Download citation
Download citation
link to html
The asymmetric unit of the title compound, [Cu2Cl2(C15H11N3)2](ClO4)2, consists of a centrosymmetric binuclear dication, [Cu2(ter­pyridine)2Cl2]2+, and two perchlorate anions. In the dication, both Cu atoms have a 4+1 coordination, in an approximate square-pyramidal geometry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802020470/lh6012sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802020470/lh6012Isup2.hkl
Contains datablock I

CCDC reference: 202283

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.013 Å
  • R factor = 0.060
  • wR factor = 0.173
  • Data-to-parameter ratio = 12.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 1.377 Tmax scaled 0.734 Tmin scaled 0.599

Comment top

The introduction of transition metals in a supramolecular structure provides access to properties and geometries that are not readily accessible through crystal engineering of organic molecular solids, for example, it is possible to obtain square-planar geometries and magnetic, electronic and catalytic properties through the presence of transition metal ions (Aakeröy, 2001).

Any good supramolecular synthesis requires control at a molecular and a supramolecular level, usually the control at a molecular level is attainable. This is not the case with the CuII ion, which presents in one oxidation state a greater diversity in its stereochemical behavior than any other element (Wells, 1984). Due to its possible use in magnetic supramolecular materials it is necessary to find a system where it is possible to have control on the geometry of this ion. A successful approach to control the geometry of transition metal ions has been the use of blocking ligands that have only specific coordination sites available to incoming ligands (Holliday & Mirkin, 2001). Terdentate amines are possible blocking ligands for CuII when square-pyramidal geometry is required. This geometry has been observed for Cu compounds with the general formula [Cu2(NNN)2Cl2]2+, where NNN is terpyridine (terpy) (Rojo et al., 1987), NNN is propylenetriamine and diethylenetriamine (Urtiaga et al., 19969). Also, a non-centrosymmetric compound in which a water molecules are coordinated axially to one of the CuII ions has been reported (Willet, 2001). In this compound, one of the CuII ions has a square-pyramidal geometry, but the other one is hexacoordinated. In this paper, we report the structure of [Cu2(terpy)2Cl2]2+ as a diperchlorate.

Compound (I) consists of centrosymmetric dinuclear [Cu2(terpy)2Cl2] dications and ClO4 anions (see Fig. 1). The CuII ions have a 4 + 1 coordination in an approximate square-pyramidal geometry, according to the τ-descriptor value of 0.27 for five-coordination geometry (Addison et al., 1984). The three N atoms of the terpy ligand and a Cl anion coordinate to the Cu atom in a pseudo-planar primary coordination sphere, with the Cu atom 0.135 Å out of the N1/N11/N21/Cl1 mean plane. The Cl semicoordinates to a second Cu atom in the apical position of the pyramid producing dimers.

In the crystal structure of (I), a ππ interaction between atoms N11 and N21(1 − x,-y,-z) is observed. The pyridine rings are parallel (within experimental error), with a centroid–centroid distance of 3.66 Å and a perpendicular distance of 3.4 Å.

Compound (I) has the expected square-pyramid structure with no water or perchlorate molecules coordinated in the six position. Compound (I) may be a good starting material in the synthesis of supramolecular structures where CuII building blocks with two available sites at a 90° are desired.

Experimental top

CuCl2(H2O)2 (1.0 mmol) and NaClO4 (2.0 mmol) were disolved in distilled H2O and added to a solution of 2,2':6',2''-terpyridine (1.0 mmol) in acetonitrile (25 ml). The mixture was stirred 1 h and left to evaporate slowly until blue crystals were obtained.

Computing details top

Data collection: XSCANS (Siemens, 1993); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999) and Mercury (Version 1.1; Bruno et al., 2002); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I), with displacement ellipsoids drawn at the 30% probability level [symmetry code: (i) is −x, −y, −z].
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the b axis.
Di-µ-chloro-bis[(2,2':6,2''-terpyridine)copper(II)] diperchlorate top
Crystal data top
[Cu2Cl2(C15H11N3)2](ClO4)2F(000) = 868
Mr = 863.42Dx = 1.786 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 46 reflections
a = 7.439 (1) Åθ = 4.7–12.5°
b = 24.387 (4) ŵ = 1.72 mm1
c = 9.196 (1) ÅT = 293 K
β = 105.76 (1)°Truncated pyramid, blue
V = 1605.6 (4) Å30.32 × 0.20 × 0.18 mm
Z = 2
Data collection top
Siemens P4/PC
diffractometer
1856 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.078
Graphite monochromatorθmax = 25.0°, θmin = 1.7°
ω–2θ scansh = 08
Absorption correction: ψ scan
(North et al., 1968)
k = 029
Tmin = 0.435, Tmax = 0.533l = 1010
3043 measured reflections3 standard reflections every 97 reflections
2818 independent reflections intensity decay: 3.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters not refined
wR(F2) = 0.173 w = 1/[σ2(Fo2) + (0.067P)2 + 2.0508P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2818 reflectionsΔρmax = 0.46 e Å3
227 parametersΔρmin = 0.65 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0094 (11)
Crystal data top
[Cu2Cl2(C15H11N3)2](ClO4)2V = 1605.6 (4) Å3
Mr = 863.42Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.439 (1) ŵ = 1.72 mm1
b = 24.387 (4) ÅT = 293 K
c = 9.196 (1) Å0.32 × 0.20 × 0.18 mm
β = 105.76 (1)°
Data collection top
Siemens P4/PC
diffractometer
1856 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.078
Tmin = 0.435, Tmax = 0.5333 standard reflections every 97 reflections
3043 measured reflections intensity decay: 3.5%
2818 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.173H-atom parameters not refined
S = 1.07Δρmax = 0.46 e Å3
2818 reflectionsΔρmin = 0.65 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.23258 (13)0.01644 (4)0.03173 (10)0.0379 (3)
Cl10.0204 (3)0.00230 (8)0.1879 (2)0.0450 (5)
N10.4336 (9)0.0292 (3)0.2129 (7)0.0411 (15)
C20.5324 (10)0.0141 (3)0.2807 (8)0.0402 (16)
C30.6779 (12)0.0047 (4)0.4129 (10)0.058 (2)
H30.74930.03520.46410.069*
C40.7176 (13)0.0467 (4)0.4679 (10)0.061 (3)
H40.81970.05290.55600.073*
C50.6073 (13)0.0909 (4)0.3949 (9)0.056 (2)
H50.62930.12750.43430.067*
C60.4651 (11)0.0807 (3)0.2633 (9)0.0426 (17)
N110.3365 (9)0.0608 (3)0.0675 (7)0.0422 (14)
C120.4718 (11)0.0661 (3)0.2019 (9)0.0436 (17)
C130.5396 (13)0.1173 (4)0.2539 (12)0.059 (2)
H130.63240.12070.34910.071*
C140.4735 (15)0.1640 (4)0.1689 (12)0.063 (3)
H140.52020.19970.20440.075*
C150.3426 (15)0.1578 (4)0.0344 (12)0.063 (2)
H150.29600.18930.02670.076*
C160.2767 (13)0.1065 (3)0.0132 (10)0.0477 (19)
H160.18350.10280.10810.057*
N210.2278 (10)0.0987 (2)0.0379 (8)0.0435 (15)
C220.3441 (11)0.1211 (3)0.1650 (9)0.0435 (18)
C230.3512 (14)0.1773 (3)0.1895 (12)0.059 (2)
H230.43630.19230.27830.071*
C240.2385 (18)0.2100 (4)0.0881 (14)0.076 (3)
H240.23600.24860.10790.091*
C250.1264 (17)0.1892 (4)0.0421 (14)0.077 (3)
H250.05320.21320.11830.093*
C260.1205 (12)0.1327 (4)0.0632 (10)0.051 (2)
H260.03740.11740.15270.061*
Cl20.4707 (3)0.32610 (8)0.0479 (3)0.0557 (6)
O10.4210 (13)0.3781 (3)0.0939 (12)0.096 (3)
O20.5406 (15)0.3342 (4)0.0808 (9)0.097 (3)
O30.6117 (14)0.3025 (3)0.1638 (10)0.095 (3)
O40.3109 (14)0.2911 (3)0.0107 (12)0.101 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0373 (5)0.0396 (5)0.0350 (5)0.0017 (4)0.0068 (3)0.0016 (4)
Cl10.0444 (10)0.0570 (11)0.0326 (9)0.0011 (8)0.0087 (7)0.0014 (7)
N10.041 (4)0.043 (4)0.041 (3)0.001 (3)0.013 (3)0.004 (3)
C20.032 (4)0.053 (4)0.038 (4)0.005 (3)0.013 (3)0.003 (3)
C30.042 (4)0.092 (7)0.041 (4)0.009 (4)0.014 (4)0.018 (4)
C40.056 (6)0.079 (6)0.044 (4)0.025 (5)0.006 (4)0.012 (4)
C50.054 (5)0.070 (6)0.040 (4)0.007 (4)0.005 (4)0.004 (4)
C60.041 (4)0.049 (4)0.037 (4)0.009 (3)0.010 (3)0.001 (3)
N110.039 (4)0.046 (3)0.046 (4)0.006 (3)0.019 (3)0.002 (3)
C120.036 (4)0.055 (5)0.043 (4)0.007 (3)0.016 (3)0.009 (3)
C130.052 (5)0.050 (5)0.073 (6)0.012 (4)0.012 (5)0.020 (4)
C140.073 (7)0.041 (4)0.082 (7)0.007 (4)0.033 (6)0.020 (4)
C150.073 (7)0.044 (4)0.078 (6)0.017 (4)0.031 (5)0.001 (4)
C160.064 (5)0.033 (3)0.049 (4)0.011 (4)0.019 (4)0.001 (3)
N210.043 (3)0.034 (3)0.051 (4)0.001 (3)0.009 (3)0.010 (3)
C220.046 (5)0.040 (4)0.046 (4)0.009 (3)0.017 (4)0.000 (3)
C230.067 (6)0.035 (4)0.076 (6)0.007 (4)0.021 (5)0.008 (4)
C240.095 (9)0.037 (5)0.105 (9)0.003 (5)0.043 (7)0.000 (5)
C250.087 (8)0.057 (6)0.088 (8)0.011 (5)0.023 (7)0.023 (5)
C260.048 (5)0.051 (5)0.052 (5)0.003 (4)0.011 (4)0.014 (4)
Cl20.0617 (13)0.0417 (10)0.0548 (12)0.0024 (9)0.0008 (10)0.0017 (8)
O10.103 (7)0.053 (4)0.130 (8)0.011 (4)0.026 (6)0.017 (4)
O20.115 (7)0.113 (7)0.062 (5)0.003 (6)0.020 (5)0.009 (5)
O30.106 (7)0.080 (5)0.077 (5)0.011 (5)0.012 (5)0.019 (4)
O40.094 (7)0.066 (5)0.126 (8)0.018 (4)0.003 (6)0.002 (5)
Geometric parameters (Å, º) top
Cu—N11.938 (6)C13—H130.9600
Cu—N212.008 (6)C14—C151.359 (15)
Cu—N112.028 (6)C14—H140.9599
Cu—Cl12.227 (2)C15—C161.371 (11)
Cu—Cl1i2.698 (2)C15—H150.9600
Cl1—Cui2.698 (2)C16—H160.9600
N1—C61.338 (10)N21—C261.335 (10)
N1—C21.339 (10)N21—C221.364 (10)
C2—C31.410 (11)C22—C231.387 (11)
C2—C121.470 (11)C23—C241.336 (15)
C3—C41.354 (14)C23—H230.9600
C3—H30.9600C24—C251.357 (16)
C4—C51.410 (14)C24—H240.9599
C4—H40.9600C25—C261.393 (14)
C5—C61.396 (11)C25—H250.9599
C5—H50.9599C26—H260.9600
C6—C221.469 (11)Cl2—O31.400 (8)
N11—C161.346 (10)Cl2—O11.417 (8)
N11—C121.372 (10)Cl2—O41.427 (9)
C12—C131.383 (11)Cl2—O21.430 (10)
C13—C141.393 (14)
N1—Cu—N2180.3 (3)C12—C13—H13119.7
N1—Cu—N1180.7 (3)C14—C13—H13120.0
N21—Cu—N11158.8 (3)C15—C14—C13118.4 (8)
N1—Cu—Cl1174.9 (2)C15—C14—H14121.0
N21—Cu—Cl199.6 (2)C13—C14—H14120.6
N11—Cu—Cl198.5 (2)C14—C15—C16119.9 (9)
N1—Cu—Cl1i93.2 (2)C14—C15—H15119.9
N21—Cu—Cl1i97.7 (2)C16—C15—H15120.1
N11—Cu—Cl1i92.67 (19)N11—C16—C15122.9 (9)
Cl1—Cu—Cl1i91.80 (7)N11—C16—H16118.3
Cu—Cl1—Cui88.20 (7)C15—C16—H16118.9
C6—N1—C2123.8 (7)C26—N21—C22117.9 (7)
C6—N1—Cu118.0 (5)C26—N21—Cu127.7 (6)
C2—N1—Cu118.2 (5)C22—N21—Cu114.3 (5)
N1—C2—C3118.0 (8)N21—C22—C23121.4 (8)
N1—C2—C12113.2 (6)N21—C22—C6113.5 (6)
C3—C2—C12128.8 (8)C23—C22—C6124.9 (8)
C4—C3—C2120.7 (9)C24—C23—C22119.2 (9)
C4—C3—H3119.9C24—C23—H23120.7
C2—C3—H3119.4C22—C23—H23120.1
C3—C4—C5119.4 (8)C23—C24—C25120.7 (9)
C3—C4—H4120.2C23—C24—H24119.7
C5—C4—H4120.4C25—C24—H24119.6
C6—C5—C4118.8 (8)C24—C25—C26118.8 (10)
C6—C5—H5120.3C24—C25—H25120.5
C4—C5—H5120.9C26—C25—H25120.7
N1—C6—C5119.2 (8)N21—C26—C25121.8 (9)
N1—C6—C22113.4 (7)N21—C26—H26118.8
C5—C6—C22127.3 (8)C25—C26—H26119.4
C16—N11—C12118.0 (7)O3—Cl2—O1110.1 (6)
C16—N11—Cu128.7 (6)O3—Cl2—O4109.9 (6)
C12—N11—Cu112.9 (5)O1—Cl2—O4109.8 (6)
N11—C12—C13120.5 (8)O3—Cl2—O2108.7 (6)
N11—C12—C2114.4 (7)O1—Cl2—O2107.9 (6)
C13—C12—C2125.1 (8)O4—Cl2—O2110.5 (6)
C12—C13—C14120.3 (9)
N21—Cu—Cl1—Cui98.1 (2)N1—C2—C12—N115.0 (10)
N11—Cu—Cl1—Cui92.97 (19)C3—C2—C12—N11174.1 (7)
Cl1i—Cu—Cl1—Cui0.0N1—C2—C12—C13174.5 (8)
N21—Cu—N1—C65.3 (6)C3—C2—C12—C136.3 (14)
N11—Cu—N1—C6175.9 (6)N11—C12—C13—C141.2 (14)
Cl1i—Cu—N1—C692.0 (6)C2—C12—C13—C14179.3 (9)
N21—Cu—N1—C2174.9 (6)C12—C13—C14—C150.4 (16)
N11—Cu—N1—C24.4 (6)C13—C14—C15—C161.1 (16)
Cl1i—Cu—N1—C287.8 (6)C12—N11—C16—C151.2 (13)
C6—N1—C2—C30.1 (11)Cu—N11—C16—C15170.7 (7)
Cu—N1—C2—C3179.7 (5)C14—C15—C16—N110.3 (16)
C6—N1—C2—C12179.2 (7)N1—Cu—N21—C26176.4 (8)
Cu—N1—C2—C121.0 (9)N11—Cu—N21—C26149.9 (8)
N1—C2—C3—C40.9 (12)Cl1—Cu—N21—C261.6 (8)
C12—C2—C3—C4178.2 (8)Cl1i—Cu—N21—C2691.6 (8)
C2—C3—C4—C52.3 (14)N1—Cu—N21—C226.5 (6)
C3—C4—C5—C62.9 (14)N11—Cu—N21—C2233.1 (12)
C2—N1—C6—C50.7 (12)Cl1—Cu—N21—C22178.6 (6)
Cu—N1—C6—C5179.1 (6)Cl1i—Cu—N21—C2285.4 (6)
C2—N1—C6—C22177.1 (7)C26—N21—C22—C230.1 (13)
Cu—N1—C6—C223.2 (9)Cu—N21—C22—C23177.2 (7)
C4—C5—C6—N12.0 (13)C26—N21—C22—C6176.0 (8)
C4—C5—C6—C22175.4 (9)Cu—N21—C22—C66.7 (9)
N1—Cu—N11—C16179.2 (8)N1—C6—C22—N212.5 (11)
N21—Cu—N11—C16154.3 (8)C5—C6—C22—N21175.1 (9)
Cl1—Cu—N11—C165.9 (7)N1—C6—C22—C23178.4 (8)
Cl1i—Cu—N11—C1686.4 (7)C5—C6—C22—C230.9 (15)
N1—Cu—N11—C127.0 (5)N21—C22—C23—C241.6 (15)
N21—Cu—N11—C1233.5 (11)C6—C22—C23—C24177.3 (10)
Cl1—Cu—N11—C12178.1 (5)C22—C23—C24—C254.1 (18)
Cl1i—Cu—N11—C1285.9 (5)C23—C24—C25—C264.8 (19)
C16—N11—C12—C131.9 (12)C22—N21—C26—C250.6 (14)
Cu—N11—C12—C13171.2 (7)Cu—N21—C26—C25177.5 (8)
C16—N11—C12—C2178.5 (7)C24—C25—C26—N213.0 (17)
Cu—N11—C12—C28.4 (8)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Cu2Cl2(C15H11N3)2](ClO4)2
Mr863.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.439 (1), 24.387 (4), 9.196 (1)
β (°) 105.76 (1)
V3)1605.6 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.72
Crystal size (mm)0.32 × 0.20 × 0.18
Data collection
DiffractometerSiemens P4/PC
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.435, 0.533
No. of measured, independent and
observed [I > 2σ(I)] reflections
3043, 2818, 1856
Rint0.078
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.173, 1.07
No. of reflections2818
No. of parameters227
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.46, 0.65

Computer programs: XSCANS (Siemens, 1993), XSCANS, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1999) and Mercury (Version 1.1; Bruno et al., 2002), SHELXL97 and PLATON (Spek, 1999).

Selected geometric parameters (Å, º) top
Cu—N11.938 (6)Cu—Cl12.227 (2)
Cu—N212.008 (6)Cu—Cl1i2.698 (2)
Cu—N112.028 (6)
N1—Cu—N2180.3 (3)N11—Cu—Cl198.5 (2)
N1—Cu—N1180.7 (3)N1—Cu—Cl1i93.2 (2)
N21—Cu—N11158.8 (3)Cl1—Cu—Cl1i91.80 (7)
N1—Cu—Cl1174.9 (2)Cu—Cl1—Cui88.20 (7)
N21—Cu—Cl199.6 (2)
N1—C2—C12—N115.0 (10)N1—C6—C22—N212.5 (11)
Symmetry code: (i) x, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds