Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100020746/na1497sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270100020746/na1497Isup2.hkl |
CCDC reference: 164621
The title compound was obtained by reaction of 3,5-dimethylpirazole with nickel(II) chloride hexahydrate (4:1 stoichiometric) in ethanol-water (4:1) solution. The light blue crystals were obtained by slow evaporation from the same solution.
Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989a); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1989b); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: PARST97 (Nardelli, 1996).
Fig. 1. ORTEP (McArdle, 1995) drawing of the molecule. Displacement ellipsoids are drawn at the 40% probability level. |
[Ni(C5H8N2)4(H2O)2]Cl2 | F(000) = 1160 |
Mr = 550.18 | Dx = 1.302 Mg m−3 Dm = 1.300 Mg m−3 Dm measured by flotation in xylene, bromobenzene, toluene and heptane |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71069 Å |
a = 10.505 (3) Å | Cell parameters from 25 reflections |
b = 14.213 (2) Å | θ = 6.1–12.8° |
c = 18.822 (3) Å | µ = 0.91 mm−1 |
β = 92.77 (2)° | T = 293 K |
V = 2807.1 (10) Å3 | Block, light blue |
Z = 4 | 0.5 × 0.2 × 0.2 mm |
AFC5S Rigaku diffractometer | 3056 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.024 |
Graphite monochromator | θmax = 32.6°, θmin = 3.6° |
ω scan | h = 0→15 |
Absorption correction: analytical (de Meulenaer & Tompa, 1965) | k = 0→21 |
Tmin = 0.560, Tmax = 0.788 | l = −28→28 |
5343 measured reflections | 3 standard reflections every 150 min |
5110 independent reflections | intensity decay: <2% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.171 | w = 1/[σ2(Fo2) + (0.0852P)2] where P = (Fo2 + 2Fc2)/3' |
S = 1.05 | (Δ/σ)max = 0.026 |
5109 reflections | Δρmax = 0.84 e Å−3 |
185 parameters | Δρmin = −0.85 e Å−3 |
0 restraints |
[Ni(C5H8N2)4(H2O)2]Cl2 | V = 2807.1 (10) Å3 |
Mr = 550.18 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 10.505 (3) Å | µ = 0.91 mm−1 |
b = 14.213 (2) Å | T = 293 K |
c = 18.822 (3) Å | 0.5 × 0.2 × 0.2 mm |
β = 92.77 (2)° |
AFC5S Rigaku diffractometer | 3056 reflections with I > 2σ(I) |
Absorption correction: analytical (de Meulenaer & Tompa, 1965) | Rint = 0.024 |
Tmin = 0.560, Tmax = 0.788 | 3 standard reflections every 150 min |
5343 measured reflections | intensity decay: <2% |
5110 independent reflections |
R[F2 > 2σ(F2)] = 0.057 | 0 restraints |
wR(F2) = 0.171 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.84 e Å−3 |
5109 reflections | Δρmin = −0.85 e Å−3 |
185 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. All H-atoms from methyl groups constrained to their parent atoms as a rigid body SHELXL97 (Sheldrick, 1997). U(H71)=1.1 Ueqof its parent atom. U(H72)=1.1 Ueqof its parent atom. U(H73)=1.1 Ueqof its parent atom. U(H141)=1.1 Ueqof its parent atom. U(H142)=1.1 Ueqof its parent atom. U(H143)=1.1 Ueqof its parent atom. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.0000 | 0.58603 (3) | 0.2500 | 0.03122 (14) | |
O1 | 0.0000 | 0.7315 (2) | 0.2500 | 0.0457 (7) | |
H101 | 0.055 (3) | 0.757 (2) | 0.2574 (18) | 0.044 (10)* | |
O2 | 0.0000 | 0.4404 (2) | 0.2500 | 0.0454 (7) | |
H201 | −0.049 (3) | 0.411 (2) | 0.259 (2) | 0.051 (11)* | |
Cl3 | 0.74899 (8) | 0.16394 (6) | 0.72457 (5) | 0.0598 (2) | |
N1 | −0.2219 (2) | 0.65599 (19) | 0.32991 (15) | 0.0494 (6) | |
H1 | −0.232 (3) | 0.695 (2) | 0.2947 (17) | 0.046 (9)* | |
N2 | −0.1348 (2) | 0.58546 (16) | 0.32987 (11) | 0.0391 (5) | |
C3 | −0.1448 (3) | 0.5412 (2) | 0.39241 (15) | 0.0462 (6) | |
C6 | −0.0682 (4) | 0.4573 (2) | 0.41348 (17) | 0.0576 (8) | |
H61 | 0.0172 | 0.4649 | 0.3983 | 0.118 (18)* | |
H62 | −0.1057 | 0.4023 | 0.3915 | 0.087 (14)* | |
H63 | −0.0663 | 0.4504 | 0.4643 | 0.079 (12)* | |
C4 | −0.2371 (4) | 0.5863 (3) | 0.4314 (2) | 0.0649 (10) | |
H4 | −0.255 (4) | 0.570 (3) | 0.472 (2) | 0.086 (14)* | |
C5 | −0.2839 (4) | 0.6593 (3) | 0.3906 (2) | 0.0645 (10) | |
C7 | −0.3824 (5) | 0.7338 (4) | 0.4022 (3) | 0.1036 (18) | |
H71 | −0.3556 | 0.7921 | 0.3819 | 0.114* | |
H72 | −0.3922 | 0.7419 | 0.4522 | 0.114* | |
H73 | −0.4623 | 0.7149 | 0.3797 | 0.114* | |
N8 | 0.2494 (2) | 0.52407 (19) | 0.32034 (14) | 0.0455 (6) | |
H8 | 0.251 (4) | 0.491 (3) | 0.289 (2) | 0.064 (12)* | |
N9 | 0.1546 (2) | 0.58818 (16) | 0.32674 (11) | 0.0381 (4) | |
C10 | 0.1828 (3) | 0.6317 (2) | 0.38899 (14) | 0.0419 (6) | |
C13 | 0.1033 (4) | 0.7092 (2) | 0.41651 (17) | 0.0543 (8) | |
H131 | 0.1043 | 0.7060 | 0.4675 | 0.105 (15)* | |
H132 | 0.0173 | 0.7028 | 0.3975 | 0.113 (17)* | |
H133 | 0.1371 | 0.7687 | 0.4023 | 0.101 (15)* | |
C11 | 0.2953 (3) | 0.5942 (3) | 0.42011 (18) | 0.0585 (8) | |
H11 | 0.332 (4) | 0.607 (3) | 0.468 (2) | 0.083 (13)* | |
C12 | 0.3338 (3) | 0.5257 (3) | 0.37614 (19) | 0.0583 (8) | |
C14 | 0.4454 (4) | 0.4591 (4) | 0.3796 (3) | 0.0948 (16) | |
H141 | 0.4206 | 0.4004 | 0.3578 | 0.104* | |
H142 | 0.4724 | 0.4484 | 0.4284 | 0.104* | |
H143 | 0.5144 | 0.4859 | 0.3548 | 0.104* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0290 (2) | 0.0265 (2) | 0.0382 (2) | 0.000 | 0.00162 (15) | 0.000 |
O1 | 0.0356 (16) | 0.0299 (14) | 0.071 (2) | 0.000 | −0.0038 (15) | 0.000 |
O2 | 0.0350 (15) | 0.0282 (13) | 0.074 (2) | 0.000 | 0.0112 (14) | 0.000 |
Cl3 | 0.0553 (5) | 0.0515 (4) | 0.0725 (5) | −0.0242 (4) | 0.0004 (4) | 0.0036 (4) |
N1 | 0.0430 (13) | 0.0451 (14) | 0.0612 (15) | 0.0064 (11) | 0.0145 (11) | 0.0062 (12) |
N2 | 0.0380 (11) | 0.0367 (11) | 0.0429 (11) | 0.0008 (9) | 0.0044 (9) | 0.0009 (9) |
C3 | 0.0528 (17) | 0.0440 (15) | 0.0420 (14) | −0.0087 (13) | 0.0042 (12) | −0.0016 (11) |
C6 | 0.077 (2) | 0.0492 (18) | 0.0461 (16) | −0.0043 (17) | −0.0055 (15) | 0.0078 (14) |
C4 | 0.076 (2) | 0.067 (2) | 0.0550 (18) | −0.0077 (19) | 0.0290 (17) | 0.0025 (17) |
C5 | 0.059 (2) | 0.059 (2) | 0.079 (2) | 0.0036 (16) | 0.0340 (18) | −0.0020 (17) |
C7 | 0.089 (3) | 0.091 (3) | 0.137 (4) | 0.027 (3) | 0.062 (3) | −0.002 (3) |
N8 | 0.0389 (12) | 0.0455 (14) | 0.0516 (14) | 0.0076 (10) | −0.0040 (10) | −0.0097 (11) |
N9 | 0.0339 (10) | 0.0368 (11) | 0.0433 (11) | 0.0031 (9) | −0.0005 (8) | −0.0032 (9) |
C10 | 0.0451 (14) | 0.0386 (14) | 0.0417 (13) | −0.0066 (11) | −0.0003 (11) | −0.0009 (11) |
C13 | 0.066 (2) | 0.0458 (17) | 0.0510 (16) | 0.0012 (15) | 0.0023 (15) | −0.0100 (13) |
C11 | 0.0568 (19) | 0.064 (2) | 0.0530 (17) | 0.0001 (16) | −0.0160 (14) | −0.0083 (15) |
C12 | 0.0442 (16) | 0.060 (2) | 0.069 (2) | 0.0098 (15) | −0.0155 (14) | −0.0029 (16) |
C14 | 0.063 (3) | 0.102 (4) | 0.115 (4) | 0.035 (3) | −0.036 (2) | −0.022 (3) |
Ni1—O1 | 2.068 (3) | C5—C7 | 1.502 (5) |
Ni1—O2 | 2.070 (3) | C7—H71 | 0.9600 |
Ni1—N2i | 2.115 (2) | C7—H72 | 0.9600 |
Ni1—N2 | 2.115 (2) | C7—H73 | 0.9600 |
Ni1—N9 | 2.121 (2) | N8—C12 | 1.342 (4) |
Ni1—N9i | 2.121 (2) | N8—N9 | 1.360 (3) |
O1—H101 | 0.69 (3) | N8—H8 | 0.75 (4) |
O2—H201 | 0.69 (3) | N9—C10 | 1.345 (3) |
N1—C5 | 1.344 (4) | C10—C11 | 1.399 (4) |
N1—N2 | 1.357 (3) | C10—C13 | 1.490 (4) |
N1—H1 | 0.87 (3) | C13—H131 | 0.9600 |
N2—C3 | 1.343 (4) | C13—H132 | 0.9600 |
C3—C4 | 1.399 (5) | C13—H133 | 0.9600 |
C3—C6 | 1.482 (5) | C11—C12 | 1.353 (5) |
C6—H61 | 0.9600 | C11—H11 | 0.99 (4) |
C6—H62 | 0.9600 | C12—C14 | 1.506 (5) |
C6—H63 | 0.9600 | C14—H141 | 0.9600 |
C4—C5 | 1.368 (6) | C14—H142 | 0.9600 |
C4—H4 | 0.84 (4) | C14—H143 | 0.9600 |
O1—Ni1—O2 | 180.0 | N1—C5—C7 | 120.9 (4) |
O1—Ni1—N2i | 90.22 (6) | C4—C5—C7 | 133.3 (4) |
O2—Ni1—N2i | 89.78 (6) | C5—C7—H71 | 109.5 |
O1—Ni1—N2 | 90.22 (6) | C5—C7—H72 | 109.5 |
O2—Ni1—N2 | 89.78 (6) | H71—C7—H72 | 109.5 |
N2i—Ni1—N2 | 179.56 (13) | C5—C7—H73 | 109.5 |
O1—Ni1—N9 | 89.17 (6) | H71—C7—H73 | 109.5 |
O2—Ni1—N9 | 90.83 (6) | H72—C7—H73 | 109.5 |
N2i—Ni1—N9 | 88.12 (8) | C12—N8—N9 | 112.2 (3) |
N2—Ni1—N9 | 91.88 (8) | C12—N8—H8 | 126 (3) |
O1—Ni1—N9i | 89.17 (6) | N9—N8—H8 | 122 (3) |
O2—Ni1—N9i | 90.83 (6) | C10—N9—N8 | 104.7 (2) |
N2i—Ni1—N9i | 91.88 (8) | C10—N9—Ni1 | 136.82 (19) |
N2—Ni1—N9i | 88.12 (8) | N8—N9—Ni1 | 118.04 (17) |
N9—Ni1—N9i | 178.35 (12) | N9—C10—C11 | 109.6 (3) |
Ni1—O1—H101 | 121 (3) | N9—C10—C13 | 122.6 (3) |
Ni1—O2—H201 | 127 (3) | C11—C10—C13 | 127.8 (3) |
C5—N1—N2 | 112.4 (3) | C10—C13—H131 | 109.5 |
C5—N1—H1 | 125 (2) | C10—C13—H132 | 109.5 |
N2—N1—H1 | 122 (2) | H131—C13—H132 | 109.5 |
C3—N2—N1 | 105.3 (2) | C10—C13—H133 | 109.5 |
C3—N2—Ni1 | 135.1 (2) | H131—C13—H133 | 109.5 |
N1—N2—Ni1 | 118.17 (17) | H132—C13—H133 | 109.5 |
N2—C3—C4 | 109.3 (3) | C12—C11—C10 | 106.8 (3) |
N2—C3—C6 | 123.1 (3) | C12—C11—H11 | 126 (2) |
C4—C3—C6 | 127.6 (3) | C10—C11—H11 | 127 (2) |
C3—C6—H61 | 109.5 | N8—C12—C11 | 106.6 (3) |
C3—C6—H62 | 109.5 | N8—C12—C14 | 120.4 (3) |
H61—C6—H62 | 109.5 | C11—C12—C14 | 133.0 (3) |
C3—C6—H63 | 109.5 | C12—C14—H141 | 109.5 |
H61—C6—H63 | 109.5 | C12—C14—H142 | 109.5 |
H62—C6—H63 | 109.5 | H141—C14—H142 | 109.5 |
C5—C4—C3 | 107.1 (3) | C12—C14—H143 | 109.5 |
C5—C4—H4 | 129 (3) | H141—C14—H143 | 109.5 |
C3—C4—H4 | 123 (3) | H142—C14—H143 | 109.5 |
N1—C5—C4 | 105.8 (3) |
Symmetry code: (i) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H101···Cl3ii | 0.69 (3) | 2.35 (3) | 3.044 (2) | 175 (3) |
O2—H201···Cl3iii | 0.69 (3) | 2.39 (3) | 3.065 (2) | 166 (4) |
N1—H1···Cl3iv | 0.87 (3) | 2.40 (3) | 3.242 (3) | 164 (3) |
N8—H8···Cl3v | 0.75 (4) | 2.52 (4) | 3.223 (3) | 157 (4) |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) −x+1/2, −y+1/2, −z+1; (iv) x−1, −y+1, z−1/2; (v) x−1/2, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C5H8N2)4(H2O)2]Cl2 |
Mr | 550.18 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 10.505 (3), 14.213 (2), 18.822 (3) |
β (°) | 92.77 (2) |
V (Å3) | 2807.1 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.91 |
Crystal size (mm) | 0.5 × 0.2 × 0.2 |
Data collection | |
Diffractometer | AFC5S Rigaku diffractometer |
Absorption correction | Analytical (de Meulenaer & Tompa, 1965) |
Tmin, Tmax | 0.560, 0.788 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5343, 5110, 3056 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.757 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.057, 0.171, 1.05 |
No. of reflections | 5109 |
No. of parameters | 185 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.84, −0.85 |
Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989a), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1989b), SHELXS86 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEX (McArdle, 1995), PARST97 (Nardelli, 1996).
Ni1—O1 | 2.068 (3) | Ni1—N2 | 2.115 (2) |
Ni1—O2 | 2.070 (3) | Ni1—N9 | 2.121 (2) |
O1—Ni1—N2 | 90.22 (6) | O2—Ni1—N9 | 90.83 (6) |
O2—Ni1—N2 | 89.78 (6) | N2—Ni1—N9 | 91.88 (8) |
O1—Ni1—N9 | 89.17 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H101···Cl3i | 0.69 (3) | 2.35 (3) | 3.044 (2) | 175 (3) |
O2—H201···Cl3ii | 0.69 (3) | 2.39 (3) | 3.065 (2) | 166 (4) |
N1—H1···Cl3iii | 0.87 (3) | 2.40 (3) | 3.242 (3) | 164 (3) |
N8—H8···Cl3iv | 0.75 (4) | 2.52 (4) | 3.223 (3) | 157 (4) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1/2, −y+1/2, −z+1; (iii) x−1, −y+1, z−1/2; (iv) x−1/2, −y+1/2, z−1/2. |
In recent years we have investigated the coordination chemistry of metal complexes with N-containing heterocycles derivatives (Driessen et al., 1988; Małecka et al., 1998; Ochocki et al., 1990, 1992, 1997) because of expected pharmacological activity by analogy to cis platinum complexes (Hollis, 1989; Reedijk, 1996). Previous studies on this kind of complexes showed the significant role played in biological processes which is often related to their coordination ability towards transition metal ions (Ochocki et al., 1998). This work opens the studies on transition metal complexes with pyrazoles and their derivatives. On the other hand nickel is now recognized to be an essential element for bacteria, plants, animals and humans, since it plays an important role in catalytic activity of enzymes. \sch
The X-ray structure analysis of the title compound, (I), was undertaken to elucidate the geometry around the Ni2+ ion. The central ion Ni2+ of the complex is in a special position on the twofold axis running through atoms O1, Ni1 and O2. The Ni2+ ion is centered in slightly distorted octahedral environment. The basal plane is formed by N atoms of 3,5-dimethylpyrazole ligands, which is distorted with the tetrahedral angle [178.3 (1)°] [proposed by Holm & O'Connor (1971)]. The distortion of the local tetrahedral coordination is assigned in a bending angle of 179.4 (1)° (which shows how far the Ni2+ ion is shifted from the geometric centre of the tetrahedron). There is a net of hydrogen bonds (see table 2). Bond distances and angles in the phenyl and pyrazole rings are in a good agreement with expected values (Allen et al., 1987; Orpen et al., 1989).
The ORTEP drawing of the molecule with the atomic numbering scheme is given in Fig. 1.