Download citation
Download citation
link to html
In the title centrosymmetric binuclear complex, [Cd2(C17H11N3O)4(H2O)2](ClO4)4, the CdII ion assumes a distorted octa­hedral geometry. There are π–π stacking inter­actions between the pyridine and 1,10-phenanthroline ring systems of adjacent ligands at the same CdII centre. Inter­molecular hydrogen bonds between the coordinated aqua ligand and the O atom of a keto group connect adjacent complex cations into extended chains. Hydrogen bonds also exist between the complex cations and the perchlorate anions. Compared with the fluorescence spectrum of the organic ligand, the complex displays strong fluorescent emission and an ipsochromic shift of the emission peaks, which may be attributed to the structural character.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107063718/ln3071sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107063718/ln3071Isup2.hkl
Contains datablock I

CCDC reference: 677203

Comment top

Derivatives of 1,10-phenanthroline play a pivotal role in modern coordination chemistry and a number of complexes with these ligands have been synthesized. Some of them exhibit interesting properties as molecular electrical conductors (Zheng et al. 2003), as photolumisescent materials (Zhang et al., 2006) and for cancer therapy (Liu et al., 2004). Complexes with 2-(2-keto-pyridin-1-yl)-1,10-phenanthroline (PP) as a ligand have not been reported to our knowledge to date. Our interest in synthesizing new complexes with derivatives of 1,10-phenanthroline as ligand resulted in the title binuclear complex, (I). We report here the structure and fluorescence properties of (I).

Fig. 1 shows the dinuclear cation, which sits about a crystallographic centre of inversion. The CdII ion assumes a distorted octahdral CdN4O2 coordination geometry (Table 1). Each CdII ion is coordinated in a bidentate fashion by the N atoms of two PP ligands. One of the PP ligands also bridges via keto atom O3 to the other CdII ion in the cation. The two CdII ions are separated by 5.8159 (11) Å. The other PP ligand only functions as a terminal bidentate ligand, but its keto atom O2 is a hydrogen-bond acceptor (Table 2). This interaction is with a water ligand of an adjacent cation and leads to the formation of a supramolecular one-dimensional chain which runs parallel to the [100] direction (Fig. 2). Table 2 and Fig. 2 also depict the hydrogen bonds and weaker C—H···O interactions between the complex cations and surrounding perchlorate anions.

The dihedral angles between the pyridine and 1,10-phenanthroline ring system planes are 64.44 (18)° for PP as a terminal ligand and 80.15 (15)° for PP as a bridging ligand. These differences can be expected in terms of steric relief. There are ππ stacking interactions between the pyridine and 1,10-phenanthroline ring systems of adjacent ligands at the same CdII center [Cg1···Cg2 = 3.439 (2) Å, Cg1···Cg2perp = 3.333 Å, α = 8.05° and Cg3···Cg4 = 3.426 (3) Å, Cg3···Cg4perp = 3.238°, α = 9.23°; Cg1, Cg2, Cg3 and Cg4 are the centroids of the Cd1/N1/C10/C11/N2, N5/C31–C34, Cd1/N3/C26/C22N/4 and N6/C1–C5 rings, respectively; CgI···Jperp is the perpendicular distance from CgI to the plane containing ring J; α is the dihedral angle between planes I and J].

The fluorescence spectra for complex (I) and native PP were measured at room temperature in the solid state, and the excitation wavelengths are at 395 nm for the complex and 467 nm for PP. The emission peak positions are at 444 and 473 nm for the complex and at 529 nm for PP. The appearance of the two emission peaks for the complex implys that there may be two different structures for the PP ligand in complex (I), which is consistent with the crystal structure. The peak at 444 nm may be attributed to the PP bridging ligand because of the larger dihedral angle between the pyridine and 1,10-phenanthroline ring planes and, consequently, the lower degree of conjugation. Compared with the fluorescence spectrum of the complex, the bathochromic shift of the maximum emission peak of uncoordinated PP may imply that there should be a larger degree of conjugation and a smaller dihedral angle between the pyridine and 1,10-phenanthroline ring planes, although the crystal data for the PP ligand are not available as yet. At the same time, the emission intensity of complex (I) is stronger than that of the PP ligand, which may imply the existance of a strong ππ stacking interaction between PP molecules (Mizobe et al., 2006).

Related literature top

For related literature, see: Liu et al. (2004); Mizobe et al. (2006); Zhang et al. (2006); Zheng et al. (2003).

Experimental top

Cd(ClO4)2·6H2O (0.2727 g, 0.65 mmol) was dissolved in 10 ml of methanol and then mixed with 10 ml of a methanol solution of PP (0.1774 g, 0.65 mmol), and the mixed solution was stirred for a few minutes. Yellow single crystals were obtained after allowing the mixed solution to stand at room temperature for two weeks (m.p. 367 K). The IR spectrum displays a strong and sharp peak at 1661 cm-1 corresponding to the vibration of the CO group, and strong peaks at 1145, 1115 and 1085 cm-1 can be attributed to vibrations of the perchlorate ion.

Refinement top

The H atoms of the water ligand were located in a difference map and the other H atoms were placed in calculated positions. All H atoms were refined using a riding model [O—H = 0.897–0.898 Å, C—H = 0.93 Å, and Uiso(H) = 1.5Ueq(O) and 1.2Ueq(C)].

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL (Bruker, 2001); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The binuclear complex cation of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme for the asymmetric unit; perchlorate anions have been omitted for clarity.
[Figure 2] Fig. 2. The packing and intermolecular interactions (dashed lines) of (I), viewed along the c axis.
Bis[µ-1-(1,10-phenanthrolin-2-yl)-2-pyridone]bis{aqua[1-(1,10-phenanthrolin-2- yl)-2-pyridone]cadmium(II)} tetrakis(perchlorate) top
Crystal data top
[Cd2(C17H11N3O)4(H2O)2](ClO4)4Z = 1
Mr = 1751.78F(000) = 880
Triclinic, P1Dx = 1.734 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.681 (2) ÅCell parameters from 2995 reflections
b = 12.437 (2) Åθ = 2.0–24.0°
c = 12.709 (2) ŵ = 0.88 mm1
α = 107.317 (2)°T = 298 K
β = 106.340 (2)°Block, pale yellow
γ = 91.838 (2)°0.24 × 0.16 × 0.10 mm
V = 1677.9 (5) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
6304 independent reflections
Radiation source: fine-focus sealed tube5004 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 25.8°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1412
Tmin = 0.816, Tmax = 0.917k = 1215
9002 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0572P)2]
where P = (Fo2 + 2Fc2)/3
6304 reflections(Δ/σ)max = 0.001
488 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Cd2(C17H11N3O)4(H2O)2](ClO4)4γ = 91.838 (2)°
Mr = 1751.78V = 1677.9 (5) Å3
Triclinic, P1Z = 1
a = 11.681 (2) ÅMo Kα radiation
b = 12.437 (2) ŵ = 0.88 mm1
c = 12.709 (2) ÅT = 298 K
α = 107.317 (2)°0.24 × 0.16 × 0.10 mm
β = 106.340 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
6304 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5004 reflections with I > 2σ(I)
Tmin = 0.816, Tmax = 0.917Rint = 0.023
9002 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 0.99Δρmax = 0.81 e Å3
6304 reflectionsΔρmin = 0.35 e Å3
488 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8506 (4)0.8888 (3)0.5029 (4)0.0530 (11)
H10.79210.89440.43850.064*
C20.8858 (5)0.9779 (4)0.5998 (5)0.0644 (13)
H20.84971.04400.60420.077*
C30.9768 (5)0.9703 (4)0.6936 (4)0.0639 (13)
H31.00321.03250.76070.077*
C41.0272 (4)0.8747 (4)0.6889 (4)0.0586 (11)
H41.08800.87210.75330.070*
C50.9912 (4)0.7767 (3)0.5887 (3)0.0463 (10)
C60.8662 (3)0.7014 (3)0.3873 (3)0.0397 (9)
C70.8905 (4)0.7242 (3)0.2956 (4)0.0494 (10)
H70.92670.79550.30470.059*
C80.8606 (4)0.6405 (4)0.1914 (4)0.0547 (11)
H80.87520.65430.12800.066*
C90.8080 (4)0.5342 (3)0.1803 (3)0.0432 (9)
C100.7843 (3)0.5188 (3)0.2779 (3)0.0351 (8)
C110.7265 (3)0.4107 (3)0.2678 (3)0.0356 (8)
C120.6981 (4)0.3224 (3)0.1624 (3)0.0436 (9)
C130.7223 (4)0.3414 (4)0.0657 (3)0.0538 (11)
H130.70130.28280.00440.065*
C140.7745 (4)0.4417 (4)0.0732 (3)0.0520 (11)
H140.78930.45180.00840.062*
C150.6471 (4)0.2182 (4)0.1583 (4)0.0602 (12)
H150.62720.15730.09010.072*
C160.6265 (5)0.2054 (3)0.2532 (4)0.0680 (14)
H160.59420.13530.25140.082*
C170.6540 (4)0.2978 (3)0.3538 (4)0.0593 (12)
H170.63880.28830.41880.071*
C180.9210 (4)0.6649 (4)0.7921 (4)0.0576 (12)
H180.96080.60170.77350.069*
C190.9582 (5)0.7387 (5)0.9046 (4)0.0739 (15)
H191.02020.72370.96080.089*
C200.9037 (5)0.8323 (4)0.9318 (4)0.0714 (14)
H200.92830.88241.00710.086*
C210.8103 (4)0.8546 (3)0.8475 (3)0.0490 (10)
C220.7752 (3)0.7741 (3)0.7361 (3)0.0372 (8)
C230.7503 (5)0.9532 (4)0.8696 (4)0.0648 (13)
H230.77361.00590.94350.078*
C240.6615 (4)0.9714 (3)0.7865 (4)0.0581 (12)
H240.62531.03740.80300.070*
C250.6212 (4)0.8905 (3)0.6723 (3)0.0429 (9)
C260.6765 (3)0.7912 (3)0.6476 (3)0.0343 (8)
C270.5267 (4)0.9037 (3)0.5840 (4)0.0499 (10)
H270.48950.96920.59700.060*
C280.4880 (4)0.8217 (3)0.4786 (3)0.0451 (9)
H280.42480.82970.41890.054*
C290.5470 (3)0.7250 (3)0.4640 (3)0.0344 (8)
C300.4280 (3)0.5434 (3)0.3450 (3)0.0371 (8)
C310.3986 (4)0.4551 (3)0.2356 (3)0.0466 (10)
H310.35270.38810.22520.056*
C320.4347 (4)0.4660 (4)0.1483 (3)0.0494 (10)
H320.41380.40690.07850.059*
C330.5039 (4)0.5654 (3)0.1608 (3)0.0455 (10)
H330.52590.57390.09860.055*
C340.5382 (3)0.6478 (3)0.2622 (3)0.0407 (9)
H340.58380.71430.27080.049*
Cd10.75342 (2)0.55115 (2)0.52738 (2)0.03562 (11)
Cl10.81961 (10)0.28114 (9)0.77260 (8)0.0493 (3)
Cl20.64738 (10)0.87777 (8)0.14325 (9)0.0550 (3)
N10.8136 (3)0.6030 (2)0.3815 (2)0.0334 (7)
N20.7009 (3)0.3984 (2)0.3606 (3)0.0411 (8)
N30.6377 (3)0.7092 (2)0.5427 (2)0.0313 (6)
N40.8310 (3)0.6810 (3)0.7099 (3)0.0393 (7)
N50.8994 (3)0.7893 (2)0.4972 (3)0.0421 (7)
N60.5061 (3)0.6348 (2)0.3543 (2)0.0328 (6)
O10.8961 (3)0.4436 (2)0.5954 (2)0.0522 (7)
H100.85970.38780.61060.078*
H90.92620.40420.54010.078*
O21.0333 (3)0.6864 (2)0.5789 (2)0.0625 (8)
O30.3926 (2)0.5445 (2)0.4279 (2)0.0456 (7)
O40.6224 (5)0.7621 (3)0.0875 (4)0.1285 (18)
O50.7559 (5)0.9176 (5)0.1408 (5)0.163 (2)
O60.6520 (5)0.9025 (3)0.2605 (3)0.1084 (15)
O70.5617 (5)0.9343 (4)0.0901 (4)0.137 (2)
O80.8088 (3)0.2512 (3)0.6516 (2)0.0645 (8)
O90.7059 (3)0.2557 (3)0.7859 (3)0.0801 (10)
O100.9035 (3)0.2190 (3)0.8237 (3)0.0699 (9)
O110.8608 (4)0.3994 (3)0.8252 (4)0.0981 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.054 (3)0.037 (2)0.067 (3)0.0078 (19)0.019 (2)0.015 (2)
C20.074 (3)0.036 (2)0.079 (4)0.008 (2)0.029 (3)0.006 (2)
C30.078 (4)0.043 (2)0.059 (3)0.005 (2)0.025 (3)0.004 (2)
C40.065 (3)0.057 (3)0.041 (2)0.002 (2)0.010 (2)0.004 (2)
C50.051 (3)0.047 (2)0.039 (2)0.007 (2)0.017 (2)0.0093 (18)
C60.039 (2)0.039 (2)0.043 (2)0.0108 (17)0.0151 (18)0.0124 (17)
C70.058 (3)0.043 (2)0.054 (3)0.005 (2)0.023 (2)0.021 (2)
C80.066 (3)0.068 (3)0.046 (3)0.016 (2)0.028 (2)0.029 (2)
C90.045 (2)0.055 (2)0.034 (2)0.0170 (19)0.0157 (18)0.0161 (18)
C100.036 (2)0.041 (2)0.0272 (18)0.0125 (16)0.0096 (16)0.0085 (15)
C110.037 (2)0.0379 (19)0.0294 (19)0.0110 (16)0.0109 (16)0.0058 (15)
C120.047 (2)0.043 (2)0.034 (2)0.0077 (18)0.0137 (18)0.0006 (16)
C130.062 (3)0.060 (3)0.027 (2)0.011 (2)0.012 (2)0.0028 (18)
C140.059 (3)0.070 (3)0.027 (2)0.020 (2)0.017 (2)0.0121 (19)
C150.068 (3)0.045 (2)0.049 (3)0.001 (2)0.018 (2)0.012 (2)
C160.096 (4)0.035 (2)0.069 (3)0.010 (2)0.044 (3)0.005 (2)
C170.089 (4)0.036 (2)0.055 (3)0.000 (2)0.044 (3)0.0010 (19)
C180.060 (3)0.067 (3)0.039 (2)0.022 (2)0.009 (2)0.012 (2)
C190.075 (3)0.095 (4)0.031 (2)0.023 (3)0.003 (2)0.007 (2)
C200.077 (3)0.085 (4)0.028 (2)0.011 (3)0.004 (2)0.006 (2)
C210.057 (3)0.051 (2)0.029 (2)0.004 (2)0.0118 (19)0.0013 (17)
C220.046 (2)0.0371 (19)0.0246 (18)0.0031 (17)0.0117 (17)0.0033 (15)
C230.077 (3)0.054 (3)0.040 (3)0.007 (2)0.016 (2)0.018 (2)
C240.075 (3)0.036 (2)0.053 (3)0.010 (2)0.025 (3)0.0065 (19)
C250.053 (3)0.0312 (19)0.042 (2)0.0036 (17)0.016 (2)0.0063 (16)
C260.044 (2)0.0277 (17)0.0317 (19)0.0026 (15)0.0178 (17)0.0053 (14)
C270.061 (3)0.031 (2)0.058 (3)0.0138 (19)0.022 (2)0.0102 (18)
C280.053 (3)0.039 (2)0.044 (2)0.0145 (18)0.012 (2)0.0144 (17)
C290.042 (2)0.0306 (18)0.0306 (19)0.0030 (16)0.0123 (17)0.0084 (15)
C300.046 (2)0.0323 (19)0.033 (2)0.0074 (17)0.0136 (18)0.0098 (15)
C310.060 (3)0.037 (2)0.036 (2)0.0012 (19)0.016 (2)0.0017 (16)
C320.054 (3)0.055 (2)0.033 (2)0.006 (2)0.017 (2)0.0007 (18)
C330.047 (2)0.062 (3)0.031 (2)0.010 (2)0.0160 (18)0.0157 (18)
C340.042 (2)0.049 (2)0.037 (2)0.0086 (18)0.0151 (18)0.0183 (18)
Cd10.05008 (19)0.02992 (15)0.02490 (15)0.00881 (11)0.01215 (12)0.00486 (10)
Cl10.0582 (7)0.0550 (6)0.0368 (5)0.0177 (5)0.0169 (5)0.0142 (4)
Cl20.0636 (7)0.0419 (5)0.0497 (6)0.0063 (5)0.0076 (5)0.0094 (5)
N10.0366 (17)0.0345 (16)0.0281 (16)0.0076 (13)0.0111 (13)0.0072 (12)
N20.055 (2)0.0335 (16)0.0340 (17)0.0042 (15)0.0203 (16)0.0027 (13)
N30.0415 (17)0.0271 (14)0.0266 (15)0.0061 (13)0.0149 (14)0.0060 (12)
N40.0449 (19)0.0428 (18)0.0278 (16)0.0090 (15)0.0094 (14)0.0088 (13)
N50.0460 (19)0.0307 (16)0.047 (2)0.0048 (14)0.0155 (16)0.0074 (14)
N60.0383 (17)0.0327 (15)0.0264 (15)0.0068 (13)0.0089 (13)0.0085 (12)
O10.068 (2)0.0493 (16)0.0460 (17)0.0224 (14)0.0218 (15)0.0200 (13)
O20.081 (2)0.0566 (19)0.0446 (18)0.0319 (17)0.0157 (16)0.0101 (14)
O30.0583 (18)0.0405 (14)0.0376 (15)0.0028 (13)0.0221 (14)0.0058 (12)
O40.227 (6)0.044 (2)0.093 (3)0.006 (3)0.041 (4)0.001 (2)
O50.113 (4)0.211 (6)0.155 (5)0.050 (4)0.061 (4)0.033 (4)
O60.175 (5)0.086 (3)0.054 (2)0.017 (3)0.025 (3)0.016 (2)
O70.161 (5)0.113 (4)0.092 (3)0.068 (3)0.017 (3)0.016 (3)
O80.081 (2)0.079 (2)0.0379 (17)0.0209 (18)0.0220 (16)0.0211 (15)
O90.057 (2)0.130 (3)0.061 (2)0.015 (2)0.0264 (18)0.034 (2)
O100.068 (2)0.086 (2)0.057 (2)0.0250 (18)0.0089 (17)0.0318 (18)
O110.144 (4)0.050 (2)0.096 (3)0.011 (2)0.052 (3)0.0015 (19)
Geometric parameters (Å, º) top
C2—C11.337 (6)C21—C231.425 (6)
C2—C31.387 (7)C22—N41.348 (4)
C2—H20.9300C22—C261.438 (5)
C1—N51.370 (5)C23—C241.336 (7)
C1—H10.9300C23—H230.9300
C3—C41.336 (6)C24—C251.435 (5)
C3—H30.9300C24—H240.9300
C4—C51.423 (6)C25—C271.389 (6)
C4—H40.9300C25—C261.405 (5)
C5—O21.228 (5)C26—N31.357 (4)
C5—N51.394 (5)C27—C281.362 (5)
C7—C81.363 (6)C27—H270.9300
C7—C61.377 (5)C28—C291.396 (5)
C7—H70.9300C28—H280.9300
C6—N11.323 (4)C29—N31.302 (4)
C6—N51.434 (5)C29—N61.446 (4)
C8—C91.390 (6)C30—O31.233 (4)
C8—H80.9300C30—N61.389 (4)
C9—C101.408 (5)C30—C311.433 (5)
C9—C141.439 (5)C31—C321.333 (5)
C10—N11.360 (4)C31—H310.9300
C10—C111.439 (5)C32—C331.398 (6)
C11—N21.344 (4)C32—H320.9300
C11—C121.400 (5)C33—C341.330 (5)
C12—C151.390 (6)C33—H330.9300
C12—C131.418 (5)C34—N61.376 (4)
C13—C141.335 (6)C34—H340.9300
C13—H130.9300Cd1—N22.296 (3)
C14—H140.9300Cd1—N42.303 (3)
C15—C161.346 (6)Cd1—O12.309 (3)
C15—H150.9300Cd1—O3i2.337 (2)
C16—C171.389 (6)Cd1—N12.402 (3)
C16—H160.9300Cd1—N32.412 (3)
C17—N21.319 (5)Cl1—O101.403 (3)
C17—H170.9300Cl1—O91.423 (3)
C18—N41.325 (5)Cl1—O111.424 (4)
C18—C191.386 (6)Cl1—O81.437 (3)
C18—H180.9300Cl2—O51.358 (5)
C19—C201.347 (6)Cl2—O71.379 (4)
C19—H190.9300Cl2—O41.381 (4)
C20—C211.398 (6)Cl2—O61.414 (4)
C20—H200.9300O1—H100.8983
C21—C221.407 (5)O1—H90.8965
C1—C2—C3119.0 (4)N3—C26—C22118.7 (3)
C1—C2—H2120.5C25—C26—C22119.5 (3)
C3—C2—H2120.5C28—C27—C25120.8 (4)
C2—C1—N5121.0 (4)C28—C27—H27119.6
C2—C1—H1119.5C25—C27—H27119.6
N5—C1—H1119.5C27—C28—C29117.2 (4)
C4—C3—C2120.9 (4)C27—C28—H28121.4
C4—C3—H3119.6C29—C28—H28121.4
C2—C3—H3119.6N3—C29—C28124.7 (3)
C3—C4—C5122.2 (4)N3—C29—N6116.6 (3)
C3—C4—H4118.9C28—C29—N6118.7 (3)
C5—C4—H4118.9O3—C30—N6119.3 (3)
O2—C5—N5120.2 (4)O3—C30—C31126.9 (3)
O2—C5—C4125.5 (4)N6—C30—C31113.8 (3)
N5—C5—C4114.4 (4)C32—C31—C30122.1 (4)
C8—C7—C6118.7 (4)C32—C31—H31118.9
C8—C7—H7120.6C30—C31—H31118.9
C6—C7—H7120.6C31—C32—C33120.6 (4)
N1—C6—C7124.5 (4)C31—C32—H32119.7
N1—C6—N5117.0 (3)C33—C32—H32119.7
C7—C6—N5118.5 (3)C34—C33—C32119.6 (4)
C7—C8—C9119.6 (4)C34—C33—H33120.2
C7—C8—H8120.2C32—C33—H33120.2
C9—C8—H8120.2C33—C34—N6120.0 (4)
C8—C9—C10117.9 (4)C33—C34—H34120.0
C8—C9—C14122.6 (4)N6—C34—H34120.0
C10—C9—C14119.4 (4)N2—Cd1—N4168.48 (11)
N1—C10—C9122.2 (3)N2—Cd1—O184.05 (11)
N1—C10—C11118.8 (3)N4—Cd1—O184.52 (10)
C9—C10—C11119.1 (3)N2—Cd1—O3i83.31 (10)
N2—C11—C12122.2 (3)N4—Cd1—O3i95.45 (10)
N2—C11—C10118.3 (3)O1—Cd1—O3i90.95 (10)
C12—C11—C10119.4 (3)N2—Cd1—N171.08 (10)
C15—C12—C11117.3 (4)N4—Cd1—N1113.63 (10)
C15—C12—C13122.8 (4)O1—Cd1—N1105.73 (9)
C11—C12—C13119.9 (4)O3i—Cd1—N1147.35 (10)
C14—C13—C12121.4 (4)N2—Cd1—N3120.17 (11)
C14—C13—H13119.3N4—Cd1—N371.13 (10)
C12—C13—H13119.3O1—Cd1—N3155.43 (10)
C13—C14—C9120.8 (4)O3i—Cd1—N388.18 (9)
C13—C14—H14119.6N1—Cd1—N387.58 (9)
C9—C14—H14119.6O10—Cl1—O9109.8 (2)
C16—C15—C12120.0 (4)O10—Cl1—O11109.5 (3)
C16—C15—H15120.0O9—Cl1—O11110.4 (2)
C12—C15—H15120.0O10—Cl1—O8109.11 (19)
C15—C16—C17119.4 (4)O9—Cl1—O8109.6 (2)
C15—C16—H16120.3O11—Cl1—O8108.4 (2)
C17—C16—H16120.3O5—Cl2—O7107.8 (4)
N2—C17—C16122.4 (4)O5—Cl2—O4110.5 (4)
N2—C17—H17118.8O7—Cl2—O4110.8 (3)
C16—C17—H17118.8O5—Cl2—O6107.8 (3)
N4—C18—C19122.6 (4)O7—Cl2—O6109.7 (3)
N4—C18—H18118.7O4—Cl2—O6110.1 (3)
C19—C18—H18118.7C6—N1—C10117.1 (3)
C20—C19—C18119.3 (4)C6—N1—Cd1129.2 (2)
C20—C19—H19120.4C10—N1—Cd1113.7 (2)
C18—C19—H19120.4C17—N2—C11118.6 (3)
C19—C20—C21120.3 (4)C17—N2—Cd1123.2 (3)
C19—C20—H20119.8C11—N2—Cd1118.1 (2)
C21—C20—H20119.8C29—N3—C26118.0 (3)
C20—C21—C22117.1 (4)C29—N3—Cd1128.4 (2)
C20—C21—C23123.4 (4)C26—N3—Cd1113.6 (2)
C22—C21—C23119.6 (4)C18—N4—C22118.8 (3)
N4—C22—C21122.0 (3)C18—N4—Cd1123.6 (3)
N4—C22—C26118.9 (3)C22—N4—Cd1117.5 (2)
C21—C22—C26119.1 (3)C34—N6—C30123.2 (3)
C24—C23—C21121.5 (4)C34—N6—C29118.6 (3)
C24—C23—H23119.2C30—N6—C29118.0 (3)
C21—C23—H23119.2C1—N5—C5122.5 (3)
C23—C24—C25120.7 (4)C1—N5—C6117.8 (3)
C23—C24—H24119.6C5—N5—C6119.1 (3)
C25—C24—H24119.6Cd1—O1—H10108.9
C27—C25—C26117.5 (3)Cd1—O1—H9111.8
C27—C25—C24123.0 (4)H10—O1—H9101.8
C26—C25—C24119.5 (4)C30—O3—Cd1i140.3 (2)
N3—C26—C25121.8 (3)
C3—C2—C1—N52.8 (7)N4—Cd1—N1—C10170.0 (2)
C1—C2—C3—C41.5 (7)O1—Cd1—N1—C1079.2 (2)
C2—C3—C4—C50.2 (7)O3i—Cd1—N1—C1039.0 (3)
C3—C4—C5—O2179.7 (4)N3—Cd1—N1—C10121.8 (2)
C3—C4—C5—N50.2 (6)C16—C17—N2—C112.2 (7)
C8—C7—C6—N10.9 (6)C16—C17—N2—Cd1177.8 (4)
C8—C7—C6—N5179.2 (4)C12—C11—N2—C174.2 (6)
C6—C7—C8—C90.9 (6)C10—C11—N2—C17176.3 (4)
C7—C8—C9—C102.0 (6)C12—C11—N2—Cd1180.0 (3)
C7—C8—C9—C14179.7 (4)C10—C11—N2—Cd10.5 (4)
C8—C9—C10—N11.6 (5)N4—Cd1—N2—C1759.1 (7)
C14—C9—C10—N1179.9 (3)O1—Cd1—N2—C1766.3 (4)
C8—C9—C10—C11178.1 (4)O3i—Cd1—N2—C1725.4 (3)
C14—C9—C10—C110.2 (5)N1—Cd1—N2—C17175.2 (4)
N1—C10—C11—N21.8 (5)N3—Cd1—N2—C17109.3 (3)
C9—C10—C11—N2177.9 (3)N4—Cd1—N2—C11116.5 (5)
N1—C10—C11—C12178.6 (3)O1—Cd1—N2—C11109.3 (3)
C9—C10—C11—C121.6 (5)O3i—Cd1—N2—C11159.0 (3)
N2—C11—C12—C153.2 (6)N1—Cd1—N2—C110.4 (3)
C10—C11—C12—C15177.3 (4)N3—Cd1—N2—C1175.1 (3)
N2—C11—C12—C13177.2 (4)C28—C29—N3—C261.5 (5)
C10—C11—C12—C132.3 (6)N6—C29—N3—C26178.5 (3)
C15—C12—C13—C14178.1 (4)C28—C29—N3—Cd1177.2 (3)
C11—C12—C13—C141.5 (6)N6—C29—N3—Cd12.8 (4)
C12—C13—C14—C90.0 (7)C25—C26—N3—C290.3 (5)
C8—C9—C14—C13178.8 (4)C22—C26—N3—C29178.9 (3)
C10—C9—C14—C130.6 (6)C25—C26—N3—Cd1179.2 (3)
C11—C12—C15—C160.3 (7)C22—C26—N3—Cd12.3 (4)
C13—C12—C15—C16179.9 (4)N2—Cd1—N3—C293.6 (3)
C12—C15—C16—C171.5 (8)N4—Cd1—N3—C29178.9 (3)
C15—C16—C17—N20.6 (8)O1—Cd1—N3—C29173.1 (3)
N4—C18—C19—C201.9 (8)O3i—Cd1—N3—C2984.8 (3)
C18—C19—C20—C210.2 (8)N1—Cd1—N3—C2962.9 (3)
C19—C20—C21—C221.6 (7)N2—Cd1—N3—C26177.7 (2)
C19—C20—C21—C23178.6 (5)N4—Cd1—N3—C260.1 (2)
C20—C21—C22—N42.0 (6)O1—Cd1—N3—C268.2 (4)
C23—C21—C22—N4178.2 (4)O3i—Cd1—N3—C2696.5 (2)
C20—C21—C22—C26177.7 (4)N1—Cd1—N3—C26115.9 (2)
C23—C21—C22—C262.1 (6)C19—C18—N4—C221.5 (7)
C20—C21—C23—C24179.9 (5)C19—C18—N4—Cd1173.2 (4)
C22—C21—C23—C240.3 (7)C21—C22—N4—C180.5 (6)
C21—C23—C24—C251.5 (8)C26—C22—N4—C18179.2 (4)
C23—C24—C25—C27177.9 (4)C21—C22—N4—Cd1175.6 (3)
C23—C24—C25—C260.4 (7)C26—C22—N4—Cd14.2 (4)
C27—C25—C26—N31.8 (5)N2—Cd1—N4—C187.5 (7)
C24—C25—C26—N3176.5 (4)O1—Cd1—N4—C180.3 (3)
C27—C25—C26—C22179.7 (3)O3i—Cd1—N4—C1890.7 (3)
C24—C25—C26—C222.0 (5)N1—Cd1—N4—C18104.5 (3)
N4—C22—C26—N34.4 (5)N3—Cd1—N4—C18176.9 (3)
C21—C22—C26—N3175.4 (3)N2—Cd1—N4—C22167.3 (5)
N4—C22—C26—C25177.0 (3)O1—Cd1—N4—C22174.5 (3)
C21—C22—C26—C253.2 (5)O3i—Cd1—N4—C2284.1 (3)
C26—C25—C27—C281.5 (6)N1—Cd1—N4—C2280.7 (3)
C24—C25—C27—C28176.7 (4)N3—Cd1—N4—C222.1 (2)
C25—C27—C28—C290.1 (6)C33—C34—N6—C306.9 (5)
C27—C28—C29—N31.7 (6)C33—C34—N6—C29178.6 (3)
C27—C28—C29—N6178.3 (3)O3—C30—N6—C34171.5 (3)
O3—C30—C31—C32175.0 (4)C31—C30—N6—C349.2 (5)
N6—C30—C31—C325.8 (6)O3—C30—N6—C293.0 (5)
C30—C31—C32—C330.1 (7)C31—C30—N6—C29176.2 (3)
C31—C32—C33—C342.8 (6)N3—C29—N6—C34102.2 (4)
C32—C33—C34—N60.4 (6)C28—C29—N6—C3477.8 (4)
C7—C6—N1—C101.3 (5)N3—C29—N6—C3083.0 (4)
N5—C6—N1—C10178.7 (3)C28—C29—N6—C3097.0 (4)
C7—C6—N1—Cd1175.9 (3)C2—C1—N5—C52.9 (6)
N5—C6—N1—Cd14.1 (5)C2—C1—N5—C6173.9 (4)
C9—C10—N1—C60.0 (5)O2—C5—N5—C1179.0 (4)
C11—C10—N1—C6179.8 (3)C4—C5—N5—C11.5 (6)
C9—C10—N1—Cd1177.6 (3)O2—C5—N5—C68.1 (6)
C11—C10—N1—Cd12.1 (4)C4—C5—N5—C6172.4 (3)
N2—Cd1—N1—C6178.6 (3)N1—C6—N5—C1120.6 (4)
N4—Cd1—N1—C612.7 (3)C7—C6—N5—C159.3 (5)
O1—Cd1—N1—C6103.5 (3)N1—C6—N5—C568.1 (5)
O3i—Cd1—N1—C6138.3 (3)C7—C6—N5—C5112.0 (4)
N3—Cd1—N1—C655.5 (3)N6—C30—O3—Cd1i166.7 (2)
N2—Cd1—N1—C101.3 (2)C31—C30—O3—Cd1i14.1 (7)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H9···O2ii0.901.792.680 (4)172
O1—H10···O80.902.042.924 (5)169
C2—H2···O8iii0.932.563.463 (5)164
C17—H17···O3i0.932.513.085 (5)120
C19—H19···O10iv0.932.503.246 (5)138
C28—H28···O9i0.932.503.318 (5)147
C32—H32···O4v0.932.423.342 (5)172
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x, y+1, z; (iv) x+2, y+1, z+2; (v) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cd2(C17H11N3O)4(H2O)2](ClO4)4
Mr1751.78
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)11.681 (2), 12.437 (2), 12.709 (2)
α, β, γ (°)107.317 (2), 106.340 (2), 91.838 (2)
V3)1677.9 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.24 × 0.16 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.816, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
9002, 6304, 5004
Rint0.023
(sin θ/λ)max1)0.612
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.103, 0.99
No. of reflections6304
No. of parameters488
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 0.35

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Bruker, 2001).

Selected geometric parameters (Å, º) top
Cd1—N22.296 (3)Cd1—O3i2.337 (2)
Cd1—N42.303 (3)Cd1—N12.402 (3)
Cd1—O12.309 (3)Cd1—N32.412 (3)
N2—Cd1—N4168.48 (11)O1—Cd1—N1105.73 (9)
N2—Cd1—O184.05 (11)O3i—Cd1—N1147.35 (10)
N4—Cd1—O184.52 (10)N2—Cd1—N3120.17 (11)
N2—Cd1—O3i83.31 (10)N4—Cd1—N371.13 (10)
N4—Cd1—O3i95.45 (10)O1—Cd1—N3155.43 (10)
O1—Cd1—O3i90.95 (10)O3i—Cd1—N388.18 (9)
N2—Cd1—N171.08 (10)N1—Cd1—N387.58 (9)
N4—Cd1—N1113.63 (10)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H9···O2ii0.901.792.680 (4)172
O1—H10···O80.902.042.924 (5)169
C2—H2···O8iii0.932.563.463 (5)164
C17—H17···O3i0.932.513.085 (5)120
C19—H19···O10iv0.932.503.246 (5)138
C28—H28···O9i0.932.503.318 (5)147
C32—H32···O4v0.932.423.342 (5)172
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x, y+1, z; (iv) x+2, y+1, z+2; (v) x+1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds