Download citation
Download citation
link to html
The distinctive feature of the crystal structure of 2,6-di­phenyl­pyridine-4-carboxyl­ic acid, C18H13NO2, is the formation of intermolecular O—H...O hydrogen bonds that lead to the formation of centrosymmetric cyclic dimers with R_{2}^2(8) topology. Molecules related by translation along the b axis exhibit strong π–π stacking of aromatic rings, with an average interplanar distance of 3.3 Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101017693/na1541sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101017693/na1541Isup2.hkl
Contains datablock I

CCDC reference: 180165

Comment top

The most common packing motif of carboxylic acids is based on the formation of cyclic dimers through a pair of O—H···O bonds (Leiserowitz, 1976). By contrast, the solid state chemistry of pyridinecarboxylic acids is dominated by the formation of an intermolecular O—H···N hydrogen-bond between the carboxylic group and the pyridine nitrogen atom of a second molecule (Takusagawa & Shimada, 1976; Wright & King, 1953). The latter H-bonding interaction can be described more accurately as occurring via O—H···N or +N—H···O- bonds depending on the tautomeric form present. Similar arguments also apply to other heterocyclic aromatic carboxylic acids such as the pyrazinic acid (Takusagawa et al., 1974) and the quinoline-4-carboxylic acid (Dobson & Gerkin, 1998). The directional nature of the O—H···N bonding interaction for the isonicotinic acid has been exploited in the promotion of highly oriented structures (O'Shea et al., 2001). On the other hand, when carboxylic groups occupy both α and α' positions of the pyridine ring - as in the dipicolinic acid - the nitrogen atom is not involved in head-to-tail interactions of the type described, although O—H···N hydrogen-bonds with a cocrystallized water molecule are still present (Takusagawa et al., 1973).

The molecular structure of (I) is shown in Figure 1. Geometric parameters are normal (Table 1) and compare well with those of other 2,6-diphenyl-pyridines (Krygowski et al., 1994; Silva et al., 1997). The whole molecule is nearly planar, as clearly shown by the values of the torsion angles reported in Table 1. Dihedral angles between the best-fit plane of the pyridine and those of the phenyl substituents are 8.7 (1)° (ring atoms C8,···,C13) and 9.8 (1)° (ring atoms C14,···,C19), respectively.

The supramolecular structure of (I) can be described in terms of π-π interactions and intermolecular H-bonding (Table 2). In the crystal packing the molecules are stacked along the b axis (Figure 2). The shortest interplanar distance of 2.919 (2) Å is found between the phenyl ring C14,···C19 and its translation-related one. The stacks are organized in a pseudo-herringbone fashion since the π-H interactions do not seem to be dominant like in a classical herringbone stacking mode (Gavezzotti & Desiraju, 1988; Andre et al., 1997). The dominant supramolecular interaction is the couple of O—H···O hydrogen bonds between centrosymmetric carboxylic acid groups (Figure 3). The corresponding graph-set is therefore R22(8) (Etter et al., 1990), which is typical for carboxyl dimers. In addition, a second motif with graph-set R46(44) can be identify in the crystal packing when weaker hydrogen bonds of the C—H···O type are considered (Fig. 3).

Experimental top

The title compound was prepared in one step from 3-benzoylacrilic acid and N-phenacylpyridinium bromide in the presence of excess ammonium acetate (Blumbergs et al., 1972). The compound was recrystallized from hot acetic acid affording pale yellow crystals.

Computing details top

Data collection: XPREP (Bruker, 1997); cell refinement: XPREP (Bruker, 1997); data reduction: XPREP (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Bruker, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom labelling scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of (I) viewed down the b axis.
[Figure 3] Fig. 3. Partial view of the crystal structure of (I) showing the formation of ring motifs with graph-set R22(8) that further interact through lateral C—H···O interactions to afford larger rings with graph-set R46(44).
(I) top
Crystal data top
C18H13NO2F(000) = 576
Mr = 275.29Dx = 1.32 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 16.524 (4) ÅCell parameters from 25 reflections
b = 5.2898 (9) Åθ = 8.0–12.9°
c = 17.021 (3) ŵ = 0.09 mm1
β = 111.229 (17)°T = 293 K
V = 1386.8 (5) Å3Block, pale yellow
Z = 40.23 × 0.20 × 0.17 mm
Data collection top
Siemens R3m/V
diffractometer
Rint = 0.069
Radiation source: X-ray tubeθmax = 25.1°, θmin = 1.5°
Graphite monochromatorh = 019
θ/2θ scansk = 06
2559 measured reflectionsl = 2018
2469 independent reflections2 standard reflections every 48 min
980 reflections with I > 2σ(I) intensity decay: no decay, variation 0.5%
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.025P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.089(Δ/σ)max < 0.001
S = 0.87Δρmax = 0.13 e Å3
2469 reflectionsΔρmin = 0.13 e Å3
190 parameters
Crystal data top
C18H13NO2V = 1386.8 (5) Å3
Mr = 275.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.524 (4) ŵ = 0.09 mm1
b = 5.2898 (9) ÅT = 293 K
c = 17.021 (3) Å0.23 × 0.20 × 0.17 mm
β = 111.229 (17)°
Data collection top
Siemens R3m/V
diffractometer
Rint = 0.069
2559 measured reflections2 standard reflections every 48 min
2469 independent reflections intensity decay: no decay, variation 0.5%
980 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 0.87Δρmax = 0.13 e Å3
2469 reflectionsΔρmin = 0.13 e Å3
190 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.92467 (13)0.1108 (4)0.69830 (13)0.0515 (6)
O11.05832 (11)0.7793 (4)0.57999 (10)0.0709 (6)
H11.06190.90400.55280.106*
O20.91707 (11)0.8373 (4)0.50817 (11)0.0674 (6)
C20.85978 (16)0.2316 (5)0.63842 (16)0.0483 (7)
C30.87627 (16)0.4328 (5)0.59355 (16)0.0518 (8)
H30.83070.51450.55230.062*
C40.96062 (17)0.5099 (5)0.61078 (16)0.0481 (7)
C51.02650 (16)0.3905 (5)0.67265 (16)0.0542 (8)
H51.08360.44380.68630.065*
C61.00715 (16)0.1875 (5)0.71508 (16)0.0513 (8)
C70.97728 (18)0.7241 (5)0.56290 (17)0.0527 (8)
C81.07541 (17)0.0392 (5)0.78092 (16)0.0518 (7)
C91.16336 (18)0.0702 (7)0.79678 (18)0.0833 (11)
H91.18150.19140.76710.100*
C101.22390 (19)0.0766 (7)0.8559 (2)0.0853 (11)
H101.28250.05170.86580.102*
C111.20051 (19)0.2564 (6)0.90019 (17)0.0743 (10)
H111.24220.35600.93940.089*
C121.11401 (19)0.2885 (7)0.88584 (19)0.0910 (11)
H121.09640.41000.91570.109*
C131.05300 (18)0.1394 (6)0.8267 (2)0.0764 (10)
H130.99460.16230.81810.092*
C140.77008 (16)0.1425 (5)0.62523 (16)0.0490 (7)
C150.75731 (16)0.0738 (6)0.66479 (16)0.0583 (8)
H150.80510.16840.69740.070*
C160.67528 (18)0.1521 (6)0.65700 (17)0.0688 (9)
H160.66800.29680.68480.083*
C170.60398 (19)0.0149 (7)0.60776 (19)0.0730 (10)
H170.54840.06710.60220.088*
C180.61493 (18)0.1974 (7)0.56717 (19)0.0743 (9)
H180.56680.29020.53410.089*
C190.69789 (17)0.2752 (6)0.57512 (17)0.0639 (8)
H190.70480.41810.54640.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0433 (13)0.0622 (17)0.0502 (15)0.0008 (13)0.0184 (11)0.0015 (13)
O10.0584 (12)0.0761 (15)0.0817 (14)0.0043 (12)0.0294 (10)0.0206 (13)
O20.0562 (12)0.0744 (15)0.0683 (14)0.0015 (11)0.0185 (10)0.0202 (12)
C20.0446 (16)0.050 (2)0.0515 (18)0.0025 (15)0.0190 (15)0.0066 (16)
C30.0473 (17)0.054 (2)0.0554 (19)0.0028 (15)0.0194 (14)0.0021 (16)
C40.0496 (17)0.0456 (19)0.0532 (19)0.0039 (15)0.0237 (15)0.0001 (16)
C50.0451 (16)0.062 (2)0.0576 (19)0.0012 (16)0.0203 (15)0.0026 (17)
C60.0451 (17)0.056 (2)0.0532 (19)0.0005 (15)0.0179 (15)0.0026 (16)
C70.0495 (17)0.057 (2)0.0544 (19)0.0057 (17)0.0225 (15)0.0024 (18)
C80.0503 (18)0.056 (2)0.0505 (18)0.0026 (16)0.0203 (15)0.0002 (16)
C90.0500 (18)0.117 (3)0.084 (3)0.004 (2)0.0257 (18)0.037 (2)
C100.0491 (18)0.122 (3)0.083 (3)0.014 (2)0.0212 (18)0.028 (2)
C110.062 (2)0.084 (3)0.067 (2)0.009 (2)0.0097 (17)0.010 (2)
C120.061 (2)0.107 (3)0.090 (3)0.008 (2)0.0096 (18)0.041 (2)
C130.0474 (18)0.092 (3)0.080 (2)0.0061 (19)0.0124 (17)0.027 (2)
C140.0439 (16)0.054 (2)0.0500 (18)0.0015 (15)0.0182 (14)0.0049 (16)
C150.0478 (18)0.067 (2)0.061 (2)0.0035 (16)0.0209 (15)0.0004 (18)
C160.0587 (19)0.082 (2)0.069 (2)0.014 (2)0.0260 (17)0.0033 (19)
C170.054 (2)0.086 (3)0.083 (3)0.010 (2)0.0297 (19)0.015 (2)
C180.0463 (18)0.077 (3)0.094 (3)0.0000 (18)0.0182 (17)0.004 (2)
C190.0524 (17)0.067 (2)0.070 (2)0.0020 (18)0.0191 (16)0.0050 (18)
Geometric parameters (Å, º) top
N1—C21.343 (3)C10—C111.354 (4)
N1—C61.350 (3)C10—H100.9300
O1—C71.297 (3)C11—C121.371 (3)
O1—H10.8200C11—H110.9300
O2—C71.243 (3)C12—C131.384 (4)
C2—C31.393 (3)C12—H120.9300
C2—C141.493 (3)C13—H130.9300
C3—C41.378 (3)C14—C191.381 (3)
C3—H30.9300C14—C151.382 (3)
C4—C51.365 (3)C15—C161.377 (3)
C4—C71.478 (3)C15—H150.9300
C5—C61.394 (3)C16—C171.379 (4)
C5—H50.9300C16—H160.9300
C6—C81.493 (3)C17—C181.364 (4)
C8—C131.359 (3)C17—H170.9300
C8—C91.389 (3)C18—C191.390 (3)
C9—C101.374 (4)C18—H180.9300
C9—H90.9300C19—H190.9300
C2—N1—C6119.0 (2)C9—C10—H10119.1
C7—O1—H1109.5C10—C11—C12118.5 (3)
N1—C2—C3121.2 (2)C10—C11—H11120.7
N1—C2—C14116.1 (3)C12—C11—H11120.7
C3—C2—C14122.6 (3)C11—C12—C13119.8 (3)
C4—C3—C2119.5 (3)C11—C12—H12120.1
C4—C3—H3120.2C13—C12—H12120.1
C2—C3—H3120.2C8—C13—C12122.4 (3)
C5—C4—C3119.3 (3)C8—C13—H13118.8
C5—C4—C7121.6 (3)C12—C13—H13118.8
C3—C4—C7119.0 (3)C19—C14—C15118.1 (3)
C4—C5—C6119.2 (2)C19—C14—C2121.4 (3)
C4—C5—H5120.4C15—C14—C2120.4 (3)
C6—C5—H5120.4C16—C15—C14121.4 (3)
N1—C6—C5121.7 (2)C16—C15—H15119.3
N1—C6—C8115.6 (3)C14—C15—H15119.3
C5—C6—C8122.8 (2)C15—C16—C17119.6 (3)
O2—C7—O1122.8 (3)C15—C16—H16120.2
O2—C7—C4121.6 (2)C17—C16—H16120.2
O1—C7—C4115.6 (3)C18—C17—C16120.0 (3)
C13—C8—C9117.0 (3)C18—C17—H17120.0
C13—C8—C6120.5 (3)C16—C17—H17120.0
C9—C8—C6122.5 (3)C17—C18—C19120.1 (3)
C10—C9—C8120.6 (3)C17—C18—H18120.0
C10—C9—H9119.7C19—C18—H18120.0
C8—C9—H9119.7C14—C19—C18120.7 (3)
C11—C10—C9121.7 (3)C14—C19—H19119.6
C11—C10—H10119.1C18—C19—H19119.6
C6—N1—C2—C30.2 (4)C13—C8—C9—C100.5 (5)
C6—N1—C2—C14178.0 (2)C6—C8—C9—C10177.7 (3)
N1—C2—C3—C40.0 (4)C8—C9—C10—C110.5 (5)
C14—C2—C3—C4178.1 (2)C9—C10—C11—C120.9 (5)
C2—C3—C4—C51.2 (4)C10—C11—C12—C130.4 (5)
C2—C3—C4—C7179.8 (2)C9—C8—C13—C121.0 (5)
C3—C4—C5—C62.1 (4)C6—C8—C13—C12177.2 (3)
C7—C4—C5—C6179.2 (2)C11—C12—C13—C80.6 (5)
C2—N1—C6—C50.8 (4)N1—C2—C14—C19170.0 (2)
C2—N1—C6—C8178.5 (2)C3—C2—C14—C198.2 (4)
C4—C5—C6—N12.0 (4)N1—C2—C14—C158.6 (3)
C4—C5—C6—C8177.3 (2)C3—C2—C14—C15173.3 (2)
C5—C4—C7—O2178.0 (3)C19—C14—C15—C162.0 (4)
C3—C4—C7—O20.7 (4)C2—C14—C15—C16176.6 (2)
C5—C4—C7—O14.1 (4)C14—C15—C16—C171.0 (4)
C3—C4—C7—O1177.2 (2)C15—C16—C17—C180.1 (5)
N1—C6—C8—C137.6 (4)C16—C17—C18—C190.2 (5)
C5—C6—C8—C13173.0 (3)C15—C14—C19—C182.1 (4)
N1—C6—C8—C9170.5 (3)C2—C14—C19—C18176.4 (2)
C5—C6—C8—C98.9 (4)C17—C18—C19—C141.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.832.640 (3)172
C11—H11···O2ii0.932.703.406 (3)134
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H13NO2
Mr275.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)16.524 (4), 5.2898 (9), 17.021 (3)
β (°) 111.229 (17)
V3)1386.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.23 × 0.20 × 0.17
Data collection
DiffractometerSiemens R3m/V
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2559, 2469, 980
Rint0.069
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.089, 0.87
No. of reflections2469
No. of parameters190
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.13

Computer programs: XPREP (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP (Bruker, 1997).

Selected geometric parameters (Å, º) top
N1—C21.343 (3)C3—C41.378 (3)
N1—C61.350 (3)C4—C51.365 (3)
O1—C71.297 (3)C4—C71.478 (3)
O2—C71.243 (3)C5—C61.394 (3)
C2—C31.393 (3)
O2—C7—O1122.8 (3)O1—C7—C4115.6 (3)
O2—C7—C4121.6 (2)
C3—C4—C7—O20.7 (4)N1—C6—C8—C137.6 (4)
C5—C4—C7—O14.1 (4)N1—C2—C14—C158.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.832.640 (3)172
C11—H11···O2ii0.932.703.406 (3)134
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1/2, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds