—In1i110.82 (6)
Ni2xvi—Eu2—Ni3xiv133.96 (3)In1—Ni2—In1i104.65 (3)
Ni2xvii—Eu2—Ni3xiv46.04 (3)Ni3i—Ni2—In1ii60.88 (2)
Ni2xii—Eu2—Ni3xv85.43 (3)Ni3xxvi—Ni2—In1ii110.82 (6)
Ni2xiii—Eu2—Ni3xv94.57 (3)Ni3xxv—Ni2—In1ii60.88 (2)
Ni2xiv—Eu2—Ni3xv85.43 (3)In1—Ni2—In1ii104.65 (3)
Ni2xv—Eu2—Ni3xv94.57 (3)In1i—Ni2—In1ii113.83 (3)
Ni2xvi—Eu2—Ni3xv46.04 (3)Ni3i—Ni2—In1v110.82 (6)
Ni2xvii—Eu2—Ni3xv133.96 (3)Ni3xxvi—Ni2—In1v60.88 (2)
Ni3xiv—Eu2—Ni3xv180.000 (13)Ni3xxv—Ni2—In1v60.88 (2)
Ni2xii—Eu2—Ni3xviii133.96 (3)In1—Ni2—In1v104.65 (3)
Ni2xiii—Eu2—Ni3xviii46.04 (3)In1i—Ni2—In1v113.83 (3)
Ni2xiv—Eu2—Ni3xviii94.57 (3)In1ii—Ni2—In1v113.83 (3)
Ni2xv—Eu2—Ni3xviii85.43 (3)Ni3i—Ni2—Eu2iv122.15 (3)
Ni2xvi—Eu2—Ni3xviii94.57 (3)Ni3xxvi—Ni2—Eu2iv122.15 (3)
Ni2xvii—Eu2—Ni3xviii85.43 (3)Ni3xxv—Ni2—Eu2iv72.92 (2)
Ni3xiv—Eu2—Ni3xviii43.91 (3)In1—Ni2—Eu2iv71.61 (3)
Ni3xv—Eu2—Ni3xviii136.09 (3)In1i—Ni2—Eu2iv176.26 (6)
Ni2xii—Eu2—Ni3xix46.04 (3)In1ii—Ni2—Eu2iv67.709 (8)
Ni2xiii—Eu2—Ni3xix133.96 (3)In1v—Ni2—Eu2iv67.710 (8)
Ni2xiv—Eu2—Ni3xix85.43 (3)Ni3i—Ni2—Eu2iii122.15 (3)
Ni2xv—Eu2—Ni3xix94.57 (3)Ni3xxvi—Ni2—Eu2iii72.92 (2)
Ni2xvi—Eu2—Ni3xix85.43 (3)Ni3xxv—Ni2—Eu2iii122.15 (3)
Ni2xvii—Eu2—Ni3xix94.57 (3)In1—Ni2—Eu2iii71.61 (3)
Ni3xiv—Eu2—Ni3xix136.09 (3)In1i—Ni2—Eu2iii67.709 (8)
Ni3xv—Eu2—Ni3xix43.91 (3)In1ii—Ni2—Eu2iii176.26 (6)
Ni3xviii—Eu2—Ni3xix180.0In1v—Ni2—Eu2iii67.710 (8)
Ni2xii—Eu2—Ni3xx94.57 (3)Eu2iv—Ni2—Eu2iii110.53 (3)
Ni2xiii—Eu2—Ni3xx85.43 (3)Ni3i—Ni2—Eu2vi72.92 (2)
Ni2xiv—Eu2—Ni3xx133.96 (3)Ni3xxvi—Ni2—Eu2vi122.16 (3)
Ni2xv—Eu2—Ni3xx46.04 (3)Ni3xxv—Ni2—Eu2vi122.16 (3)
Ni2xvi—Eu2—Ni3xx94.57 (3)In1—Ni2—Eu2vi71.61 (3)
Ni2xvii—Eu2—Ni3xx85.43 (3)In1i—Ni2—Eu2vi67.710 (8)
Ni3xiv—Eu2—Ni3xx43.91 (3)In1ii—Ni2—Eu2vi67.710 (8)
Ni3xv—Eu2—Ni3xx136.09 (3)In1v—Ni2—Eu2vi176.26 (6)
Ni3xviii—Eu2—Ni3xx43.91 (3)Eu2iv—Ni2—Eu2vi110.53 (3)
Ni3xix—Eu2—Ni3xx136.09 (3)Eu2iii—Ni2—Eu2vi110.53 (3)
Ni2xii—Eu2—Ni3xxi85.43 (3)Ni3ix—Ni3—Ni3xxvii60.0
Ni2xiii—Eu2—Ni3xxi94.57 (3)Ni3ix—Ni3—Ni2i120.17 (2)
Ni2xiv—Eu2—Ni3xxi46.04 (3)Ni3xxvii—Ni3—Ni2i120.17 (2)
Ni2xv—Eu2—Ni3xxi133.96 (3)Ni3ix—Ni3—Ni1iii60.34 (2)
Ni2xvi—Eu2—Ni3xxi85.43 (3)Ni3xxvii—Ni3—Ni1iii60.34 (2)
Ni2xvii—Eu2—Ni3xxi94.57 (3)Ni2i—Ni3—Ni1iii179.38 (5)
Ni3xiv—Eu2—Ni3xxi136.09 (3)Ni3ix—Ni3—Ni3xxviii180.00 (9)
Ni3xv—Eu2—Ni3xxi43.91 (3)Ni3xxvii—Ni3—Ni3xxviii120.0
Ni3xviii—Eu2—Ni3xxi136.09 (3)Ni2i—Ni3—Ni3xxviii59.83 (2)
Ni3xix—Eu2—Ni3xxi43.91 (3)Ni1iii—Ni3—Ni3xxviii119.66 (2)
Ni2—In1—Ni3xxii117.18 (2)Ni3xxvii—Ni3—Ni3x180.00 (8)
Ni2—In1—Ni3xxiii117.18 (2)Ni2i—Ni3—Ni3x59.83 (2)
Ni3xxii—In1—Ni3xxiii52.48 (4)Ni1iii—Ni3—Ni3x119.66 (2)
Ni2—In1—Ni3xxiv117.18 (2)Ni3xxviii—Ni3—Ni3x60.0
Ni3xxii—In1—Ni3xxiv53.17 (4)Ni3ix—Ni3—Ni1i119.79 (2)
Ni3xxiii—In1—Ni3xxiv100.78 (3)Ni3xxvii—Ni3—Ni1i119.79 (2)
Ni2—In1—Ni3117.18 (2)Ni2i—Ni3—Ni1i109.52 (5)
Ni3xxii—In1—Ni3125.64 (5)Ni1iii—Ni3—Ni1i69.86 (3)
Ni3xxiii—In1—Ni3100.78 (3)Ni3xxviii—Ni3—Ni1i60.21 (2)
Ni3xxiv—In1—Ni3100.78 (3)Ni3x—Ni3—Ni1i60.21 (2)
Ni2—In1—Ni3x117.18 (2)Ni3ix—Ni3—In1xxix116.583 (18)
Ni3xxii—In1—Ni3x100.78 (3)Ni3xxvii—Ni3—In1xxix63.762 (18)
Ni3xxiii—In1—Ni3x125.64 (5)Ni2i—Ni3—In1xxix68.05 (2)
Ni3xxiv—In1—Ni3x52.48 (4)Ni1iii—Ni3—In1xxix112.12 (2)
Ni3—In1—Ni3x53.17 (4)Ni3xxviii—Ni3—In1xxix63.417 (18)
Ni2—In1—Ni3ix117.18 (2)Ni3x—Ni3—In1xxix116.238 (18)
Ni3xxii—In1—Ni3ix100.78 (3)Ni1i—Ni3—In1xxix111.86 (2)
Ni3xxiii—In1—Ni3ix53.17 (4)Ni3ix—Ni3—In163.762 (18)
Ni3xxiv—In1—Ni3ix125.64 (5)Ni3xxvii—Ni3—In1116.583 (18)
Ni3—In1—Ni3ix52.48 (4)Ni2i—Ni3—In168.05 (2)
Ni3x—In1—Ni3ix100.78 (3)Ni1iii—Ni3—In1112.12 (2)
Ni2—In1—Ni2i75.35 (3)Ni3xxviii—Ni3—In1116.238 (18)
Ni3xxii—In1—Ni2i149.58 (3)Ni3x—Ni3—In163.417 (18)
Ni3xxiii—In1—Ni2i149.58 (3)Ni1i—Ni3—In1111.86 (2)
Ni3xxiv—In1—Ni2i96.46 (2)In1xxix—Ni3—In1125.64 (5)
Ni3—In1—Ni2i51.07 (3)Ni3ix—Ni3—Eu167.479 (15)
Ni3x—In1—Ni2i51.07 (3)Ni3xxvii—Ni3—Eu1112.811 (15)
Ni3ix—In1—Ni2i96.46 (2)Ni2i—Ni3—Eu1121.16 (2)
Ni2—In1—Ni2ii75.35 (3)Ni1iii—Ni3—Eu158.577 (18)
Ni3xxii—In1—Ni2ii51.07 (3)Ni3xxviii—Ni3—Eu1112.521 (15)
Ni3xxiii—In1—Ni2ii96.46 (2)Ni3x—Ni3—Eu167.189 (15)
Ni3xxiv—In1—Ni2ii51.07 (3)Ni1i—Ni3—Eu158.437 (19)
Ni3—In1—Ni2ii149.58 (3)In1xxix—Ni3—Eu1167.59 (3)
Ni3x—In1—Ni2ii96.46 (2)In1—Ni3—Eu166.76 (2)
Ni3ix—In1—Ni2ii149.58 (3)Ni3ix—Ni3—Eu1xxix112.811 (15)
Ni2i—In1—Ni2ii113.83 (3)Ni3xxvii—Ni3—Eu1xxix67.479 (15)
Ni2—In1—Ni2v75.35 (3)Ni2i—Ni3—Eu1xxix121.16 (2)
Ni3xxii—In1—Ni2v96.46 (2)Ni1iii—Ni3—Eu1xxix58.577 (18)
Ni3xxiii—In1—Ni2v51.07 (3)Ni3xxviii—Ni3—Eu1xxix67.189 (15)
Ni3xxiv—In1—Ni2v149.58 (3)Ni3x—Ni3—Eu1xxix112.521 (15)
Ni3—In1—Ni2v96.46 (2)Ni1i—Ni3—Eu1xxix58.437 (19)
Ni3x—In1—Ni2v149.58 (3)In1xxix—Ni3—Eu1xxix66.76 (2)
Ni3ix—In1—Ni2v51.07 (3)In1—Ni3—Eu1xxix167.59 (3)
Ni2i—In1—Ni2v113.83 (3)Eu1—Ni3—Eu1xxix100.84 (3)
Ni2ii—In1—Ni2v113.83 (3)Ni3ix—Ni3—Eu2iii68.045 (13)
Ni2—In1—Eu1180.0Ni3xxvii—Ni3—Eu2iii68.045 (13)
Ni3xxii—In1—Eu162.82 (2)Ni2i—Ni3—Eu2iii61.05 (3)
Ni3xxiii—In1—Eu162.82 (2)Ni1iii—Ni3—Eu2iii119.57 (4)
Ni3xxiv—In1—Eu162.82 (2)Ni3xxviii—Ni3—Eu2iii111.955 (13)
Ni3—In1—Eu162.82 (2)Ni3x—Ni3—Eu2iii111.955 (13)
Ni3x—In1—Eu162.82 (2)Ni1i—Ni3—Eu2iii170.57 (4)
Ni3ix—In1—Eu162.82 (2)In1xxix—Ni3—Eu2iii65.75 (2)
Ni2i—In1—Eu1104.65 (3)In1—Ni3—Eu2iii65.75 (2)
Ni2ii—In1—Eu1104.65 (3)Eu1—Ni3—Eu2iii125.162 (17)
Ni2v—In1—Eu1104.65 (3)Eu1xxix—Ni3—Eu2iii125.162 (17)
Ni2—In1—Eu2iii59.304 (14)
Symmetry codes: (i) x+2/3, y+1/3, z+1/3; (ii) x1/3, y2/3, z+1/3; (iii) x+1/3, y+2/3, z1/3; (iv) x2/3, y1/3, z1/3; (v) x1/3, y+1/3, z+1/3; (vi) x+1/3, y1/3, z1/3; (vii) x, y, z; (viii) xy, x1, z; (ix) x+y, x+1, z; (x) y+1, xy, z; (xi) y1, x+y, z; (xii) x2/3, y1/3, z+2/3; (xiii) x+2/3, y+1/3, z+1/3; (xiv) x+1/3, y+2/3, z+2/3; (xv) x1/3, y2/3, z+1/3; (xvi) x+1/3, y1/3, z+2/3; (xvii) x1/3, y+1/3, z+1/3; (xviii) xy+1/3, x1/3, z+2/3; (xix) x+y1/3, x+1/3, z+1/3; (xx) y2/3, x+y1/3, z+2/3; (xxi) y+2/3, xy+1/3, z+1/3; (xxii) x1, y1, z; (xxiii) y, xy, z; (xxiv) x+y, x, z; (xxv) xy1/3, x2/3, z+1/3; (xxvi) y1/3, x+y+1/3, z+1/3; (xxvii) y+1, xy+1, z; (xxviii) x+y+1, x+1, z; (xxix) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaEuNi5In
Crystal system, space groupTrigonal, R3m
Temperature (K)293
a, c (Å)4.8956 (7), 29.751 (6)
V3)617.51 (18)
Radiation typeMo Kα
µ (mm1)42.64
Crystal size (mm)0.15 × 0.10 × 0.05
Data collection
DiffractometerBruker CCD
Absorption correctionEmpirical (using intensity measurements)
(Blessing, 1995)
Tmin, Tmax0.003, 0.100
No. of measured, independent and
observed [I > 2σ(I)] reflections
1820, 229, 209
(sin θ/λ)max1)0.667
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.051, 1.08
No. of reflections229
No. of parameters20
w = 1/[σ2(Fo2) + (0.0246P)2 + 10.2303P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.55, 1.31

Computer programs: SMART (Bruker, 1996), SAINT (Bruker, 1996), SAINT (Bruker,1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).


Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds