Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803001314/lh6027sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536803001314/lh6027Isup2.hkl |
CCDC reference: 204708
The title compound was prepared by acylation of pseudoephedrine derived 1,3,4-oxadiazinan-2-one using sodium hydride and trimethylacetylchloride (Casper et al., 2002). Colorless clear single crystals were grown by vapor diffusion of cyclohexane into dichloromethane at 269 K. For data collection, a sample crystal was glued to the end of a glass fiber.
All hydrogen atoms were included in the refinement in the riding model approximation, with isotropic displacement parameters fixed at 1.2Ueq of the parent atom. No evidence for disorder or included solvents was identified through difference Fourier synthesis. While 1320 Friedel equivalent pairs were measured, the use of Mo radiation with the exclusively light atom sample precluded the calculation of a meaningful Flack parameter (Flack et al., 2000). The absolute structure was inferred from the chiral chemical precursors.
Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare, 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury1.1 (Bruno et al., 2002); software used to prepare material for publication: WinGX (Farrugia, 1999).
C16H22N2O3 | F(000) = 624 |
Mr = 290.36 | Dx = 1.192 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 23 reflections |
a = 10.1079 (7) Å | θ = 10.8–16.7° |
b = 11.4087 (10) Å | µ = 0.08 mm−1 |
c = 14.0354 (9) Å | T = 293 K |
V = 1618.5 (2) Å3 | Block, colorless |
Z = 4 | 0.76 × 0.72 × 0.4 mm |
Enraf-Nonius CAD-4 diffractometer | Rint = 0.057 |
non–profiled ω/2θ scans | θmax = 25.8°, θmin = 2.3° |
Absorption correction: ψ scan (North et al., 1968) | h = 0→12 |
Tmin = 0.953, Tmax = 0.967 | k = −13→13 |
3414 measured reflections | l = 0→17 |
1792 independent reflections | 3 standard reflections every 120 min |
1484 reflections with I > 2σ(I) | intensity decay: 4% |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.036 | w = 1/[σ2(Fo2) + (0.052P)2 + 0.0905P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.097 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 0.13 e Å−3 |
1792 reflections | Δρmin = −0.17 e Å−3 |
195 parameters |
C16H22N2O3 | V = 1618.5 (2) Å3 |
Mr = 290.36 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 10.1079 (7) Å | µ = 0.08 mm−1 |
b = 11.4087 (10) Å | T = 293 K |
c = 14.0354 (9) Å | 0.76 × 0.72 × 0.4 mm |
Enraf-Nonius CAD-4 diffractometer | 1484 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.057 |
Tmin = 0.953, Tmax = 0.967 | 3 standard reflections every 120 min |
3414 measured reflections | intensity decay: 4% |
1792 independent reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.13 e Å−3 |
1792 reflections | Δρmin = −0.17 e Å−3 |
195 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.45022 (15) | 0.12416 (15) | 0.45945 (9) | 0.0526 (4) | |
C2 | 0.5757 (2) | 0.15263 (18) | 0.47948 (14) | 0.0430 (5) | |
N3 | 0.61434 (16) | 0.14665 (16) | 0.57649 (11) | 0.0421 (4) | |
N4 | 0.51348 (15) | 0.15535 (15) | 0.64721 (12) | 0.0401 (4) | |
C5 | 0.41482 (19) | 0.06400 (17) | 0.62660 (13) | 0.0398 (4) | |
H5 | 0.4613 | −0.0113 | 0.6239 | 0.048* | |
C6 | 0.3512 (2) | 0.08480 (18) | 0.52927 (14) | 0.0418 (4) | |
H6 | 0.2855 | 0.1474 | 0.5364 | 0.05* | |
C7 | 0.28190 (19) | −0.02082 (18) | 0.49006 (14) | 0.0436 (5) | |
C8 | 0.3507 (3) | −0.1174 (2) | 0.45725 (17) | 0.0588 (6) | |
H8 | 0.4427 | −0.1153 | 0.4552 | 0.071* | |
C9 | 0.2844 (3) | −0.2174 (2) | 0.4272 (2) | 0.0759 (8) | |
H9 | 0.3317 | −0.282 | 0.4055 | 0.091* | |
C10 | 0.1474 (4) | −0.2203 (3) | 0.4299 (2) | 0.0823 (9) | |
H10 | 0.1027 | −0.2874 | 0.4105 | 0.099* | |
C11 | 0.0777 (3) | −0.1251 (3) | 0.46091 (19) | 0.0770 (9) | |
H11 | −0.0143 | −0.1273 | 0.4618 | 0.092* | |
C12 | 0.1435 (2) | −0.0256 (2) | 0.49099 (16) | 0.0559 (6) | |
H12 | 0.0954 | 0.0388 | 0.5121 | 0.067* | |
C13 | 0.3097 (2) | 0.0551 (2) | 0.70436 (15) | 0.0569 (6) | |
H13A | 0.3519 | 0.0447 | 0.765 | 0.068* | |
H13B | 0.2531 | −0.0106 | 0.6916 | 0.068* | |
H13C | 0.258 | 0.1257 | 0.7053 | 0.068* | |
C14 | 0.4607 (2) | 0.27577 (19) | 0.65025 (17) | 0.0540 (5) | |
H14A | 0.5314 | 0.3297 | 0.663 | 0.065* | |
H14B | 0.3954 | 0.2815 | 0.6997 | 0.065* | |
H14C | 0.4209 | 0.2945 | 0.59 | 0.065* | |
C15 | 0.7424 (2) | 0.10673 (19) | 0.60147 (15) | 0.0474 (5) | |
O16 | 0.81299 (18) | 0.0701 (2) | 0.53886 (13) | 0.0816 (6) | |
C17 | 0.7863 (2) | 0.1090 (2) | 0.70626 (15) | 0.0509 (5) | |
C18 | 0.7154 (3) | 0.0112 (3) | 0.76160 (19) | 0.0695 (7) | |
H18A | 0.6221 | 0.0271 | 0.7632 | 0.083* | |
H18B | 0.7491 | 0.0081 | 0.8255 | 0.083* | |
H18C | 0.7305 | −0.0626 | 0.7306 | 0.083* | |
C19 | 0.7650 (3) | 0.2290 (3) | 0.75227 (18) | 0.0747 (7) | |
H19A | 0.8002 | 0.2889 | 0.7115 | 0.09* | |
H19B | 0.8094 | 0.2314 | 0.8127 | 0.09* | |
H19C | 0.6721 | 0.242 | 0.7615 | 0.09* | |
C20 | 0.9354 (2) | 0.0816 (3) | 0.7064 (2) | 0.0772 (8) | |
H20A | 0.9501 | 0.006 | 0.6782 | 0.093* | |
H20B | 0.9675 | 0.0814 | 0.7708 | 0.093* | |
H20C | 0.9815 | 0.1403 | 0.6703 | 0.093* | |
O21 | 0.64693 (17) | 0.18500 (15) | 0.41656 (11) | 0.0579 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0490 (8) | 0.0643 (10) | 0.0446 (7) | −0.0120 (7) | −0.0036 (6) | 0.0099 (7) |
C2 | 0.0455 (11) | 0.0375 (9) | 0.0459 (10) | −0.0020 (9) | 0.0038 (9) | 0.0013 (9) |
N3 | 0.0369 (8) | 0.0478 (9) | 0.0415 (8) | 0.0018 (7) | 0.0036 (7) | −0.0010 (8) |
N4 | 0.0370 (8) | 0.0394 (8) | 0.0440 (8) | 0.0035 (7) | 0.0034 (7) | −0.0042 (7) |
C5 | 0.0373 (9) | 0.0380 (9) | 0.0442 (9) | 0.0028 (8) | 0.0021 (8) | −0.0001 (8) |
C6 | 0.0380 (10) | 0.0422 (10) | 0.0454 (10) | 0.0013 (9) | 0.0029 (8) | 0.0034 (8) |
C7 | 0.0438 (11) | 0.0453 (10) | 0.0416 (10) | −0.0017 (9) | −0.0014 (9) | 0.0021 (8) |
C8 | 0.0595 (13) | 0.0561 (13) | 0.0607 (13) | 0.0062 (12) | −0.0074 (11) | −0.0086 (11) |
C9 | 0.108 (2) | 0.0516 (13) | 0.0685 (16) | 0.0010 (16) | −0.0132 (17) | −0.0101 (13) |
C10 | 0.104 (2) | 0.0735 (19) | 0.0696 (17) | −0.041 (2) | −0.0156 (17) | 0.0003 (15) |
C11 | 0.0651 (16) | 0.099 (2) | 0.0664 (15) | −0.0359 (17) | −0.0017 (14) | 0.0058 (16) |
C12 | 0.0447 (11) | 0.0681 (14) | 0.0550 (12) | −0.0062 (12) | 0.0038 (10) | 0.0019 (12) |
C13 | 0.0499 (12) | 0.0709 (15) | 0.0498 (12) | −0.0028 (12) | 0.0071 (10) | 0.0005 (11) |
C14 | 0.0554 (13) | 0.0420 (11) | 0.0645 (13) | 0.0076 (10) | −0.0017 (11) | −0.0097 (10) |
C15 | 0.0394 (9) | 0.0476 (11) | 0.0552 (11) | 0.0019 (9) | 0.0058 (9) | 0.0038 (9) |
O16 | 0.0613 (10) | 0.1188 (16) | 0.0646 (10) | 0.0366 (12) | 0.0103 (9) | −0.0024 (11) |
C17 | 0.0437 (11) | 0.0556 (12) | 0.0534 (11) | 0.0005 (11) | −0.0024 (10) | 0.0089 (10) |
C18 | 0.0638 (14) | 0.0750 (16) | 0.0697 (15) | 0.0002 (15) | 0.0014 (13) | 0.0284 (13) |
C19 | 0.0792 (17) | 0.0752 (17) | 0.0698 (15) | −0.0067 (16) | −0.0184 (16) | −0.0104 (14) |
C20 | 0.0470 (12) | 0.105 (2) | 0.0795 (17) | 0.0067 (15) | −0.0079 (13) | 0.0156 (18) |
O21 | 0.0558 (8) | 0.0687 (10) | 0.0492 (7) | −0.0102 (8) | 0.0072 (8) | 0.0080 (7) |
O1—C2 | 1.339 (3) | C11—H11 | 0.93 |
O1—C6 | 1.471 (2) | C12—H12 | 0.93 |
C2—O21 | 1.198 (3) | C13—H13A | 0.96 |
C2—N3 | 1.418 (3) | C13—H13B | 0.96 |
N3—C15 | 1.416 (3) | C13—H13C | 0.96 |
N3—N4 | 1.426 (2) | C14—H14A | 0.96 |
N4—C5 | 1.471 (3) | C14—H14B | 0.96 |
N4—C14 | 1.474 (3) | C14—H14C | 0.96 |
C5—C13 | 1.526 (3) | C15—O16 | 1.207 (3) |
C5—C6 | 1.528 (3) | C15—C17 | 1.536 (3) |
C5—H5 | 0.98 | C17—C19 | 1.529 (4) |
C6—C7 | 1.499 (3) | C17—C18 | 1.537 (3) |
C6—H6 | 0.98 | C17—C20 | 1.538 (3) |
C7—C8 | 1.382 (3) | C18—H18A | 0.96 |
C7—C12 | 1.400 (3) | C18—H18B | 0.96 |
C8—C9 | 1.389 (4) | C18—H18C | 0.96 |
C8—H8 | 0.93 | C19—H19A | 0.96 |
C9—C10 | 1.387 (5) | C19—H19B | 0.96 |
C9—H9 | 0.93 | C19—H19C | 0.96 |
C10—C11 | 1.365 (5) | C20—H20A | 0.96 |
C10—H10 | 0.93 | C20—H20B | 0.96 |
C11—C12 | 1.382 (4) | C20—H20C | 0.96 |
C2—O1—C6 | 125.36 (15) | C5—C13—H13A | 109.5 |
O21—C2—O1 | 119.31 (19) | C5—C13—H13B | 109.5 |
O21—C2—N3 | 123.8 (2) | H13A—C13—H13B | 109.5 |
O1—C2—N3 | 116.80 (17) | C5—C13—H13C | 109.5 |
C15—N3—C2 | 120.33 (16) | H13A—C13—H13C | 109.5 |
C15—N3—N4 | 120.22 (16) | H13B—C13—H13C | 109.5 |
C2—N3—N4 | 117.89 (16) | N4—C14—H14A | 109.5 |
N3—N4—C5 | 107.36 (14) | N4—C14—H14B | 109.5 |
N3—N4—C14 | 110.09 (16) | H14A—C14—H14B | 109.5 |
C5—N4—C14 | 114.87 (16) | N4—C14—H14C | 109.5 |
N4—C5—C13 | 112.22 (16) | H14A—C14—H14C | 109.5 |
N4—C5—C6 | 110.55 (15) | H14B—C14—H14C | 109.5 |
C13—C5—C6 | 110.89 (17) | O16—C15—N3 | 118.1 (2) |
N4—C5—H5 | 107.7 | O16—C15—C17 | 122.1 (2) |
C13—C5—H5 | 107.7 | N3—C15—C17 | 119.72 (18) |
C6—C5—H5 | 107.7 | C19—C17—C15 | 112.26 (19) |
O1—C6—C7 | 108.59 (16) | C19—C17—C18 | 111.8 (2) |
O1—C6—C5 | 110.89 (15) | C15—C17—C18 | 109.68 (19) |
C7—C6—C5 | 113.58 (16) | C19—C17—C20 | 108.6 (2) |
O1—C6—H6 | 107.9 | C15—C17—C20 | 106.3 (2) |
C7—C6—H6 | 107.9 | C18—C17—C20 | 108.0 (2) |
C5—C6—H6 | 107.9 | C17—C18—H18A | 109.5 |
C8—C7—C12 | 118.4 (2) | C17—C18—H18B | 109.5 |
C8—C7—C6 | 121.87 (19) | H18A—C18—H18B | 109.5 |
C12—C7—C6 | 119.7 (2) | C17—C18—H18C | 109.5 |
C7—C8—C9 | 120.9 (3) | H18A—C18—H18C | 109.5 |
C7—C8—H8 | 119.6 | H18B—C18—H18C | 109.5 |
C9—C8—H8 | 119.6 | C17—C19—H19A | 109.5 |
C10—C9—C8 | 119.6 (3) | C17—C19—H19B | 109.5 |
C10—C9—H9 | 120.2 | H19A—C19—H19B | 109.5 |
C8—C9—H9 | 120.2 | C17—C19—H19C | 109.5 |
C11—C10—C9 | 120.3 (3) | H19A—C19—H19C | 109.5 |
C11—C10—H10 | 119.8 | H19B—C19—H19C | 109.5 |
C9—C10—H10 | 119.8 | C17—C20—H20A | 109.5 |
C10—C11—C12 | 120.1 (3) | C17—C20—H20B | 109.5 |
C10—C11—H11 | 119.9 | H20A—C20—H20B | 109.5 |
C12—C11—H11 | 119.9 | C17—C20—H20C | 109.5 |
C11—C12—C7 | 120.7 (3) | H20A—C20—H20C | 109.5 |
C11—C12—H12 | 119.6 | H20B—C20—H20C | 109.5 |
C7—C12—H12 | 119.6 | ||
C6—O1—C2—O21 | −179.08 (19) | C5—C6—C7—C8 | −71.3 (2) |
C6—O1—C2—N3 | −1.5 (3) | O1—C6—C7—C12 | −131.0 (2) |
O21—C2—N3—C15 | −40.0 (3) | C5—C6—C7—C12 | 105.1 (2) |
O1—C2—N3—C15 | 142.58 (19) | C12—C7—C8—C9 | −0.9 (3) |
O21—C2—N3—N4 | 154.2 (2) | C6—C7—C8—C9 | 175.6 (2) |
O1—C2—N3—N4 | −23.2 (3) | C7—C8—C9—C10 | 0.2 (4) |
C15—N3—N4—C5 | −110.60 (19) | C8—C9—C10—C11 | 0.7 (5) |
C2—N3—N4—C5 | 55.2 (2) | C9—C10—C11—C12 | −0.8 (5) |
C15—N3—N4—C14 | 123.7 (2) | C10—C11—C12—C7 | 0.1 (4) |
C2—N3—N4—C14 | −70.5 (2) | C8—C7—C12—C11 | 0.8 (4) |
N3—N4—C5—C13 | 173.32 (16) | C6—C7—C12—C11 | −175.8 (2) |
C14—N4—C5—C13 | −63.9 (2) | C2—N3—C15—O16 | −5.5 (3) |
N3—N4—C5—C6 | −62.32 (19) | N4—N3—C15—O16 | 160.0 (2) |
C14—N4—C5—C6 | 60.5 (2) | C2—N3—C15—C17 | 175.66 (19) |
C2—O1—C6—C7 | −133.3 (2) | N4—N3—C15—C17 | −18.8 (3) |
C2—O1—C6—C5 | −7.9 (3) | O16—C15—C17—C19 | 129.6 (3) |
N4—C5—C6—O1 | 39.9 (2) | N3—C15—C17—C19 | −51.6 (3) |
C13—C5—C6—O1 | 164.97 (18) | O16—C15—C17—C18 | −105.5 (3) |
N4—C5—C6—C7 | 162.46 (16) | N3—C15—C17—C18 | 73.3 (3) |
C13—C5—C6—C7 | −72.4 (2) | O16—C15—C17—C20 | 11.0 (3) |
O1—C6—C7—C8 | 52.5 (3) | N3—C15—C17—C20 | −170.2 (2) |
Experimental details
Crystal data | |
Chemical formula | C16H22N2O3 |
Mr | 290.36 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 293 |
a, b, c (Å) | 10.1079 (7), 11.4087 (10), 14.0354 (9) |
V (Å3) | 1618.5 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.76 × 0.72 × 0.4 |
Data collection | |
Diffractometer | Enraf-Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.953, 0.967 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3414, 1792, 1484 |
Rint | 0.057 |
(sin θ/λ)max (Å−1) | 0.612 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.097, 1.04 |
No. of reflections | 1792 |
No. of parameters | 195 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.13, −0.17 |
Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SIR92 (Altomare, 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and Mercury1.1 (Bruno et al., 2002), WinGX (Farrugia, 1999).
O1—C2 | 1.339 (3) | N3—C15 | 1.416 (3) |
C2—O21 | 1.198 (3) | N3—N4 | 1.426 (2) |
C2—N3 | 1.418 (3) | C15—O16 | 1.207 (3) |
O21—C2—O1 | 119.31 (19) | C15—N3—N4 | 120.22 (16) |
O21—C2—N3 | 123.8 (2) | C2—N3—N4 | 117.89 (16) |
O1—C2—N3 | 116.80 (17) | O16—C15—N3 | 118.1 (2) |
C15—N3—C2 | 120.33 (16) | ||
O1—C2—N3—C15 | 142.58 (19) | C14—N4—C5—C13 | −63.9 (2) |
O21—C2—N3—N4 | 154.2 (2) | N4—N3—C15—O16 | 160.0 (2) |
O1—C2—N3—N4 | −23.2 (3) | N4—N3—C15—C17 | −18.8 (3) |
Chiral non-racemic oxazolidin-2-ones serve as chiral auxiliaries in asymmetric transformations, most notably in the aldol addition reaction (Evans et al., 2002; Crimmins et al., 2001; Ager et al., 1997); however, the related 1,3,4-oxadiazinan-2-one heterocycles have received little notice since their disclosure (Trepanier et al., 1968). Recently, 1,3,4-oxadiazinan-2-ones were successfully employed as chiral auxiliaries in dipolar cycloadditions (Roussi et al., 2000) and in diastereoselective alkylations (Roussi et al., 1998). We have conducted synthetic (Hitchcock et al., 2001) and conformational studies (Casper et al., 2002) of 1,3,4-oxadiazinan-2-one derivatives.
Herein we report the X-ray structure of the N3-trimethylacetyl derivatized pseudoephedrine-derived 1,3,4-oxadiazinan-2-one (I). The structure of (I) nominally exhibits syn-parallel carbonyls, consistent with our recently reported acetyl and propionyl variants. Crystallographic analysis of these latter two compounds revealed that these heterocycles adopt twist–boat conformations in which the imide carbonyl groups are arranged syn–parallel, as evidenced by the 3.1 (2) (acetyl) and 3.3 (1)° (propionyl) torsion angles between carbonyl groups (Casper et al., 2002). Similarly, the N3-trimethylacetyl derivative displays imide carbonyl groups tending towards a syn–parallel orientation, with an O21—C2—C15—O16 torsion angle of 37.6 (2)°. Remarkably, rather than maintaining the acetyl and propionyl derivatives' twist–boat conformation by allowing the trimetylacetyl carbonyl group to rotate to an antiparallel orientation, to alleviate N4-methyl and tert-butyl steric interactions, compound (I) adopts a contorted half-chair conformation, in which the imide carbonyl groups remain arranged with the carbonyl groups oriented in the same direction. Compound (I) displays a torsion angle of 154.2 (2)° for N4—N3—C2—O21, while values of 175.8 (2) and 178.6 (1)° are observed in the respective N3-acetyl and the N3-propionyl variants. Based on the amount of distortion of the π system and 13C NMR analysis, it is possible this is not the structure idealized in solution. As noted in other oxadiazinanone systems, the N3-substituent is rigidly held, while the N4-methyl group must rearrange to relieve allylic strain (Casper et al., 2002). Noteworthy is the X-ray structure of the ephedrine (C6-epimer of related pseudoephedrine) based N3-phenylacetylated oxadiazinanone, which also displays syn-parallel imide carbonyl groups, torsion angle of 19.5 (4)° (Hitchcock et al., 2001). These four structures suggest the syn–parallel conformation is strongly preferred for the carbonyl moieties of 1,3,4-oxadiazinan-2-ones. The predominance of the parallel arrangement is remarkable in that the antiparallel conformation is observed in the related N3-acyloxazolidin-2-ones (Evans et al., 1981) and should be energetically favorable based on a reduced dipole moment. The title compound crystallized in the orthorhombic space group P212121 (McArdle, 1996) and stacks with the phenyl substituents superimposed along and parallel with the stacking axis (Fig 2). The closest intermolecular interactions are H6···O21i of 2.46 Å and H18A···N4 of 2.45 Å [symmetry code: (i) −1/2 + x, 1/2 − y, 1 − z]. Neither of these or other intermolecular interactions seem particularly relevant to attributing packing arguments as explanation of the dicarbonyl conformation.