Download citation
Download citation
link to html
New coordination compounds based on zinc thio­cyanate, namely (acetone thio­semicarbazone-κ2N1,S)bis­(iso­thio­cyanato-κN)zinc(II) monohydrate, [Zn(NCS)2(C4H9N3S)]·H2O, (I), and di­aqua­tetra­kis­(urea-κO)zinc(II) tetra­kis­(iso­thio­cyanato-κN)zinc(II), [Zn(CH4N2O)4(H2O)2][Zn(NCS)4], (II), were synthesized and studied by UV–Vis, fluorescence and IR spectroscopy. Coordination salt (II) forms a rare system composed of two different coordination units of the same metal and it is the first example of a compound with two completely different zinc coordination units, of which one contains a tetra­kis­(urea)zinc unit. Both (I) and (II) possess fluorescence properties and produce blue and green emissions, respectively, upon irradiation with violet light. The spectral properties were correlated with the observed mol­ecular and supra­molecular structures. The acetone thio­semicarbazone ligand of (I) exhibits (upon coordination) red shifts of bands corresponding to N=C and C=S stretching vibration frequencies, which is not typical for chelating mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229617016564/ku3206sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617016564/ku3206Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617016564/ku3206IIsup3.hkl
Contains datablock II

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229617016564/ku3206sup4.pdf
Additional packing plots

CCDC references: 1586072; 1586071

Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2009).

(Acetone thiosemicarbazone-κ2N1,S)bis(isothiocyanato-κN)zinc(II) monohydrate (I) top
Crystal data top
[Zn(NCS)2(C4H9N3S)]·H2OF(000) = 672
Mr = 330.75Dx = 1.662 Mg m3
Dm = 1.65 Mg m3
Dm measured by Berman density torsion balance
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 10.0831 (1) ÅCell parameters from 12061 reflections
b = 17.4525 (2) Åθ = 4.4–78.9°
c = 7.6133 (1) ŵ = 6.94 mm1
β = 99.480 (1)°T = 100 K
V = 1321.46 (3) Å3Needle, orange
Z = 40.51 × 0.03 × 0.02 mm
Data collection top
Synergy Dualflex Pilatus 200K
diffractometer
2509 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray SourceRint = 0.041
ω scansθmax = 79.0°, θmin = 4.5°
Absorption correction: gaussian
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
h = 1212
Tmin = 0.674, Tmax = 1.000k = 2022
18106 measured reflectionsl = 98
2729 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: mixed
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0385P)2 + 0.6876P]
where P = (Fo2 + 2Fc2)/3
2729 reflections(Δ/σ)max = 0.001
162 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.24956 (2)0.39025 (2)0.71910 (3)0.02073 (9)
S10.12971 (5)0.49395 (2)0.78916 (6)0.02267 (11)
C10.15338 (17)0.54833 (10)0.6097 (2)0.0201 (3)
N10.09589 (18)0.61627 (9)0.5832 (2)0.0252 (3)
H1A0.107 (2)0.6413 (14)0.496 (4)0.030*
H1B0.043 (3)0.6292 (14)0.648 (4)0.030*
N20.22916 (15)0.52571 (9)0.4887 (2)0.0210 (3)
H20.227 (2)0.5501 (13)0.396 (3)0.025*
N30.29015 (15)0.45396 (8)0.5019 (2)0.0202 (3)
C20.36288 (18)0.43604 (11)0.3844 (2)0.0222 (4)
C30.3874 (2)0.48830 (12)0.2373 (3)0.0284 (4)
H3A0.30580.49420.15350.043*
H3B0.45590.46680.17820.043*
H3C0.41630.53740.28590.043*
C40.4271 (2)0.35890 (12)0.3967 (3)0.0290 (4)
H4A0.40460.33210.49800.043*
H4B0.52290.36450.40980.043*
H4C0.39500.33040.29040.043*
N50.15868 (16)0.29557 (9)0.6303 (2)0.0266 (3)
C50.12986 (17)0.23143 (10)0.6127 (2)0.0205 (4)
S50.08928 (5)0.14099 (3)0.59089 (6)0.02474 (12)
N60.41618 (16)0.35917 (9)0.8679 (2)0.0255 (3)
C60.51482 (19)0.33565 (11)0.9495 (2)0.0229 (4)
S60.65321 (5)0.30372 (3)1.06693 (7)0.03105 (13)
O10.16900 (16)0.64445 (9)0.2396 (2)0.0320 (3)
H1O0.232 (3)0.6633 (17)0.189 (4)0.048*
H1P0.107 (3)0.6374 (17)0.165 (4)0.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02507 (15)0.01493 (14)0.02130 (15)0.00018 (8)0.00120 (10)0.00146 (9)
S10.0311 (2)0.0182 (2)0.0193 (2)0.00283 (17)0.00584 (17)0.00226 (16)
C10.0222 (8)0.0176 (8)0.0190 (9)0.0012 (7)0.0006 (7)0.0005 (7)
N10.0339 (9)0.0210 (8)0.0210 (9)0.0058 (7)0.0051 (7)0.0025 (6)
N20.0280 (8)0.0172 (7)0.0173 (8)0.0022 (6)0.0025 (6)0.0038 (6)
N30.0240 (7)0.0164 (7)0.0194 (7)0.0005 (6)0.0014 (6)0.0001 (6)
C20.0245 (9)0.0226 (9)0.0184 (9)0.0032 (7)0.0005 (7)0.0026 (7)
C30.0361 (10)0.0280 (10)0.0221 (10)0.0034 (8)0.0083 (8)0.0019 (8)
C40.0318 (10)0.0275 (10)0.0284 (10)0.0050 (8)0.0070 (8)0.0019 (8)
N50.0299 (8)0.0199 (8)0.0286 (9)0.0002 (6)0.0010 (7)0.0000 (6)
C50.0223 (8)0.0210 (9)0.0180 (8)0.0019 (7)0.0027 (7)0.0003 (7)
S50.0320 (2)0.0168 (2)0.0250 (2)0.00316 (17)0.00355 (18)0.00254 (16)
N60.0271 (8)0.0244 (8)0.0243 (8)0.0022 (6)0.0020 (7)0.0032 (6)
C60.0281 (10)0.0227 (9)0.0193 (9)0.0036 (7)0.0082 (7)0.0013 (7)
S60.0245 (2)0.0428 (3)0.0248 (3)0.00211 (19)0.00090 (19)0.0068 (2)
O10.0301 (7)0.0376 (8)0.0273 (8)0.0028 (6)0.0020 (6)0.0106 (6)
Geometric parameters (Å, º) top
Zn1—N61.9424 (16)C2—C31.496 (3)
Zn1—N51.9554 (16)C3—H3A0.9600
Zn1—N32.0881 (15)C3—H3B0.9600
Zn1—S12.2875 (5)C3—H3C0.9600
S1—C11.7125 (18)C4—H4A0.9600
C1—N11.321 (2)C4—H4B0.9600
C1—N21.349 (2)C4—H4C0.9600
N1—H1A0.82 (3)N5—C51.159 (2)
N1—H1B0.82 (3)C5—S51.6321 (18)
N2—N31.391 (2)N6—C61.158 (3)
N2—H20.82 (2)C6—S61.6265 (19)
N3—C21.286 (2)O1—H1O0.86 (3)
C2—C41.490 (3)O1—H1P0.78 (3)
N6—Zn1—N5106.07 (7)N3—C2—C3123.81 (17)
N6—Zn1—N3110.30 (6)C4—C2—C3118.32 (17)
N5—Zn1—N3108.53 (6)C2—C3—H3A109.5
N6—Zn1—S1121.63 (5)C2—C3—H3B109.5
N5—Zn1—S1120.91 (5)H3A—C3—H3B109.5
N3—Zn1—S186.75 (4)C2—C3—H3C109.5
C1—S1—Zn195.97 (6)H3A—C3—H3C109.5
N1—C1—N2116.26 (17)H3B—C3—H3C109.5
N1—C1—S1120.25 (15)C2—C4—H4A109.5
N2—C1—S1123.48 (14)C2—C4—H4B109.5
C1—N1—H1A119.2 (17)H4A—C4—H4B109.5
C1—N1—H1B117.9 (18)C2—C4—H4C109.5
H1A—N1—H1B122 (3)H4A—C4—H4C109.5
C1—N2—N3120.47 (15)H4B—C4—H4C109.5
C1—N2—H2119.7 (16)C5—N5—Zn1161.92 (15)
N3—N2—H2118.7 (16)N5—C5—S5179.22 (18)
C2—N3—N2117.67 (15)C6—N6—Zn1174.96 (16)
C2—N3—Zn1129.08 (13)N6—C6—S6179.00 (19)
N2—N3—Zn1113.25 (11)H1O—O1—H1P107 (3)
N3—C2—C4117.87 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.82 (3)2.15 (3)2.875 (2)148 (2)
N1—H1B···S5i0.82 (3)2.58 (3)3.3694 (19)164 (2)
N2—H2···O10.82 (2)2.06 (2)2.807 (2)151 (2)
O1—H1O···S6ii0.86 (3)2.49 (3)3.2948 (16)156 (3)
O1—H1P···S5iii0.78 (3)2.54 (3)3.3102 (16)169 (3)
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z+1/2.
Diaquatetrakis(urea-κO)zinc(II) tetrakis(isothiocyanato-κN)zinc(II) (II) top
Crystal data top
[Zn(CH4N2O)4(H2O)2][Zn(NCS)4]F(000) = 1296
Mr = 639.34Dx = 1.789 Mg m3
Dm = 1.77 Mg m3
Dm measured by Berman density torsion balance
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 21.8246 (8) ÅCell parameters from 6085 reflections
b = 5.0239 (2) Åθ = 4.2–31.6°
c = 21.6451 (8) ŵ = 2.42 mm1
β = 90.074 (4)°T = 100 K
V = 2373.27 (16) Å3Prism, orange
Z = 40.33 × 0.16 × 0.07 mm
Data collection top
Synergy Dualflex Pilatus 200K
diffractometer
3061 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray SourceRint = 0.019
ω scansθmax = 31.9°, θmin = 3.7°
Absorption correction: gaussian
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
h = 3129
Tmin = 0.710, Tmax = 1.000k = 57
9207 measured reflectionsl = 3032
3261 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: difference Fourier map
wR(F2) = 0.049Only H-atom coordinates refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0251P)2 + 1.7969P]
where P = (Fo2 + 2Fc2)/3
3261 reflections(Δ/σ)max = 0.001
177 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn110.50000.41640 (4)0.25000.01200 (5)
S110.66268 (2)1.01492 (7)0.20317 (2)0.01485 (7)
C110.60834 (5)0.8023 (2)0.21995 (5)0.0115 (2)
N110.57044 (5)0.6474 (2)0.23202 (5)0.0149 (2)
S120.44851 (2)0.20314 (6)0.09188 (2)0.01339 (7)
C120.46842 (5)0.0232 (2)0.14286 (5)0.0117 (2)
N120.48223 (5)0.1836 (2)0.17888 (5)0.0150 (2)
Zn10.75000.25000.50000.00780 (5)
O10.82066 (4)0.03747 (17)0.44970 (4)0.01022 (15)
N10.66314 (5)0.4268 (2)0.33194 (5)0.0152 (2)
H1A0.6414 (8)0.548 (4)0.3479 (8)0.018*
H1B0.6541 (8)0.352 (4)0.2986 (8)0.018*
N20.72654 (5)0.0715 (2)0.35449 (5)0.01269 (19)
H2A0.7611 (8)0.029 (4)0.3719 (8)0.015*
H2B0.7204 (7)0.007 (4)0.3168 (8)0.015*
C10.70303 (5)0.3107 (2)0.37040 (5)0.0101 (2)
O20.71709 (4)0.42341 (17)0.42081 (4)0.01119 (16)
N30.91109 (5)0.0934 (2)0.40849 (5)0.0155 (2)
H3A0.8912 (8)0.196 (4)0.3845 (8)0.019*
H3B0.9488 (8)0.053 (4)0.4012 (8)0.019*
N40.90855 (5)0.2547 (2)0.47682 (6)0.0177 (2)
H4A0.9465 (8)0.277 (4)0.4702 (8)0.021*
H4B0.8898 (8)0.349 (4)0.4992 (8)0.021*
C20.87851 (5)0.0693 (2)0.44476 (5)0.0098 (2)
O70.69391 (4)0.08130 (17)0.48458 (4)0.00983 (15)
H7A0.6923 (8)0.195 (4)0.5094 (8)0.015*
H7B0.6947 (7)0.156 (4)0.4525 (8)0.015*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn110.01217 (9)0.01078 (10)0.01305 (9)0.0000.00047 (7)0.000
S110.01435 (13)0.01553 (15)0.01466 (13)0.00276 (10)0.00064 (10)0.00070 (11)
C110.0124 (5)0.0125 (5)0.0095 (5)0.0036 (4)0.0022 (4)0.0016 (4)
N110.0151 (4)0.0141 (5)0.0156 (5)0.0008 (4)0.0002 (4)0.0008 (4)
S120.01223 (13)0.01390 (14)0.01404 (13)0.00084 (10)0.00063 (10)0.00153 (11)
C120.0098 (5)0.0124 (5)0.0130 (5)0.0005 (4)0.0007 (4)0.0045 (4)
N120.0159 (5)0.0139 (5)0.0153 (5)0.0003 (4)0.0003 (4)0.0013 (4)
Zn10.00829 (8)0.00612 (9)0.00897 (9)0.00006 (6)0.00101 (6)0.00045 (6)
O10.0089 (3)0.0104 (4)0.0113 (4)0.0000 (3)0.0003 (3)0.0001 (3)
N10.0168 (5)0.0160 (5)0.0129 (5)0.0054 (4)0.0044 (4)0.0023 (4)
N20.0140 (4)0.0127 (5)0.0114 (4)0.0019 (4)0.0034 (4)0.0020 (4)
C10.0091 (4)0.0109 (5)0.0103 (5)0.0016 (4)0.0005 (4)0.0020 (4)
O20.0144 (4)0.0097 (4)0.0095 (3)0.0012 (3)0.0023 (3)0.0002 (3)
N30.0117 (4)0.0180 (5)0.0170 (5)0.0002 (4)0.0032 (4)0.0055 (4)
N40.0098 (4)0.0177 (6)0.0255 (6)0.0017 (4)0.0028 (4)0.0096 (4)
C20.0112 (5)0.0096 (5)0.0087 (4)0.0008 (4)0.0002 (4)0.0022 (4)
O70.0118 (4)0.0076 (4)0.0100 (4)0.0009 (3)0.0004 (3)0.0002 (3)
Geometric parameters (Å, º) top
Zn11—N111.9656 (11)N1—C11.3377 (15)
Zn11—N11i1.9656 (11)N1—H1A0.847 (19)
Zn11—N12i1.9714 (11)N1—H1B0.838 (18)
Zn11—N121.9714 (11)N2—C11.3511 (16)
S11—C111.6372 (13)N2—H2A0.869 (17)
C11—N111.1657 (17)N2—H2B0.889 (17)
S12—C121.6425 (13)C1—O21.2668 (14)
C12—N121.1608 (17)N3—C21.3382 (16)
Zn1—O22.0518 (8)N3—H3A0.851 (18)
Zn1—O2ii2.0519 (8)N3—H3B0.862 (18)
Zn1—O7ii2.0926 (8)N4—C21.3337 (16)
Zn1—O72.0926 (8)N4—H4A0.848 (19)
Zn1—O1ii2.1697 (8)N4—H4B0.79 (2)
Zn1—O12.1697 (8)O7—H7A0.784 (19)
O1—C21.2773 (13)O7—H7B0.789 (18)
N11—Zn11—N11i107.62 (7)O1—Zn1—O1ii180.00 (4)
N11—Zn11—N12i110.60 (4)C2—O1—Zn1133.14 (8)
N11i—Zn11—N12i110.42 (4)C1—N1—H1A115.1 (12)
N11—Zn11—N12110.42 (4)C1—N1—H1B119.5 (13)
N11i—Zn11—N12110.60 (4)H1A—N1—H1B123.0 (17)
N12i—Zn11—N12107.21 (6)C1—N2—H2A116.0 (12)
N11—C11—S11178.77 (12)C1—N2—H2B120.1 (11)
C11—N11—Zn11173.75 (10)H2A—N2—H2B115.9 (15)
N12—C12—S12179.70 (12)O2—C1—N1119.85 (11)
C12—N12—Zn11170.75 (10)O2—C1—N2121.70 (10)
O2—Zn1—O2ii180.0N1—C1—N2118.43 (11)
O2—Zn1—O7ii89.97 (3)C1—O2—Zn1127.87 (8)
O2ii—Zn1—O7ii90.02 (3)C2—N3—H3A117.3 (12)
O2—Zn1—O790.03 (3)C2—N3—H3B118.2 (12)
O2ii—Zn1—O789.98 (3)H3A—N3—H3B121.1 (16)
O7—Zn1—O7ii180.00 (4)C2—N4—H4A119.0 (12)
O2—Zn1—O1ii87.82 (3)C2—N4—H4B118.8 (13)
O2ii—Zn1—O1ii92.18 (3)H4A—N4—H4B121.9 (18)
O7ii—Zn1—O1ii86.82 (3)O1—C2—N4121.95 (11)
O7—Zn1—O1ii93.18 (3)O1—C2—N3119.92 (11)
O2—Zn1—O192.18 (3)N4—C2—N3118.07 (11)
O2ii—Zn1—O187.82 (3)Zn1—O7—H7A119.8 (13)
O7ii—Zn1—O193.18 (3)Zn1—O7—H7B120.2 (13)
O7—Zn1—O186.82 (3)H7A—O7—H7B105.0 (18)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+3/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S12iii0.847 (19)2.668 (19)3.4820 (12)161.7 (16)
N1—H1B···S11iv0.838 (18)2.677 (19)3.4713 (12)158.8 (16)
N2—H2A···O10.869 (17)2.127 (17)2.9129 (13)150.1 (15)
N2—H2B···S11iv0.889 (17)2.762 (17)3.5692 (10)151.7 (14)
N3—H3A···S11v0.851 (18)2.661 (18)3.5066 (12)172.1 (15)
N3—H3B···S12vi0.862 (18)2.853 (18)3.6376 (12)152.2 (16)
N3—H3B···N12vii0.862 (18)2.651 (18)3.2039 (15)123.1 (15)
N4—H4A···S12vi0.848 (19)2.660 (19)3.4639 (12)158.8 (16)
N4—H4B···S12viii0.79 (2)2.970 (19)3.4687 (12)123.2 (15)
N4—H4B···O7ii0.79 (2)2.195 (19)2.8975 (14)147.9 (17)
O7—H7A···O1ix0.784 (19)1.956 (19)2.7162 (12)163.1 (17)
O7—H7B···N20.789 (18)2.507 (17)3.0052 (14)122.4 (16)
O7—H7B···O2iv0.789 (18)2.277 (19)2.8904 (12)135.2 (16)
Symmetry codes: (ii) x+3/2, y+1/2, z+1; (iii) x+1, y+1, z+1/2; (iv) x, y1, z; (v) x+3/2, y3/2, z+1/2; (vi) x+3/2, y+1/2, z+1/2; (vii) x+3/2, y1/2, z+1/2; (viii) x+1/2, y+1/2, z+1/2; (ix) x+3/2, y1/2, z+1.
Vibrational frequencies (cm-1) and their assignments for (I), (II) acetone thiosemicarbazone and urea' top
(I)Acetone thiosemicarbazoneAssignment(II)UreaAssignment
3448 (m)ν H2O3597 (m)ν H2O
3344 (m)3380 (m)νas NH23436 (m)3345 (s)νas NH2
3276 (m)3234 (m)νs NH23327 (m)3335 (m)νs NH2
3172 (m)3150 (m)ν NH2102 (s)ν NC (NCS)
2923 (w)2904 (w)νas CH31644 (s)1670 (s)ν CO, δ H2O
2092 (s)ν NC (NCS)1570 (m)1615 (s)δas NH2, δs NH2
1640 (w)δ H2O1490 (w), 1470 (m)1461 (s)νas NC
1623 (w)1656 (w)ν NC1162 (m), 1134 (w)1150 (m)ρs NH2
1611 (s)1596 (s)δs NH21021 (m)1064 (w)ρas NH2
1568 (s)1513 (s)δ NH946 (w)1000 (w)νs NC
1431 (m)1467 (m), 1423 (m)δas CH3813 (w)ν CS (NCS)
1363 (m)1366 (m)δs CH3773 (m)785 (m)γ CO
1278 (m)1268 (m), 1252 (m)δ NH, ν NC595 (w)560 (w)δ CO
1165 (m)1158 (w)ρ CH3525 (w)529 (w)ωas NH2
1065 (w)1075 (w)ρ NH2456 (w)475 (w)δ NC
930 (w)958 (w)ν CC
850 (w)865 (s)ν CS
824 (w)ν CS (NCS)
746 (m)788 (s)ω NH2
697 (w)728 (m)τ NH2
602 (m)633 (m), 579 (s)ω NH, δ CC
511 (w)521 (m)δ NC
470 (w)490 (m)γ CNH
450 (w)δ CC
Vibrations symbols: w = weak, m = medium, s = strong, ν = stretching, δ = bending in-plane, γ = bending out-of-plane, ρ = rocking, τ = twisting, ω = wagging, s = symmetric and as = asymmetric.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds