Download citation
Download citation
link to html
In the X-ray crystal structure of the title complex, [Ni(C4H13N3)2](C2H3N4O2S2)Cl·H2O, the coordination polyhedron is composed of non-centrosymmetric [Ni(diethyl­enetri­amine)2]2+ cations in which the tri­amine ligands coordinate to the metal centre as tridentate ligands in a facial position. The NiII ions are linked to six N atoms in an octahedral arrangement, slightly compressed in one extreme. The sulfon­amide behaves as a counter-ion instead of as a ligand. Important information about the deprotonated sulfon­amide group conformation has been obtained.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101009088/na1492sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101009088/na1492Isup2.hkl
Contains datablock I

CCDC reference: 174791

Comment top

Heterocyclic sulfonamides constitute an important group of carbonic anhydrase inhibitors. The inhibition of this enzyme by sulfonamide drugs finds clinical application in the treatment of glaucoma, epilepsy and other disorders. Acetazolamide (5-acetamido-1,3,4-thiadiazole-2-sulfonamide) has shown to be one of the most potent inhibitors (Evelhoch et al., 1981). The search for new sulfonamides with major pharmacological potency, low toxicity and few side effects still continues (Jallon, 1997). Hats (5-amino-1,3,4- thiadiazole-2-sulfonamide), an acetazolamide analogue, has shown to be more potent than acetazolamide as anticonvulsant in mice, although its low inhibition ability on carbonic anhydrase (Chufán, Pedregosa, Baldini & Bruno-Blanch et al., 1999).

The knowledge of the interactions of sulfonamides with carbonic anhydrase (or its structural models) is of great pharmacological and therapeutic interest. Thus, metallic complexes with Hats were synthesized and some crystal structures were determined (Chufán et al., 1997; Borja et al., 1998; Chufán, 1999). The crystal structure of [Zn(ats)2(NH3)]·H2O in which the sulfonamide presents two different coordination behaviours: as monodentate ligand through the N-sulfonamido atom and as a bridging ligand, linking the zinc ions through the N-sulfonamido and the N-thiadiazole atoms are reported (Borja et al., 1998). Recently, we have synthesized a new copper complex, [Cu(ats)2(dipn)] (dipn = dipropylenetriamine), where the sulfonamide also shows two coordination modes: as monodentate ligand in the same way that in the zinc(II) complex described above and as a bridging ligand, linking the copper ions through the O-sulfonamido and the N-sulfonamido atoms (Chufán, Pedregosa, Ferrer & Borrás et al., 1999).

In the present paper, we report the crystal structure of [Ni(dien)2](ats)(Cl)·H2O (dien = diethylenetriamine), (I), in which the sulfonamide behaves as a counter-ion instead of a ligand. It is noteworthy that this is the first reported metal complex structure where the Hats sulfonamide acts as a counter-ion. \sch

The main structural difference between the sulfonamidate anion and the free sulfonamide is the shortening of the N—S bond, see Table 1. This is due to deprotonation of the sulfonamido group and subsequent delocalization of the negative charge through the N—S bond. This phenomenon is also present in [Zn(ats)2(NH3)]·H2O, but in an attenuate way because of the N-sulfonamido atom being in a coordination site. The increasing of the (C—S) exocyclic bond is also attributed to electronic delocalization after deprotonation. These facts are evidence that structural properties are more affected by deprotonation than by coordination effects, as was concluded by vibrational spectroscopy for similar metal complexes (Chufán, Pedregosa, Ferrer & Borrás et al., 1999).

The coordination polyhedron consists of [Ni(dien)2]2+ unities, in which the diethylenetriamine coordinates to the metal center as a tridentate ligand in facial position. The NiII ions are linked to six N atoms, forming NiN6 cromophores with octahedral geometry. On the other hand, the comparison between the differences of the angles at Ni (see Table 1) are due to the spanning of the dimethylene groups.

The analogous complex [Cu(dipn)(ats)2] was synthesized with the same metal:triamine:sulfonamide molar ratio (1:2:2) and similar experimental conditions. The reason by which in the copper(II) complex the bis(triamine) is not formed, is related with the fact that the copper(II) ion is subject to Jahn-Teller effect whose typical distortion is an elongation along one fourfold axis, so that there is a planar array of four short Cu—L bonds and two trans long ones (Cotton & Wilkinson, 1988).

Experimental top

The title complex, [Ni(dien)2](ats)Cl·H2O, was prepared by mixing nickel(II) chloride hexahydrate (1 mmol), diethylenetriamine (2 mmol) and 5-amino-1,3,4-thiadiazole-2-sulfonamide (2 mmol) in ethanol (50 ml), at room temperature. Single crystals were obtained after one month from the resulting pale purple solution.

Refinement top

All hydrogen atoms were localized geometrically and refined as riding, except H331 and the water H atoms that were located in subsequent difference Fourier maps. These atoms were refined.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1997); cell refinement: CAD-4 Software; data reduction: Process in Omolen (Nonius, 1997); program(s) used to solve structure: DIRDIF (Beurskens, 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. View (ORTEPII; Johnson, 1976) of (I) showing the labelling of the non-H atoms. Displacement ellipsoids are shown at the 50% probability level; H atoms are drawn as small circles of arbitrary radius.
Bis(diethylenetriamine)nickel(II) 5-amino-1,3,4-thiadiazole-2- sulfonamidate chloride hydrate. top
Crystal data top
[Ni(C4H13N3)2](C2H3N4O2S2)Cl·H2OF(000) = 1024
Mr = 497.73Dx = 1.567 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.378 (6) ÅCell parameters from 25 reflections
b = 11.099 (10) Åθ = 1.8–25.0°
c = 23.042 (12) ŵ = 1.28 mm1
β = 99.44 (5)°T = 293 K
V = 2114 (3) Å3Prismatic, red
Z = 40.15 × 0.10 × 0.10 mm
Data collection top
Enraf-Nonius Cad-4 difractometer
diffractometer
2685 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 1.8°
Graphite monochromatorh = 09
ω–2θ scansk = 013
Absorption correction: ψ scan
(North et al., 1968)
l = 2726
Tmin = 0.774, Tmax = 0.88060 standard reflections every 1000 reflections
3706 measured reflections intensity decay: 0.1%
3706 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0531P)2 + 4.4405P]
where P = (Fo2 + 2Fc2)/3
3706 reflections(Δ/σ)max = 0.042
264 parametersΔρmax = 0.67 e Å3
6 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Ni(C4H13N3)2](C2H3N4O2S2)Cl·H2OV = 2114 (3) Å3
Mr = 497.73Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.378 (6) ŵ = 1.28 mm1
b = 11.099 (10) ÅT = 293 K
c = 23.042 (12) Å0.15 × 0.10 × 0.10 mm
β = 99.44 (5)°
Data collection top
Enraf-Nonius Cad-4 difractometer
diffractometer
3706 independent reflections
Absorption correction: ψ scan
(North et al., 1968)
2685 reflections with I > 2σ(I)
Tmin = 0.774, Tmax = 0.88060 standard reflections every 1000 reflections
3706 measured reflections intensity decay: 0.1%
Refinement top
R[F2 > 2σ(F2)] = 0.0596 restraints
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.67 e Å3
3706 reflectionsΔρmin = 0.50 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2> σ (F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.40181 (9)0.30325 (7)0.84560 (3)0.0268 (3)
N110.1522 (7)0.3011 (6)0.8507 (3)0.0459 (15)
H11A0.12850.35860.87550.071 (10)*
H11B0.09290.31410.81500.071 (10)*
N120.4079 (6)0.1676 (5)0.9112 (2)0.0336 (13)
H120.45300.09950.89900.028 (12)*
N130.4679 (7)0.4136 (5)0.9208 (2)0.0423 (15)
H13A0.56700.44480.92060.071 (10)*
H13B0.39740.47510.91990.075 (11)*
C110.1176 (10)0.1805 (9)0.8727 (4)0.070 (3)
H1110.01340.18220.88590.076 (7)*
H1120.11090.12290.84080.076 (7)*
C120.2413 (9)0.1408 (8)0.9213 (4)0.056 (2)
H1210.23070.05460.92670.076 (7)*
H1220.22320.18020.95720.076 (7)*
C130.5105 (9)0.2139 (7)0.9640 (3)0.0487 (19)
H1310.62320.20850.95930.076 (7)*
H1320.49560.16530.99770.076 (7)*
C140.4681 (10)0.3432 (7)0.9744 (3)0.052 (2)
H1410.36210.34700.98610.076 (7)*
H1420.54630.37661.00600.076 (7)*
N210.3750 (7)0.1739 (4)0.7766 (2)0.0336 (13)
H21A0.35760.10070.79130.071 (10)*
H21B0.28850.19290.74960.071 (10)*
N220.6447 (6)0.3024 (5)0.8293 (3)0.0367 (13)
H220.71220.29650.86440.028 (12)*
N230.3840 (7)0.4509 (5)0.7883 (3)0.0417 (15)
H23A0.29670.44170.76020.071 (10)*
H23B0.37030.51860.80840.071 (10)*
C210.5194 (9)0.1697 (6)0.7487 (3)0.0458 (19)
H2110.51040.22920.71750.076 (7)*
H2120.52840.09080.73130.076 (7)*
C220.6688 (9)0.1947 (7)0.7935 (4)0.0478 (19)
H2210.69250.12540.81910.076 (7)*
H2220.76050.20790.77340.076 (7)*
C230.6735 (9)0.4190 (7)0.8024 (4)0.050 (2)
H2310.76370.41100.78110.076 (7)*
H2320.70300.47830.83320.076 (7)*
C240.5278 (11)0.4632 (7)0.7609 (3)0.059 (2)
H2410.54270.54710.75120.076 (7)*
H2420.51470.41680.72480.076 (7)*
S30.4583 (2)0.16955 (14)0.82795 (7)0.0355 (4)
O310.3478 (6)0.0730 (5)0.8377 (3)0.0607 (16)
O320.5118 (7)0.1628 (7)0.7720 (2)0.083 (2)
N330.4032 (8)0.2958 (5)0.8401 (3)0.0537 (18)
H3310.346 (17)0.274 (15)0.875 (5)0.23 (8)*
C410.6403 (7)0.1369 (5)0.8782 (3)0.0297 (14)
S40.7967 (2)0.23924 (15)0.88958 (8)0.0420 (5)
N410.6663 (7)0.0382 (5)0.9071 (2)0.0358 (13)
N420.8190 (6)0.0338 (5)0.9405 (2)0.0365 (13)
C420.9014 (8)0.1323 (6)0.9360 (3)0.0334 (15)
N51.0510 (7)0.1509 (5)0.9644 (3)0.0522 (18)
H511.09900.09620.98740.062 (18)*
H521.09970.21760.95990.062 (18)*
Cl0.1326 (2)0.58261 (17)0.91968 (9)0.0515 (5)
O60.8403 (9)0.4150 (7)0.9406 (3)0.085 (2)
H610.943 (7)0.444 (11)0.935 (6)0.14 (3)*
H620.847 (15)0.437 (11)0.9807 (18)0.14 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0324 (5)0.0197 (4)0.0267 (4)0.0026 (3)0.0000 (3)0.0042 (3)
N110.034 (3)0.057 (4)0.045 (4)0.005 (3)0.001 (3)0.008 (3)
N120.044 (3)0.030 (3)0.027 (3)0.002 (2)0.006 (2)0.003 (2)
N130.046 (3)0.036 (3)0.042 (3)0.007 (3)0.003 (3)0.016 (3)
C110.054 (5)0.087 (7)0.072 (6)0.024 (5)0.015 (5)0.003 (6)
C120.055 (5)0.062 (5)0.051 (5)0.004 (4)0.013 (4)0.009 (4)
C130.056 (5)0.055 (5)0.032 (4)0.009 (4)0.002 (3)0.003 (4)
C140.064 (5)0.054 (5)0.036 (4)0.009 (4)0.000 (4)0.019 (4)
N210.046 (3)0.026 (3)0.027 (3)0.001 (2)0.003 (2)0.003 (2)
N220.032 (3)0.035 (3)0.042 (3)0.004 (2)0.002 (2)0.004 (3)
N230.052 (4)0.027 (3)0.041 (3)0.000 (3)0.011 (3)0.005 (3)
C210.067 (5)0.035 (4)0.041 (4)0.000 (3)0.025 (4)0.015 (3)
C220.050 (4)0.039 (4)0.058 (5)0.008 (3)0.020 (4)0.002 (4)
C230.051 (5)0.044 (4)0.058 (5)0.016 (4)0.016 (4)0.003 (4)
C240.095 (7)0.038 (4)0.042 (5)0.000 (4)0.006 (4)0.016 (4)
S30.0405 (9)0.0345 (9)0.0289 (8)0.0026 (7)0.0022 (7)0.0010 (7)
O310.061 (3)0.047 (3)0.066 (4)0.013 (3)0.014 (3)0.002 (3)
O320.069 (4)0.148 (7)0.031 (3)0.032 (4)0.004 (3)0.002 (4)
N330.066 (4)0.030 (3)0.059 (4)0.004 (3)0.010 (4)0.009 (3)
C410.037 (4)0.024 (3)0.029 (3)0.001 (3)0.004 (3)0.000 (3)
S40.0468 (10)0.0301 (9)0.0444 (10)0.0071 (8)0.0067 (8)0.0144 (8)
N410.047 (3)0.027 (3)0.031 (3)0.002 (2)0.001 (2)0.007 (2)
N420.041 (3)0.025 (3)0.040 (3)0.003 (2)0.004 (3)0.010 (2)
C420.036 (4)0.032 (4)0.031 (3)0.001 (3)0.001 (3)0.007 (3)
N50.048 (4)0.036 (3)0.064 (4)0.011 (3)0.017 (3)0.022 (3)
Cl0.0525 (11)0.0430 (10)0.0589 (12)0.0088 (9)0.0091 (9)0.0080 (9)
O60.081 (5)0.108 (6)0.060 (4)0.041 (4)0.008 (4)0.001 (4)
Geometric parameters (Å, º) top
Ni—N232.094 (5)N22—H220.9100
Ni—N112.114 (6)N23—C241.455 (13)
Ni—N132.123 (5)N23—H23A0.9000
Ni—N212.126 (5)N23—H23B0.9000
Ni—N222.129 (6)C21—C221.514 (12)
Ni—N122.129 (5)C21—H2110.9700
N11—C111.474 (10)C21—H2120.9700
N11—H11A0.9000C22—H2210.9700
N11—H11B0.9000C22—H2220.9700
N12—C131.461 (9)C23—C241.506 (12)
N12—C121.484 (13)C23—H2310.9700
N12—H120.9100C23—H2320.9700
N13—C141.465 (10)C24—H2410.9700
N13—H13A0.9000C24—H2420.9700
N13—H13B0.9000S3—O321.432 (6)
C11—C121.463 (12)S3—O311.459 (7)
C11—H1110.9700S3—N331.513 (7)
C11—H1120.9700S3—C411.792 (10)
C12—H1210.9700N33—H3311.03 (13)
C12—H1220.9700C41—N411.283 (8)
C13—C141.507 (10)C41—S41.723 (9)
C13—H1310.9700S4—C421.738 (7)
C13—H1320.9700N41—N421.383 (11)
C14—H1410.9700N42—C421.304 (8)
C14—H1420.9700C42—N51.333 (11)
N21—C211.463 (12)N5—H510.8600
N21—H21A0.9000N5—H520.8600
N21—H21B0.9000O6—H610.95 (8)
N22—C231.472 (8)O6—H620.95 (6)
N22—C221.484 (9)
N23—Ni—N1194.2 (2)C21—N21—H21B109.5
N23—Ni—N1392.6 (2)Ni—N21—H21B109.5
N11—Ni—N1395.0 (2)H21A—N21—H21B108.1
N23—Ni—N2194.0 (2)C23—N22—C22115.3 (6)
N11—Ni—N2193.0 (2)C23—N22—Ni107.3 (4)
N13—Ni—N21169.2 (2)C22—N22—Ni108.4 (4)
N23—Ni—N2282.2 (2)C23—N22—H22109.0
N11—Ni—N22173.1 (3)C22—N22—H22109.0
N13—Ni—N2291.0 (2)Ni—N22—H22109.0
N21—Ni—N2281.5 (2)C24—N23—Ni111.6 (4)
N23—Ni—N12172.9 (2)C24—N23—H23A109.4
N11—Ni—N1282.0 (2)Ni—N23—H23A109.4
N13—Ni—N1281.8 (2)C24—N23—H23B109.4
N21—Ni—N1292.2 (2)Ni—N23—H23B109.4
N22—Ni—N12102.1 (2)H23A—N23—H23B108.0
C11—N11—Ni106.2 (4)N21—C21—C22110.4 (6)
C11—N11—H11A110.5N21—C21—H211109.6
Ni—N11—H11A110.5C22—C21—H211109.6
C11—N11—H11B110.5N21—C21—H212109.6
Ni—N11—H11B110.5C22—C21—H212109.6
H11A—N11—H11B108.7H211—C21—H212108.1
C13—N12—C12112.7 (6)N22—C22—C21111.3 (5)
C13—N12—Ni106.3 (4)N22—C22—H221109.4
C12—N12—Ni109.6 (4)C21—C22—H221109.4
C13—N12—H12109.4N22—C22—H222109.4
C12—N12—H12109.4C21—C22—H222109.4
Ni—N12—H12109.4H221—C22—H222108.0
C14—N13—Ni110.1 (4)N22—C23—C24112.9 (6)
C14—N13—H13A109.6N22—C23—H231109.0
Ni—N13—H13A109.6C24—C23—H231109.0
C14—N13—H13B109.6N22—C23—H232109.0
Ni—N13—H13B109.6C24—C23—H232109.0
H13A—N13—H13B108.1H231—C23—H232107.8
C12—C11—N11113.0 (7)N23—C24—C23110.3 (7)
C12—C11—H111109.0N23—C24—H241109.6
N11—C11—H111109.0C23—C24—H241109.6
C12—C11—H112109.0N23—C24—H242109.6
N11—C11—H112109.0C23—C24—H242109.6
H111—C11—H112107.8H241—C24—H242108.1
C11—C12—N12112.8 (7)O32—S3—O31113.2 (4)
C11—C12—H121109.0O32—S3—N33111.5 (4)
N12—C12—H121109.0O31—S3—N33115.5 (5)
C11—C12—H122109.0O32—S3—C41102.2 (3)
N12—C12—H122109.0O31—S3—C41104.2 (3)
H121—C12—H122107.8N33—S3—C41108.8 (3)
N12—C13—C14110.8 (5)S3—N33—H331100 (10)
N12—C13—H131109.5N41—C41—S4114.7 (5)
C14—C13—H131109.5N41—C41—S3124.1 (4)
N12—C13—H132109.5S4—C41—S3120.7 (3)
C14—C13—H132109.5C41—S4—C4286.7 (4)
H131—C13—H132108.1C41—N41—N42112.9 (5)
N13—C14—C13109.9 (5)C42—N42—N41111.9 (5)
N13—C14—H141109.7N42—C42—N5123.7 (6)
C13—C14—H141109.7N42—C42—S4113.8 (5)
N13—C14—H142109.7N5—C42—S4122.5 (5)
C13—C14—H142109.7C42—N5—H51120.0
H141—C14—H142108.2C42—N5—H52120.0
C21—N21—Ni110.6 (4)H51—N5—H52120.0
C21—N21—H21A109.5H61—O6—H62106 (8)
Ni—N21—H21A109.5
N23—Ni—N11—C11161.6 (5)N12—Ni—N22—C23159.1 (5)
N13—Ni—N11—C11105.8 (5)N23—Ni—N22—C22109.9 (4)
N21—Ni—N11—C1166.9 (5)N13—Ni—N22—C22157.2 (5)
N12—Ni—N11—C1124.8 (4)N21—Ni—N22—C2215.1 (5)
N11—Ni—N12—C13117.9 (5)N12—Ni—N22—C2275.5 (5)
N13—Ni—N12—C1321.6 (4)N11—Ni—N23—C24164.8 (4)
N21—Ni—N12—C13149.4 (4)N13—Ni—N23—C24100.0 (5)
N22—Ni—N12—C1367.4 (5)N21—Ni—N23—C2471.5 (5)
N11—Ni—N12—C124.1 (4)N22—Ni—N23—C249.7 (4)
N13—Ni—N12—C12100.4 (4)Ni—N21—C21—C2233.5 (6)
N21—Ni—N12—C1288.6 (4)C23—N22—C22—C2183.0 (7)
N22—Ni—N12—C12170.7 (4)Ni—N22—C22—C2136.9 (6)
N23—Ni—N13—C14170.9 (4)N21—C21—C22—N2247.5 (7)
N11—Ni—N13—C1476.4 (4)C22—N22—C23—C2484.0 (7)
N21—Ni—N13—C1461.0 (13)Ni—N22—C23—C2437.2 (8)
N22—Ni—N13—C14106.5 (4)Ni—N23—C24—C2331.7 (7)
N12—Ni—N13—C144.7 (4)N22—C23—C24—N2346.2 (8)
Ni—N11—C11—C1243.5 (8)O32—S3—C41—N41108.1 (6)
N11—C11—C12—N1242.4 (9)O31—S3—C41—N4110.3 (6)
C13—N12—C12—C11137.6 (7)N33—S3—C41—N41133.6 (6)
Ni—N12—C12—C1118.5 (8)O32—S3—C41—S470.5 (5)
C12—N12—C13—C1475.1 (7)O31—S3—C41—S4171.1 (3)
Ni—N12—C13—C1444.9 (6)N33—S3—C41—S447.2 (5)
Ni—N13—C14—C1330.0 (7)N41—C41—S4—C421.3 (5)
N12—C13—C14—N1351.2 (8)S3—C41—S4—C42177.4 (4)
N23—Ni—N21—C2171.4 (4)S4—C41—N41—N421.6 (6)
N11—Ni—N21—C21165.9 (4)S3—C41—N41—N42177.1 (4)
N13—Ni—N21—C2156.6 (12)C41—N41—N42—C420.9 (7)
N22—Ni—N21—C2110.5 (4)N41—N42—C42—N5178.8 (6)
N12—Ni—N21—C21112.1 (4)N41—N42—C42—S40.1 (6)
N23—Ni—N22—C2315.1 (5)C41—S4—C42—N420.8 (5)
N13—Ni—N22—C2377.4 (5)C41—S4—C42—N5179.5 (6)
N21—Ni—N22—C23110.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···Cl0.902.683.521 (7)155
N12—H12···O310.912.463.158 (8)134
N12—H12···N410.912.333.16 (1)150
N13—H13A···O60.902.293.08 (2)146
N13—H13B···Cl0.902.523.374 (7)159
N21—H21A···O310.902.213.108 (8)171
N22—H22···O60.912.313.08 (1)141
N23—H23A···O31i0.902.383.23 (1)156
N21—H21B···N33i0.902.403.28 (1)162
N11—H11B···O32i0.902.072.964 (9)171
N21—H21B···S3i0.902.933.796 (7)162
N23—H23A···S3i0.902.963.83 (1)161
O6—H62···Clii0.95 (6)2.28 (5)3.190 (8)160 (10)
N23—H23B···N33iii0.902.193.048 (9)160
N5—H51···N42iv0.862.223.066 (9)166
N5—H52···Clv0.862.443.242 (7)156
O6—H61···Clvi0.95 (7)2.28 (7)3.174 (8)157 (10)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1, y+1, z+2; (iii) x, y+1, z; (iv) x+2, y, z+2; (v) x+1, y1, z; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C4H13N3)2](C2H3N4O2S2)Cl·H2O
Mr497.73
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.378 (6), 11.099 (10), 23.042 (12)
β (°) 99.44 (5)
V3)2114 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.15 × 0.10 × 0.10
Data collection
DiffractometerEnraf-Nonius Cad-4 difractometer
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.774, 0.880
No. of measured, independent and
observed [I > 2σ(I)] reflections
3706, 3706, 2685
Rint?
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.149, 1.15
No. of reflections3706
No. of parameters264
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.67, 0.50

Computer programs: CAD-4 Software (Enraf-Nonius, 1997), CAD-4 Software, Process in Omolen (Nonius, 1997), DIRDIF (Beurskens, 1992), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
Ni—N232.094 (5)S3—O311.459 (7)
Ni—N112.114 (6)S3—N331.513 (7)
Ni—N132.123 (5)S3—C411.792 (10)
Ni—N212.126 (5)C41—S41.723 (9)
Ni—N222.129 (6)N41—N421.383 (11)
Ni—N122.129 (5)N42—C421.304 (8)
S3—O321.432 (6)
N23—Ni—N1194.2 (2)N23—Ni—N12172.9 (2)
N23—Ni—N1392.6 (2)N11—Ni—N1282.0 (2)
N11—Ni—N1395.0 (2)N13—Ni—N1281.8 (2)
N23—Ni—N2194.0 (2)N21—Ni—N1292.2 (2)
N11—Ni—N2193.0 (2)N22—Ni—N12102.1 (2)
N13—Ni—N21169.2 (2)N41—C41—S4114.7 (5)
N23—Ni—N2282.2 (2)C41—S4—C4286.7 (4)
N11—Ni—N22173.1 (3)C41—N41—N42112.9 (5)
N13—Ni—N2291.0 (2)C42—N42—N41111.9 (5)
N21—Ni—N2281.5 (2)N42—C42—S4113.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···Cl0.902.683.521 (7)155
N12—H12···O310.912.463.158 (8)134
N12—H12···N410.912.333.16 (1)150
N13—H13A···O60.902.293.08 (2)146
N13—H13B···Cl0.902.523.374 (7)159
N21—H21A···O310.902.213.108 (8)171
N22—H22···O60.912.313.08 (1)141
N23—H23A···O31i0.902.383.23 (1)156
N21—H21B···N33i0.902.403.28 (1)162
N11—H11B···O32i0.902.072.964 (9)171
N21—H21B···S3i0.902.933.796 (7)162
N23—H23A···S3i0.902.963.83 (1)161
O6—H62···Clii0.95 (6)2.28 (5)3.190 (8)160 (10)
N23—H23B···N33iii0.902.193.048 (9)160
N5—H51···N42iv0.862.223.066 (9)166
N5—H52···Clv0.862.443.242 (7)156
O6—H61···Clvi0.95 (7)2.28 (7)3.174 (8)157 (10)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1, y+1, z+2; (iii) x, y+1, z; (iv) x+2, y, z+2; (v) x+1, y1, z; (vi) x+1, y, z.
Sulfonamido group bond distances for free Hats, [Ni(dien)](ats)Cl.H2O and [Zn(ats)(NH2)].H2O top
N-SSOSOS-C
Hats1.5691.4271.4321.767
Ats-1 counter-ion [Ni(dien)](ats)(Cl).H2O1.5281.4341.4531.785
Ats-1 monodentate ligand [Zn(ats)(NH2)].H2O1.5421.4351.4441.774
Ats-1 bridging ligand [Zn(ats)(NH2)].H2O1.5441.4371.4381.787
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds