Download citation
Download citation
link to html
The title compound, C16H19BrO4, is a derivative of osthol, isolated from the seeds of Imperatoria Osthruthium. The structure was solved in space group P\overline 1, with two mol­ecules in the asymmetric unit, and was refined to a final R factor of 0.064. The two mol­ecules in the asymmetric unit differ in the orientation of their brominated substituent group. The benzo­pyran ring displays aromatic character. The packing of the mol­ecules in the lattice is mainly due to C—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102020838/na1573sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102020838/na1573Isup2.hkl
Contains datablock I

CCDC reference: 173576

Comment top

The title compound, (I), a derivative of osthol, is an antiinflammatory and antifungal drug (Akelah et al., 1981), and is the active principle of the seeds of Imperatoria Osthruthium used in the traditional Chinese system of medicine (Liu et al., 1998). The aim of the present work was to modify the isoprenyl group in osthol by a microwave-assisted reaction employing polymer-supported reagents and to study the change in activity resulting therefrom (Geetha Gopalakrishnan et al., 2000). \sch

The compound crystallizes in space group P1, with two molecules, A and B, in the asymmetric unit. The molecule has a chiral centre at C2' and the two molecules, A and B, differ in the orientation of the brominated substituent group; the configuration of molecule A is S, while that of B is R. Fig. 1 shows a diagram of (I) with the numbering scheme adopted for this molecule. Which?

In the benzopyran ring of (I), the average O1—C2 and C2—C3 distances in the two molecules are 1.381 (7) and 1.447 (9) Å, respectively, indicating that the electrons are delocalized in the ring with the carbonyl group acting as the electron-withdrawing group. This is corroborated by the fact that the benzopyran ring is planar.

Most of the bond lengths are similar in both molecules of (I). The maximum deviation is observed in the C7'-O3 bond [1.420 (5) Å in molecule A and 1.440 (5) Å in molecule B]. Atoms C1', C2', C3' and C5' are in a plane and are oriented at an angle of 174.1 (3)° (molecule A) and 173.2 (3)° (molecule B) with respect to the benzopyran ring.

In the packing of (I), molecules A and B run as layers along the b axis. The two independent molecules, as well as their symmetry-related molecules, are connected by C—H···O hydrogen bonds (Table 2).

Experimental top

The title derivative was prepared by bromomethoxylation of the double bond in the isoprenyl unit of osthol under microwave conditions employing a new polymer-supported bromine chloride resin. Unlike the normal cohalogenating reagents such as Br2/MeOH, or N-bromosuccinamide in MeOH, which result in multiple products or pose difficulty in isolation (Batluenga & Martinez Gallo, 1985), the bromine chloride resin with osthol was a chemoselective and regioselective reaction, which proceeded quantitatively within 30 s, yielding the desired bromomethoxy compound, (I). To a solution of osthol (0.024 g, 1 mmol) in MeOH (10 ml), the polymer-supported bromine chloride resin [2 g, prepared by passing bromine over commercially available chloride resin (IRA-400)] was added and the mixture was irradiated in a modified domestic microwave oven fitted with a refluxing unit. On completion of the reaction, which was monitored by thin-layer chromatography, the resin was filtered and repeatedly washed with methanol, and the filtrate, after concentration, was purified by column chromatography (silica gel, 60–120 mesh, eluent EtOAc-hexane). The title compound was then crystallized in ethyl acetate by slow evaporation.

Refinement top

All H atoms were geometrically fixed and refined isotropically using a riding model. Please supply all C—H distances and angles for addition to CIF.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 and PARST97 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
8-(2-Bromo-3-methoxy-3-methylbutyl)-7-methoxycoumarin top
Crystal data top
C16H19BrO4Z = 4
Mr = 355.21F(000) = 728
Triclinic, P1Dx = 1.508 Mg m3
a = 10.280 (2) ÅCu Kα radiation, λ = 1.54180 Å
b = 10.497 (4) ÅCell parameters from 25 reflections
c = 16.175 (4) Åθ = 15–30°
α = 75.91 (2)°µ = 3.70 mm1
β = 80.81 (2)°T = 293 K
γ = 68.00 (3)°Block, colourless
V = 1565.1 (8) Å30.25 × 0.12 × 0.10 mm
Data collection top
Enraf-Nonius CAD-4 EXPRESS
diffractometer
4992 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.070
Graphite monochromatorθmax = 72.7°, θmin = 2.8°
non–profiled ω/2θ scansh = 1112
Absorption correction: ψ scan
(XRAYACS; Chandrasekaran, 1998)
k = 1212
Tmin = 0.458, Tmax = 0.709l = 1919
6666 measured reflections3 standard reflections every 120 min
6133 independent reflections intensity decay: 5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.31 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
6133 reflections(Δ/σ)max = 0.003
379 parametersΔρmax = 1.00 e Å3
0 restraintsΔρmin = 1.41 e Å3
Crystal data top
C16H19BrO4γ = 68.00 (3)°
Mr = 355.21V = 1565.1 (8) Å3
Triclinic, P1Z = 4
a = 10.280 (2) ÅCu Kα radiation
b = 10.497 (4) ŵ = 3.70 mm1
c = 16.175 (4) ÅT = 293 K
α = 75.91 (2)°0.25 × 0.12 × 0.10 mm
β = 80.81 (2)°
Data collection top
Enraf-Nonius CAD-4 EXPRESS
diffractometer
4992 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XRAYACS; Chandrasekaran, 1998)
Rint = 0.070
Tmin = 0.458, Tmax = 0.7093 standard reflections every 120 min
6666 measured reflections intensity decay: 5%
6133 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.31Δρmax = 1.00 e Å3
6133 reflectionsΔρmin = 1.41 e Å3
379 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C2A0.2753 (5)0.6502 (5)0.4263 (3)0.0688 (11)
C3A0.3471 (5)0.6998 (5)0.5058 (4)0.0767 (13)
H2A0.44490.66860.51130.092*
C4A0.2748 (5)0.7895 (6)0.5714 (3)0.0747 (12)
H3A0.32320.81960.62130.090*
C5A0.0436 (5)0.9308 (5)0.6322 (3)0.0654 (10)
H4A0.08730.96390.68330.079*
C6A0.0982 (5)0.9715 (5)0.6229 (3)0.0657 (10)
H5A0.15091.03230.66760.079*
C7A0.1666 (4)0.9232 (4)0.5470 (3)0.0579 (9)
C8A0.0893 (4)0.8294 (4)0.4782 (2)0.0509 (8)
C9A0.0558 (4)0.7909 (4)0.4905 (2)0.0523 (8)
C10A0.1263 (4)0.8387 (4)0.5655 (3)0.0592 (9)
C1'A0.1586 (4)0.7713 (4)0.3963 (2)0.0525 (8)
H10A0.25860.82560.39430.063*
H10B0.12080.78310.34860.063*
C2'A0.1388 (4)0.6160 (4)0.3853 (2)0.0506 (8)
H11A0.03740.56350.38880.061*
C3'A0.2024 (4)0.5494 (4)0.2998 (2)0.0532 (8)
C4'A0.3611 (5)0.6191 (5)0.2851 (3)0.0718 (12)
H13A0.38430.71800.28990.108*
H13B0.39210.57950.22900.108*
H13C0.40690.60390.32720.108*
C5'A0.1629 (6)0.3920 (5)0.2925 (3)0.0749 (12)
H14A0.06270.34960.30210.112*
H14B0.20820.37590.33450.112*
H14C0.19290.35130.23640.112*
C6'A0.0081 (5)0.5118 (6)0.2185 (3)0.0812 (14)
H15A0.01260.54020.17150.122*
H15B0.04700.53720.26910.122*
H15C0.01410.41210.20570.122*
C7'A0.3937 (6)1.0623 (5)0.5976 (3)0.0811 (14)
H16A0.49121.08030.57880.122*
H16B0.37281.02680.64940.122*
H16C0.37451.14770.60800.122*
O1A0.1298 (3)0.7020 (3)0.42179 (18)0.0571 (6)
O2A0.3289 (4)0.5704 (4)0.3626 (3)0.0889 (10)
O3A0.3089 (3)0.9617 (3)0.5335 (2)0.0705 (8)
O4A0.1503 (3)0.5785 (3)0.23183 (17)0.0615 (7)
Br10.21609 (5)0.59293 (5)0.48282 (3)0.06760 (12)
C2B0.3097 (4)0.0344 (5)0.1486 (2)0.0556 (9)
C3B0.2989 (4)0.0974 (5)0.1657 (3)0.0636 (10)
H2B0.28930.10800.22200.076*
C4B0.3025 (4)0.2064 (5)0.1013 (3)0.0626 (10)
H3B0.29560.29030.11450.075*
C5B0.3245 (4)0.3019 (4)0.0562 (3)0.0594 (9)
H4B0.32120.38700.04670.071*
C6B0.3367 (4)0.2843 (4)0.1376 (3)0.0593 (9)
H5B0.34230.35620.18320.071*
C7B0.3410 (4)0.1569 (4)0.1527 (2)0.0517 (8)
C8B0.3327 (3)0.0468 (3)0.0844 (2)0.0450 (7)
C9B0.3230 (3)0.0689 (4)0.0030 (2)0.0456 (7)
C10B0.3166 (4)0.1957 (4)0.0143 (3)0.0511 (8)
C1'B0.3362 (4)0.0915 (4)0.0991 (2)0.0464 (7)
H10C0.41060.16690.06790.056*
H10D0.35940.09350.15940.056*
C2'B0.1984 (3)0.1190 (3)0.0718 (2)0.0453 (7)
H11B0.17440.11230.01150.054*
C3'B0.2050 (4)0.2648 (4)0.0797 (2)0.0481 (7)
C4'B0.2374 (5)0.2880 (4)0.1714 (2)0.0614 (10)
H13D0.32300.27180.19490.092*
H13E0.16150.22410.20520.092*
H13F0.24800.38270.17190.092*
C5'B0.0690 (4)0.2902 (5)0.0412 (3)0.0653 (10)
H14D0.05030.27630.01660.098*
H14E0.07870.38450.04180.098*
H14F0.00760.22560.07420.098*
C6'B0.3216 (5)0.3863 (5)0.0529 (3)0.0717 (12)
H15D0.40770.45690.07290.107*
H15E0.24370.41490.07930.107*
H15F0.31090.29930.06750.107*
C7'B0.3620 (6)0.2408 (5)0.3044 (3)0.0818 (14)
H16D0.37280.20790.35640.123*
H16E0.44090.26700.30140.123*
H16F0.27690.32070.30340.123*
O1B0.3188 (3)0.0418 (3)0.06375 (15)0.0500 (5)
O2B0.3103 (3)0.1396 (4)0.20143 (18)0.0711 (8)
O3B0.3552 (3)0.1309 (3)0.23227 (17)0.0636 (7)
O4B0.3251 (3)0.3681 (3)0.03703 (17)0.0556 (6)
Br20.04615 (4)0.03110 (4)0.13849 (3)0.06098 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C2A0.060 (2)0.065 (2)0.086 (3)0.021 (2)0.016 (2)0.018 (2)
C3A0.054 (2)0.085 (3)0.097 (4)0.031 (2)0.004 (2)0.027 (3)
C4A0.070 (3)0.086 (3)0.077 (3)0.037 (2)0.010 (2)0.026 (3)
C5A0.084 (3)0.065 (2)0.050 (2)0.034 (2)0.002 (2)0.0097 (18)
C6A0.077 (3)0.061 (2)0.055 (2)0.021 (2)0.012 (2)0.0052 (18)
C7A0.063 (2)0.051 (2)0.055 (2)0.0147 (17)0.0043 (17)0.0106 (16)
C8A0.057 (2)0.0465 (18)0.0485 (18)0.0165 (15)0.0022 (15)0.0128 (15)
C9A0.061 (2)0.0461 (18)0.0526 (19)0.0192 (16)0.0022 (16)0.0150 (15)
C10A0.062 (2)0.060 (2)0.060 (2)0.0259 (18)0.0046 (18)0.0184 (18)
C1'A0.054 (2)0.0499 (19)0.0494 (19)0.0122 (15)0.0025 (15)0.0124 (15)
C2'A0.054 (2)0.0516 (19)0.0457 (18)0.0157 (15)0.0065 (15)0.0120 (15)
C3'A0.061 (2)0.054 (2)0.0475 (19)0.0225 (17)0.0085 (16)0.0089 (15)
C4'A0.058 (2)0.091 (3)0.058 (2)0.022 (2)0.0055 (19)0.006 (2)
C5'A0.105 (4)0.056 (2)0.068 (3)0.034 (2)0.011 (2)0.006 (2)
C6'A0.066 (3)0.115 (4)0.065 (3)0.032 (3)0.019 (2)0.013 (3)
C7'A0.074 (3)0.076 (3)0.083 (3)0.016 (2)0.031 (3)0.000 (3)
O1A0.0535 (14)0.0580 (15)0.0608 (15)0.0189 (12)0.0085 (12)0.0118 (12)
O2A0.070 (2)0.089 (2)0.103 (3)0.0258 (18)0.0284 (19)0.001 (2)
O3A0.0598 (17)0.0681 (18)0.0680 (18)0.0092 (14)0.0106 (14)0.0028 (14)
O4A0.0663 (17)0.0702 (17)0.0485 (14)0.0219 (14)0.0089 (12)0.0131 (12)
Br10.0844 (3)0.0761 (3)0.0522 (2)0.0341 (2)0.0137 (2)0.0158 (2)
C2B0.0421 (18)0.075 (3)0.050 (2)0.0212 (17)0.0014 (15)0.0149 (18)
C3B0.056 (2)0.085 (3)0.056 (2)0.023 (2)0.0014 (18)0.032 (2)
C4B0.052 (2)0.068 (2)0.076 (3)0.0188 (18)0.0003 (19)0.036 (2)
C5B0.058 (2)0.0441 (19)0.078 (3)0.0168 (16)0.0053 (19)0.0189 (18)
C6B0.057 (2)0.0478 (19)0.070 (2)0.0180 (16)0.0064 (18)0.0061 (17)
C7B0.0464 (18)0.0520 (19)0.055 (2)0.0161 (15)0.0035 (15)0.0100 (16)
C8B0.0415 (16)0.0447 (17)0.0496 (18)0.0127 (13)0.0065 (13)0.0125 (14)
C9B0.0368 (15)0.0485 (18)0.0523 (19)0.0144 (13)0.0024 (13)0.0129 (14)
C10B0.0401 (17)0.0523 (19)0.064 (2)0.0134 (14)0.0045 (15)0.0220 (16)
C1'B0.0438 (17)0.0450 (17)0.0506 (18)0.0139 (13)0.0041 (14)0.0120 (14)
C2'B0.0445 (17)0.0461 (17)0.0447 (17)0.0136 (14)0.0055 (13)0.0101 (14)
C3'B0.0470 (18)0.0471 (17)0.0510 (19)0.0146 (14)0.0080 (14)0.0117 (14)
C4'B0.079 (3)0.058 (2)0.055 (2)0.026 (2)0.0041 (19)0.0215 (17)
C5'B0.060 (2)0.066 (2)0.079 (3)0.032 (2)0.005 (2)0.015 (2)
C6'B0.089 (3)0.060 (2)0.062 (3)0.022 (2)0.022 (2)0.0012 (19)
C7'B0.106 (4)0.074 (3)0.053 (2)0.030 (3)0.003 (2)0.004 (2)
O1B0.0534 (14)0.0533 (13)0.0462 (13)0.0212 (11)0.0040 (10)0.0110 (10)
O2B0.079 (2)0.089 (2)0.0495 (15)0.0385 (17)0.0022 (14)0.0096 (14)
O3B0.0820 (19)0.0616 (16)0.0474 (14)0.0285 (14)0.0056 (13)0.0054 (12)
O4B0.0573 (15)0.0468 (13)0.0605 (15)0.0147 (11)0.0108 (12)0.0080 (11)
Br20.0505 (2)0.0572 (2)0.0689 (3)0.00566 (17)0.01745 (18)0.01409 (19)
Geometric parameters (Å, º) top
C2A—O2A1.217 (6)C2B—O2B1.220 (5)
C2A—O1A1.383 (5)C2B—O1B1.379 (4)
C2A—C3A1.459 (7)C2B—C3B1.436 (6)
C3A—C4A1.343 (7)C3B—C4B1.354 (6)
C3A—H2A0.9300C3B—H2B0.9300
C4A—C10A1.412 (6)C4B—C10B1.420 (6)
C4A—H3A0.9300C4B—H3B0.9300
C5A—C6A1.351 (6)C5B—C6B1.354 (6)
C5A—C10A1.412 (6)C5B—C10B1.403 (6)
C4A—H3A0.9300C5B—H4B0.9300
C6A—C7A1.395 (6)C6B—C7B1.401 (5)
C6A—H5A0.9300C6B—H5B0.9300
C7A—O3A1.360 (5)C7B—O3B1.353 (4)
C7A—C8A1.414 (5)C7B—C8B1.410 (5)
C8A—C9A1.386 (5)C8B—C9B1.373 (5)
C8A—C1'A1.505 (5)C8B—C1'B1.515 (4)
C9A—O1A1.384 (5)C9B—O1B1.389 (4)
C9A—C10A1.394 (5)C9B—C10B1.402 (5)
C1'A—C2'A1.535 (5)C1'B—C2'B1.526 (5)
C1'A—H10A0.9700C1'B—H10C0.9700
C1'A—H10B0.9700C1'B—H10D0.9700
C2'A—C3'A1.552 (5)C2'B—C3'B1.543 (5)
C2'A—Br11.977 (4)C2'B—Br21.990 (3)
C2'A—H11A0.9800C2'B—H11B0.9800
C3'A—O4A1.437 (4)C3'B—O4B1.443 (4)
C3'A—C4'A1.524 (6)C3'B—C4'B1.525 (5)
C3'A—C5'A1.526 (5)C3'B—C5'B1.528 (5)
C4'A—H13A0.9600C4'B—H13D0.9600
C4'A—H13B0.9600C4'B—H13E0.9600
C4'A—H13C0.9600C4'B—H13F0.9600
C5'A—H14A0.9600C5'B—H14D0.9600
C5'A—H14B0.9600C5'B—H14E0.9600
C5'A—H14C0.9600C5'B—H14F0.9600
C6'A—O4A1.390 (5)C6'B—O4B1.416 (5)
C6'A—H15A0.9600C6'B—H15D0.9600
C6'A—H15B0.9600C6'B—H15E0.9600
C6'A—H15C0.9600C6'B—H15F0.9600
C7'A—O3A1.420 (5)C7'B—O3B1.440 (5)
C7'A—H16A0.9600C7'B—H16D0.9600
C7'A—H16B0.9600C7'B—H16E0.9600
C7'A—H16C0.9600C7'B—H16F0.9600
O2A—C2A—O1A116.1 (5)O2B—C2B—O1B116.9 (4)
O2A—C2A—C3A127.3 (5)O2B—C2B—C3B126.6 (4)
O1A—C2A—C3A116.5 (4)O1B—C2B—C3B116.5 (4)
C4A—C3A—C2A121.3 (4)C4B—C3B—C2B121.3 (4)
C4A—C3A—H2A119.3C4B—C3B—H2B119.4
C2A—C3A—H2A119.3C2B—C3B—H2B119.4
C3A—C4A—C10A120.9 (4)C3B—C4B—C10B121.5 (4)
C3A—C4A—H3A119.6C3B—C4B—H3B119.2
C10A—C4A—H3A119.6C10B—C4B—H3B119.2
C6A—C5A—C10A120.9 (4)C6B—C5B—C10B122.0 (3)
C6A—C5A—H4A119.5C6B—C5B—H4B119.0
C10A—C5A—H4A119.5C10B—C5B—H4B119.0
C5A—C6A—C7A120.7 (4)C5B—C6B—C7B119.5 (4)
C5A—C6A—H5A119.6C5B—C6B—H5B120.2
C7A—C6A—H5A119.6C7B—C6B—H5B120.2
O3A—C7A—C6A123.4 (4)O3B—C7B—C6B122.8 (3)
O3A—C7A—C8A115.7 (3)O3B—C7B—C8B116.2 (3)
C6A—C7A—C8A120.9 (4)C6B—C7B—C8B120.9 (4)
C9A—C8A—C7A116.4 (3)C9B—C8B—C7B117.4 (3)
C9A—C8A—C1'A121.0 (3)C9B—C8B—C1'B120.7 (3)
C7A—C8A—C1'A122.6 (4)C7B—C8B—C1'B121.9 (3)
O1A—C9A—C8A115.7 (3)C8B—C9B—O1B116.8 (3)
O1A—C9A—C10A120.6 (4)C8B—C9B—C10B123.1 (3)
C8A—C9A—C10A123.7 (4)O1B—C9B—C10B120.1 (3)
C9A—C10A—C5A117.3 (4)C9B—C10B—C5B117.1 (3)
C9A—C10A—C4A118.6 (4)C9B—C10B—C4B117.6 (4)
C5A—C10A—C4A124.0 (4)C5B—C10B—C4B125.3 (4)
C8A—C1'A—C2'A114.1 (3)C8B—C1'B—C2'B114.2 (3)
C8A—C1'A—H10A108.7C8B—C1'B—H10C108.7
C2'A—C1'A—H10A108.7C2'B—C1'B—H10C108.7
C8A—C1'A—H10B108.7C8B—C1'B—H10D108.7
C2'A—C1'A—H10B108.7C2'B—C1'B—H10D108.7
H10A—C1'A—H10B107.6H10C—C1'B—H10D107.6
C1'A—C2'A—C3'A116.0 (3)C1'B—C2'B—C3'B114.4 (3)
C1'A—C2'A—Br1108.5 (2)C1'B—C2'B—Br2109.2 (2)
C3'A—C2'A—Br1110.0 (3)C3'B—C2'B—Br2110.3 (2)
C1'A—C2'A—H11A107.3C1'B—C2'B—H11B107.6
C3'A—C2'A—H11A107.3C3'B—C2'B—H11B107.6
Br1—C2'A—H11A107.3Br2—C2'B—H11B107.6
O4A—C3'A—C4'A102.7 (3)O4B—C3'B—C4'B103.2 (3)
O4A—C3'A—C5'A111.3 (3)O4B—C3'B—C5'B111.4 (3)
C4'A—C3'A—C5'A110.5 (4)C4'B—C3'B—C5'B110.3 (3)
O4A—C3'A—C2'A107.3 (3)O4B—C3'B—C2'B107.7 (3)
C4'A—C3'A—C2'A113.7 (3)C4'B—C3'B—C2'B113.2 (3)
C5'A—C3'A—C2'A111.1 (3)C5'B—C3'B—C2'B110.9 (3)
C3'A—C4'A—H13A109.5C3'B—C4'B—H13D109.5
C3'A—C4'A—H13B109.5C3'B—C4'B—H13E109.5
H13A—C4'A—H13B109.5H13D—C4'B—H13E109.5
C3'A—C4'A—H13C109.5C3'B—C4'B—H13F109.5
H13A—C4'A—H13C109.5H13D—C4'B—H13F109.5
H13B—C4'A—H13C109.5H13E—C4'B—H13F109.5
C3'A—C5'A—H14A109.5C3'B—C5'B—H14D109.5
C3'A—C5'A—H14B109.5C3'B—C5'B—H14E109.5
H14A—C5'A—H14B109.5H14D—C5'B—H14E109.5
C3'A—C5'A—H14C109.5C3'B—C5'B—H14F109.5
H14A—C5'A—H14C109.5H14D—C5'B—H14F109.5
H14B—C5'A—H14C109.5H14E—C5'B—H14F109.5
O4A—C6'A—H15A109.5O4B—C6'B—H15D109.5
O4A—C6'A—H15B109.5O4B—C6'B—H15E109.5
H15A—C6'A—H15B109.5H15D—C6'B—H15E109.5
O4A—C6'A—H15C109.5O4B—C6'B—H15F109.5
H15A—C6'A—H15C109.5H15D—C6'B—H15F109.5
H15B—C6'A—H15C109.5H15E—C6'B—H15F109.5
O3A—C7'A—H16A109.5O3B—C7'B—H16D109.5
O3A—C7'A—H16B109.5O3B—C7'B—H16E109.5
H16A—C7'A—H16B109.5H16D—C7'B—H16E109.5
O3A—C7'A—H16C109.5O3B—C7'B—H16F109.5
H16A—C7'A—H16C109.5H16D—C7'B—H16F109.5
H16B—C7'A—H16C109.5H16E—C7'B—H16F109.5
C2A—O1A—C9A121.9 (3)C2B—O1B—C9B122.9 (3)
C7A—O3A—C7'A118.9 (4)C7B—O3B—C7'B118.4 (3)
C6'A—O4A—C3'A118.0 (3)C6'B—O4B—C3'B118.0 (3)
O2A—C2A—C3A—C4A179.4 (5)O2B—C2B—C3B—C4B178.5 (4)
O1A—C2A—C3A—C4A0.9 (7)O1B—C2B—C3B—C4B2.2 (6)
C2A—C3A—C4A—C10A0.2 (8)C2B—C3B—C4B—C10B0.2 (6)
C10A—C5A—C6A—C7A0.1 (7)C10B—C5B—C6B—C7B0.4 (6)
C5A—C6A—C7A—O3A179.2 (4)C5B—C6B—C7B—O3B179.0 (4)
C5A—C6A—C7A—C8A0.7 (7)C5B—C6B—C7B—C8B0.0 (6)
O3A—C7A—C8A—C9A179.0 (3)O3B—C7B—C8B—C9B177.9 (3)
C6A—C7A—C8A—C9A0.9 (6)C6B—C7B—C8B—C9B1.1 (5)
O3A—C7A—C8A—C1'A2.0 (6)O3B—C7B—C8B—C1'B1.4 (5)
C6A—C7A—C8A—C1'A178.1 (4)C6B—C7B—C8B—C1'B179.6 (3)
C7A—C8A—C9A—O1A178.4 (3)C7B—C8B—C9B—O1B178.3 (3)
C1'A—C8A—C9A—O1A2.7 (5)C1'B—C8B—C9B—O1B1.0 (5)
C7A—C8A—C9A—C10A0.4 (6)C7B—C8B—C9B—C10B2.0 (5)
C1'A—C8A—C9A—C10A178.6 (4)C1'B—C8B—C9B—C10B178.7 (3)
O1A—C9A—C10A—C5A179.0 (3)C8B—C9B—C10B—C5B1.7 (5)
C8A—C9A—C10A—C5A0.3 (6)O1B—C9B—C10B—C5B178.6 (3)
O1A—C9A—C10A—C4A2.9 (6)C8B—C9B—C10B—C4B178.2 (3)
C8A—C9A—C10A—C4A178.4 (4)O1B—C9B—C10B—C4B1.5 (5)
C6A—C5A—C10A—C9A0.6 (6)C6B—C5B—C10B—C9B0.4 (6)
C6A—C5A—C10A—C4A178.6 (4)C6B—C5B—C10B—C4B179.4 (4)
C3A—C4A—C10A—C9A0.8 (7)C3B—C4B—C10B—C9B1.7 (6)
C3A—C4A—C10A—C5A178.7 (4)C3B—C4B—C10B—C5B178.5 (4)
C9A—C8A—C1'A—C2'A71.4 (5)C9B—C8B—C1'B—C2'B68.2 (4)
C7A—C8A—C1'A—C2'A107.5 (4)C7B—C8B—C1'B—C2'B112.6 (4)
C8A—C1'A—C2'A—C3'A177.2 (3)C8B—C1'B—C2'B—C3'B175.2 (3)
C8A—C1'A—C2'A—Br158.4 (4)C8B—C1'B—C2'B—Br260.6 (3)
C1'A—C2'A—C3'A—O4A52.3 (4)C1'B—C2'B—C3'B—O4B51.1 (4)
Br1—C2'A—C3'A—O4A175.9 (2)Br2—C2'B—C3'B—O4B174.6 (2)
C1'A—C2'A—C3'A—C4'A60.5 (5)C1'B—C2'B—C3'B—C4'B62.3 (4)
Br1—C2'A—C3'A—C4'A63.0 (4)Br2—C2'B—C3'B—C4'B61.2 (3)
C1'A—C2'A—C3'A—C5'A174.1 (3)C1'B—C2'B—C3'B—C5'B173.2 (3)
Br1—C2'A—C3'A—C5'A62.3 (4)Br2—C2'B—C3'B—C5'B63.3 (3)
O2A—C2A—O1A—C9A178.3 (4)O2B—C2B—O1B—C9B178.2 (3)
C3A—C2A—O1A—C9A3.0 (6)C3B—C2B—O1B—C9B2.4 (5)
C8A—C9A—O1A—C2A177.1 (3)C8B—C9B—O1B—C2B179.7 (3)
C10A—C9A—O1A—C2A4.1 (5)C10B—C9B—O1B—C2B0.5 (5)
C6A—C7A—O3A—C7'A3.8 (6)C6B—C7B—O3B—C7'B1.9 (6)
C8A—C7A—O3A—C7'A176.1 (4)C8B—C7B—O3B—C7'B179.1 (4)
C4'A—C3'A—O4A—C6'A170.8 (4)C4'B—C3'B—O4B—C6'B172.9 (3)
C5'A—C3'A—O4A—C6'A52.6 (5)C5'B—C3'B—O4B—C6'B54.6 (4)
C2'A—C3'A—O4A—C6'A69.0 (5)C2'B—C3'B—O4B—C6'B67.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2B—H11B···O1B0.982.463.078 (4)120
C1B—H10C···O4B0.972.492.871 (4)102
C1B—H10D···O3B0.972.352.809 (4)108
C2A—H11A···O1A0.982.563.143 (5)118
C1A—H10B···O4A0.972.572.916 (5)101
C4B—H3B···O4Ai0.932.563.258 (4)132
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H19BrO4
Mr355.21
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.280 (2), 10.497 (4), 16.175 (4)
α, β, γ (°)75.91 (2), 80.81 (2), 68.00 (3)
V3)1565.1 (8)
Z4
Radiation typeCu Kα
µ (mm1)3.70
Crystal size (mm)0.25 × 0.12 × 0.10
Data collection
DiffractometerEnraf-Nonius CAD-4 EXPRESS
diffractometer
Absorption correctionψ scan
(XRAYACS; Chandrasekaran, 1998)
Tmin, Tmax0.458, 0.709
No. of measured, independent and
observed [I > 2σ(I)] reflections
6666, 6133, 4992
Rint0.070
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.173, 1.31
No. of reflections6133
No. of parameters379
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.00, 1.41

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), SHELXL97 and PARST97 (Nardelli, 1995).

Selected geometric parameters (Å, º) top
C2A—O2A1.217 (6)C2B—O2B1.220 (5)
C2A—O1A1.383 (5)C2B—O1B1.379 (4)
C7A—O3A1.360 (5)C7B—O3B1.353 (4)
C2'A—Br11.977 (4)C2'B—Br21.990 (3)
C6'A—O4A1.390 (5)C6'B—O4B1.416 (5)
C7'A—O3A1.420 (5)
O2A—C2A—O1A116.1 (5)O2B—C2B—O1B116.9 (4)
C9A—C8A—C1'A121.0 (3)C9B—C8B—C7B117.4 (3)
C1'A—C2'A—Br1108.5 (2)C1'B—C2'B—Br2109.2 (2)
C3'A—C2'A—Br1110.0 (3)C3'B—C2'B—Br2110.3 (2)
O4A—C3'A—C5'A111.3 (3)O4B—C3'B—C4'B103.2 (3)
C7A—O3A—C7'A118.9 (4)C7B—O3B—C7'B118.4 (3)
C6'A—O4A—C3'A118.0 (3)C6'B—O4B—C3'B118.0 (3)
C7A—C8A—C1'A—C2'A107.5 (4)C7B—C8B—C1'B—C2'B112.6 (4)
C8A—C1'A—C2'A—C3'A177.2 (3)C8B—C1'B—C2'B—C3'B175.2 (3)
C8A—C1'A—C2'A—Br158.4 (4)C8B—C1'B—C2'B—Br260.6 (3)
C8A—C7A—O3A—C7'A176.1 (4)C8B—C7B—O3B—C7'B179.1 (4)
C4'A—C3'A—O4A—C6'A170.8 (4)C4'B—C3'B—O4B—C6'B172.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2'B—H11B···O1B0.982.463.078 (4)120
C1'B—H10C···O4B0.972.492.871 (4)102
C1'B—H10D···O3B0.972.352.809 (4)108
C2'A—H11A···O1A0.982.563.143 (5)118
C1'A—H10B···O4A0.972.572.916 (5)101
C4B—H3B···O4Ai0.932.563.258 (4)132
Symmetry code: (i) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds