Download citation
Download citation
link to html
The crystallization and characterization of a new polymorph of 2-thio­uracil by single-crystal X-ray diffraction, Hirshfeld surface analysis and periodic density functional theory (DFT) calculations are described. The previously published polymorph (A) crystallizes in the triclinic space group P\overline{1}, while that described herein (B) crystallizes in the monoclinic space group P21/c. Periodic DFT calculations showed that the energies of polymorphs A and B, compared to the gas-phase geometry, were −108.8 and −29.4 kJ mol−1, respectively. The two polymorphs have different inter­molecular contacts that were analyzed and are discussed in detail. Significant differences in the mol­ecular structure were found only in the bond lengths and angles involving heteroatoms that are involved in hydrogen bonds. Decomposition of the Hirshfeld fingerprint plots revealed that O...H and S...H contacts cover over 50% of the noncovalent contacts in both of the polymorphs; however, they are quite different in strength. Hydrogen bonds of the N—H...O and N—H...S types were found in polymorph A, whereas in polymorph B, only those of the N—H...O type are present, resulting in a different packing in the unit cell. QTAIM (quantum theory of atoms in mol­ecules) computational analysis showed that the inter­action energies for these weak-to-medium strength hydrogen bonds with a noncovalent or mixed inter­action character were estimated to fall within the ranges 5.4–10.2 and 4.9–9.2 kJ mol−1 for polymorphs A and B, respectively. Also, the NCI (noncovalent inter­action) plots revealed weak stacking inter­actions. The inter­action energies for these inter­actions were in the ranges 3.5–4.1 and 3.1–5.5 kJ mol−1 for polymorphs A and B, respectively, as shown by QTAIM analysis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205322961701542X/ku3205sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322961701542X/ku3205Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S205322961701542X/ku3205sup3.pdf
Photographs of the crystals of the title compounds

CCDC reference: 1535305

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae at al., 2008) and ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

2-Thiouracil top
Crystal data top
C4H4N2OSF(000) = 264
Mr = 128.15Dx = 1.562 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 4.1043 (2) ÅCell parameters from 1185 reflections
b = 11.0458 (4) Åθ = 5.4–32.0°
c = 12.0465 (4) ŵ = 0.48 mm1
β = 93.740 (3)°T = 298 K
V = 544.97 (4) Å3Prismatic, colourless
Z = 40.42 × 0.16 × 0.12 mm
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
1367 independent reflections
Radiation source: Enhance (Mo) X-ray Source1169 reflections with I > 2σ(I)
Detector resolution: 16.3426 pixels mm-1Rint = 0.016
ω scansθmax = 28.5°, θmin = 5.0°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 45
Tmin = 0.985, Tmax = 1.000k = 1413
2639 measured reflectionsl = 1612
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0426P)2 + 0.0147P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
1367 reflectionsΔρmax = 0.24 e Å3
73 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.1455 (3)0.15324 (11)0.72131 (10)0.0273 (3)
C40.2895 (3)0.15650 (11)0.52702 (10)0.0305 (3)
C50.4587 (3)0.26792 (12)0.54972 (11)0.0345 (3)
H50.57090.30580.49480.041*
C60.4529 (3)0.31692 (12)0.65168 (10)0.0335 (3)
H60.56000.38990.66640.040*
N10.2937 (3)0.26216 (9)0.73413 (8)0.0317 (3)
H10.28730.29860.79710.038*
N30.1503 (3)0.10482 (9)0.61723 (8)0.0297 (2)
H30.05780.03550.60670.036*
O10.2582 (3)0.10499 (9)0.43524 (8)0.0415 (3)
S10.03220 (9)0.08280 (3)0.82379 (3)0.03738 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0299 (6)0.0275 (6)0.0243 (6)0.0053 (5)0.0013 (4)0.0009 (4)
C40.0403 (7)0.0276 (6)0.0236 (6)0.0035 (6)0.0031 (5)0.0016 (4)
C50.0416 (8)0.0322 (7)0.0301 (6)0.0035 (6)0.0053 (5)0.0031 (5)
C60.0381 (7)0.0261 (6)0.0361 (7)0.0027 (6)0.0005 (5)0.0005 (5)
N10.0420 (6)0.0279 (5)0.0254 (5)0.0018 (5)0.0021 (4)0.0056 (4)
N30.0401 (6)0.0251 (5)0.0240 (5)0.0014 (5)0.0035 (4)0.0017 (4)
O10.0680 (7)0.0342 (5)0.0226 (5)0.0058 (5)0.0066 (4)0.0014 (3)
S10.0456 (2)0.0394 (2)0.0283 (2)0.00086 (15)0.01149 (15)0.00031 (12)
Geometric parameters (Å, º) top
C2—N11.3524 (16)C5—C61.3439 (18)
C2—N31.3645 (15)C5—H50.9300
C2—S11.6670 (12)C6—N11.3654 (16)
C4—O11.2427 (15)C6—H60.9300
C4—N31.3836 (16)N1—H10.8600
C4—C51.4307 (18)N3—H30.8600
N1—C2—N3114.86 (11)C5—C6—N1121.62 (12)
N1—C2—S1123.09 (9)C5—C6—H6119.2
N3—C2—S1122.06 (10)N1—C6—H6119.2
O1—C4—N3119.06 (12)C2—N1—C6122.96 (11)
O1—C4—C5125.78 (12)C2—N1—H1118.5
N3—C4—C5115.15 (11)C6—N1—H1118.5
C6—C5—C4118.93 (12)C2—N3—C4126.26 (11)
C6—C5—H5120.5C2—N3—H3116.9
C4—C5—H5120.5C4—N3—H3116.9
O1—C4—C5—C6175.47 (14)C5—C6—N1—C23.3 (2)
N3—C4—C5—C64.11 (18)N1—C2—N3—C40.03 (19)
C4—C5—C6—N10.9 (2)S1—C2—N3—C4179.64 (10)
N3—C2—N1—C63.66 (18)O1—C4—N3—C2175.79 (11)
S1—C2—N1—C6176.68 (10)C5—C4—N3—C23.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.992.8443 (14)175
N3—H3···O1ii0.862.062.9057 (15)166
C5—H5···S1iii0.862.973.9031 (14)176
C6—H6···S1iv0.862.883.7780 (14)163
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+1, y+1/2, z1/2; (iv) x, y1/2, z+1/2.
2 Bond lengths (Å) and angles (°) in the crystal structures of 2-thiouracil polymorphs A and B
ALT are data at 100 K (Jarzembska et al., 2012) and were obtained after transferable aspherical atom model (TAAM) refinement, ART are room-temperature data (Tiekink, 1989) using standard independent atom model (IAM) refinement and B is IAM refinement.
top
Bond lengthsBond angles
ALTARTBALTARTB
C2—N11.3521 (4)1.338 (4)1.3524 (16)N1—C2—N3116.29 (3)116.0 (3)114.85 (11)
C2—N31.3558 (4)1.357 (4)1.3644 (15)N1—C2—S121.93 (3)122.2 (2)123.09 (9)
C2—S1.6839 (4)1.683 (3)1.6670 (13)N3—C2—S121.78 (2)121.8 (2)122.06 (9)
C4—O1.2318 (4)1.227 (4)1.2426 (15)O—C4—N3119.44 (4)119.2 (3)119.06 (11)
C4—N31.3951 (4)1.389 (4)1.3837 (16)O—C4—C5125.05 (4)125.4 (3)125.79 (12)
C4—C51.4443 (5)1.432 (5)1.4305 (18)N3—C4—C5115.51 (3)115.4 (3)115.15 (11)
C5—C61.3523 (5)1.338 (5)1.3439 (18)C6—C5—C4118.58 (4)119.2 (3)118.94 (12)
C6—N11.3707 (4)1.373 (4)1.3653 (16)C5—C6—N1121.57 (3)121.2 (3)121.62 (12)
C2—N1—C6122.64 (3)122.9 (3)122.96 (10)
C2—N3—C4125.32 (3)125.2 (3)126.26 (11)
Hydrogen-bond geometry (Å, °) for N—H···O, N—H···S and C—H···O interactions for polymorphs A and B (first row, at 100 K; Jarzembska et al., 2012) (the data were obtained after TAAM refinement); second row (at room temperature) (Tiekink, 1989). Contact geometry is given for C—H···S interactions. top
D—HH···AD···AD–H···A
Polymorph A
N1—H1···S1i1.029 (1) 0.902.292 (2) 2.443.2991 (3) 3.315 (3)165.7 (2) 164
N3—H3···O1ii1.029 (1) 0.901.795 (1) 1.942.8202 (4) 2.835 (4)173.6 (2) 175
C5—H5···O1iii1.083 (1) 0.832.263 (2) 2.543.3377 (4) 3.362 (4)171.4 (1) 164
C6—H6···S1iv1.082 (1) 0.942.771 (4) 2.913.6363 (3) 3.663 (3)136.8 (3) 138
Polymorph B
N1—H1···O1v0.861.992.8443 (14)175
N3—H3···O1vi0.862.062.9057 (15)166
C5—H5···S1vii0.862.97b3.9031 (14)176
C6—H6···S1viii0.862.88a3.7780 (14)163
Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y, -z+1; (iv) x+1, y-1, z; (v) x, -y+1/2, z+1/2; (vi) -x, -y+1, -z; (vii) x+1, -y+1/2, z-1/2; (viii) -x, y-1/2, -z+1/2.

Notes: (a) the value is shorter than the sum of the van der Waals radii by only 0.12 Å; (b) the value is shorter than the sum of the van der Waals radii by only 0.03 Å. Contact radii are those given in Bondi (1964).
4 QTAIM descriptorsa of the selected bond path (3, -1) critical points (BCP) for intermolecular interactions in the crystal structures of polymorphs Ab and Bc. All values are in atomic units (a.u.) top
BCPρ(r)\nabla2ρ(r)G(r)V(r)H(r)|V(r)|/G(r)Symmetry code
Polymorph A
A1H1···S10.02560.04930.0064-0.00050.00590.0781-x, -y, -z
A2H3···O10.03680.11090.01170.00430.01600.3675-x+1, -y+1, -z+1
A3H5···O10.01300.04760.00210.00780.00983.7143-x+2, -y, -z+1
A4H6···S10.00900.02540.00110.00410.00523.7273x+1, y-1, z
A5N1···S10.00550.01640.00050.00310.00366.2000x+1, y, z
A6N3···S10.00600.01590.00060.00280.00344.6667x+1, y, z
A7[C5···C20.00700.01680.00070.00270.00353.8571x+1, y, z
Polymorph B
B1H1···O10.03520.10550.01090.00470.01550.3133x, -y+1/2, z+1/2
B2H3···O10.03020.09520.00840.00700.01540.8333-x, -y+1, -z
B3H5···S10.00800.02220.00090.00370.00464.1111x+1, -y+1/2, z-1/2
B4H6···S10.00970.02660.00130.00410.00543.1538-x, y-1/2, -z+1/2
B5S1···C50.00550.01520.00050.00280.00335.6000x-1, -y+1/2, z+1/2
B6S1···C60.00740.02320.00080.00420.00505.2500x-1, y, z
B7N1···S10.00700.01720.00070.00280.00354.0000x-1, y, z
B8C6···N30.00540.01360.00050.00240.00294.8000x-1, y, z
Notes: (a) ρ(r) is the electron density, \nabla2ρ(r) is the Laplacian of the electron density, G(r) is the kinetic energy density, V(r) is the potential energy density, H(r) is the energy density and |V(r)|/G(r) is the ratio of the potential energy to the kinetic energy density. (b) BCP A1–A4 in Fig. 7(a and BCP A5–A7 in Fig. 8(a). (c) BCP B1–B4 in Fig. 7(b) and BCP B5–B8 in Fig. 8(b). All values are in atomic units (a.u.).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds