Download citation
Download citation
link to html
The title compound, [Zn(C7H5O3)2(C10H14N2O)2(H2O)2], crystallizes as centrosymmetric mononuclear mol­ecules with octahedrally coordinated zinc, all pairs of equivalent ligands being mutually trans. Intramolecular hydrogen bonding links each aqua ligand and the hydroxy group of a 2-hydroxy­benzoate ligand with the uncoordinated carboxyl­ate O atom of the same carboxyl­ate ligand, lengthening this C-O bond so that it has almost the same length as that for the coordinated O atom. Intermolecular hydrogen bonding between aqua ligands and the carbonyl O atoms of N,N-diethyl­nicotin­amide ligands link the mol­ecules together into chains.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801015021/na6091sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801015021/na6091Isup2.hkl
Contains datablock I

CCDC reference: 175336

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.050
  • wR factor = 0.128
  • Data-to-parameter ratio = 10.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Amber Alert Alert Level B:
THETM_01 Alert B The value of sine(theta_max)/wavelength is less than 0.575 Calculated sin(theta_max)/wavelength = 0.5556
0 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
0 Alert Level C = Please check

Comment top

The title compound, (I), was prepared as part of a series of studies of the coordination chemistry of the ligand N,N-diethylnicotinamide (DENA). It has a relatively undistorted octahedral coordination geometry for the Zn atom, which lies on an inversion centre, so that all pairs of equivalent ligands lie mutually trans (Fig. 1). A rigorously centrosymmetric structure has been found for all previously reported metal complexes of DENA having a formula [M(OH2)2(DENA)2L2], where L is any monodentate ligand (Bigoli et al., 1973; Hokelek & Necefoglu, 1997; Hokelek et al., 1997; Melnik et al., 1996; Sergienko et al., 1979, 1980).

The carboxylates act as monodentate ligands, but the near equality of the two C—O bond lengths in each carboxylate group (Table 1) indicate a delocalized bonding arrangement rather than localized single and double bonds. This may be due, in part, to the involvement of the uncoordinated O4 atom as acceptor of two hydrogen bonds. Both of these are intramolecular: one is within the ligand, with the ortho-hydroxy group O5 acting as donor, while the other is between ligands, the donor being an aqua ligand (Table 2). The aqua ligand also acts as donor in an intermolecular hydrogen bond, and pairs of these link molecules together into a chain along the a axis, as shown in Fig. 2.

We have found very similar features, but without the intra-ligand hydrogen bond, in the corresponding complex with 4-nitrobenzoate replacing 2-hydroxybenzoate (Necefoglu et al., 2001).

Experimental top

The title compound was prepared by the reaction of 0.01 mol of zinc salicylate and 0.02 mol of diethylnicotinamide in 80 ml water. The mixture was filtered and set aside for crystallization at ambient temperature for several days, giving suitable colourless single crystals.

Refinement top

Data were collected at room temperature, because attempts to cool the crystals led to degradation of the crystal quality and the diffraction pattern, possibly as a result of a phase transition. Since this was an early experiment with one of the first commercial CCD diffractometers, operating parameters were not yet optimized; one consequence is the rather low maximum θ, as a result of a crystal-to-detector distance of approximately 6 cm.

H atoms were placed geometrically and refined with a riding model (including free rotation about C—C bonds), and with Uiso constrained to be 1.2 (1.5 for methyl groups) times Ueq of the carrier atom, except for the aqua ligands; for these, the H atoms were refined with the restraint of equal O—H bond lengths and with individual isotropic displacement parameters.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labels and 30% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Two molecules showing intramolecular and intermolecular hydrogen bonds and the unit-cell outline.
Diaquabis(N,N-diethylnicotinamide)bis(2-hydroxybenzoato)zinc(II) top
Crystal data top
[Zn(C7H5O3)2(C10H14N2O)2(H2O)2]Z = 1
Mr = 732.09F(000) = 384
Triclinic, P1Dx = 1.362 Mg m3
a = 7.652 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.903 (6) ÅCell parameters from 61 reflections
c = 14.664 (16) Åθ = 1.0–23.5°
α = 97.38 (8)°µ = 0.75 mm1
β = 95.06 (7)°T = 298 K
γ = 114.22 (6)°Block, colourless
V = 892.5 (14) Å30.37 × 0.26 × 0.22 mm
Data collection top
Bruker SMART 1K CCD
diffractometer
2523 independent reflections
Radiation source: sealed tube2425 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 8.192 pixels mm-1θmax = 23.3°, θmin = 1.4°
ω rotation with narrow frames scansh = 84
Absorption correction: multi-scan
(XPREP; Sheldrick, 1997)
k = 99
Tmin = 0.75, Tmax = 0.85l = 1516
3534 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0461P)2 + 1.2437P]
where P = (Fo2 + 2Fc2)/3
2523 reflections(Δ/σ)max < 0.001
234 parametersΔρmax = 0.56 e Å3
1 restraintΔρmin = 0.46 e Å3
Crystal data top
[Zn(C7H5O3)2(C10H14N2O)2(H2O)2]γ = 114.22 (6)°
Mr = 732.09V = 892.5 (14) Å3
Triclinic, P1Z = 1
a = 7.652 (7) ÅMo Kα radiation
b = 8.903 (6) ŵ = 0.75 mm1
c = 14.664 (16) ÅT = 298 K
α = 97.38 (8)°0.37 × 0.26 × 0.22 mm
β = 95.06 (7)°
Data collection top
Bruker SMART 1K CCD
diffractometer
2523 independent reflections
Absorption correction: multi-scan
(XPREP; Sheldrick, 1997)
2425 reflections with I > 2σ(I)
Tmin = 0.75, Tmax = 0.85Rint = 0.055
3534 measured reflectionsθmax = 23.3°
Refinement top
R[F2 > 2σ(F2)] = 0.0501 restraint
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.56 e Å3
2523 reflectionsΔρmin = 0.46 e Å3
234 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.50000.50000.50000.0431 (2)
O10.7598 (4)0.5036 (4)0.5719 (2)0.0555 (7)
H1A0.769 (9)0.423 (6)0.587 (4)0.10 (2)*
H1B0.767 (9)0.567 (6)0.619 (3)0.10 (2)*
N10.6859 (4)0.7123 (4)0.4449 (2)0.0454 (7)
C10.6663 (6)0.8557 (5)0.4531 (3)0.0479 (9)
H10.56910.86410.48430.057*
C20.7837 (6)0.9916 (5)0.4174 (3)0.0539 (10)
H20.76611.08950.42450.065*
C30.9270 (6)0.9797 (5)0.3712 (3)0.0509 (10)
H31.00691.06940.34590.061*
C40.9520 (5)0.8332 (5)0.3624 (2)0.0431 (9)
C50.8293 (6)0.7034 (5)0.4019 (3)0.0461 (9)
H50.84760.60600.39820.055*
C61.1174 (6)0.8132 (5)0.3234 (3)0.0476 (9)
O21.2340 (4)0.7879 (4)0.3756 (2)0.0630 (8)
N21.1388 (5)0.8276 (5)0.2346 (2)0.0580 (9)
C71.3127 (8)0.8214 (6)0.2019 (4)0.0772 (15)
H7A1.42230.88080.25140.093*
H7B1.33960.88000.14980.093*
C81.2965 (11)0.6483 (8)0.1722 (5)0.108 (2)
H8A1.42020.65460.15980.163*
H8B1.20220.59430.11690.163*
H8C1.25680.58520.22100.163*
C90.9911 (9)0.8369 (7)0.1663 (3)0.0779 (15)
H9A1.05630.90860.12380.093*
H9B0.91900.88820.19900.093*
C100.8532 (12)0.6721 (9)0.1118 (6)0.134 (3)
H10A0.76120.68670.06910.201*
H10B0.78590.60090.15320.201*
H10C0.92290.62170.07760.201*
O30.5262 (4)0.3424 (3)0.38810 (18)0.0514 (7)
C110.4457 (6)0.3091 (4)0.3048 (3)0.0455 (9)
O40.2814 (4)0.3064 (4)0.2802 (2)0.0644 (8)
C120.5516 (6)0.2715 (5)0.2300 (3)0.0459 (9)
C130.4707 (6)0.2373 (5)0.1359 (3)0.0546 (10)
O50.3004 (6)0.2377 (5)0.1080 (2)0.0830 (10)
H5A0.25570.26170.15360.125*
C140.5704 (8)0.2019 (6)0.0682 (3)0.0712 (14)
H140.51830.18050.00560.085*
C150.7453 (9)0.1982 (7)0.0927 (4)0.0820 (15)
H150.81000.17210.04680.098*
C160.8262 (8)0.2330 (6)0.1854 (4)0.0735 (13)
H160.94560.23160.20200.088*
C170.7288 (6)0.2698 (5)0.2530 (3)0.0558 (10)
H170.78370.29380.31530.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.0461 (4)0.0449 (4)0.0400 (4)0.0179 (3)0.0129 (3)0.0141 (3)
O10.0563 (18)0.063 (2)0.0539 (19)0.0304 (16)0.0113 (14)0.0148 (16)
N10.0475 (18)0.0452 (18)0.0451 (18)0.0190 (15)0.0129 (14)0.0129 (14)
C10.052 (2)0.051 (2)0.049 (2)0.0277 (19)0.0108 (18)0.0124 (18)
C20.067 (3)0.050 (2)0.058 (2)0.035 (2)0.014 (2)0.0169 (19)
C30.054 (2)0.050 (2)0.052 (2)0.0200 (19)0.0139 (19)0.0196 (18)
C40.046 (2)0.044 (2)0.040 (2)0.0183 (17)0.0089 (16)0.0120 (16)
C50.050 (2)0.043 (2)0.049 (2)0.0216 (18)0.0090 (18)0.0120 (17)
C60.050 (2)0.043 (2)0.053 (2)0.0197 (18)0.0132 (19)0.0148 (18)
O20.0632 (19)0.075 (2)0.0636 (19)0.0388 (16)0.0135 (15)0.0200 (15)
N20.068 (2)0.065 (2)0.052 (2)0.0342 (19)0.0218 (18)0.0193 (17)
C70.093 (4)0.077 (3)0.084 (3)0.046 (3)0.051 (3)0.033 (3)
C80.143 (6)0.089 (4)0.135 (6)0.072 (4)0.080 (5)0.044 (4)
C90.107 (4)0.090 (4)0.054 (3)0.054 (3)0.024 (3)0.024 (3)
C100.131 (7)0.108 (5)0.138 (7)0.036 (5)0.027 (5)0.022 (5)
O30.0654 (18)0.0523 (16)0.0399 (15)0.0274 (14)0.0116 (13)0.0101 (12)
C110.048 (2)0.0358 (19)0.050 (2)0.0137 (17)0.0138 (18)0.0106 (16)
O40.0568 (19)0.077 (2)0.0593 (18)0.0320 (16)0.0071 (14)0.0028 (15)
C120.054 (2)0.040 (2)0.042 (2)0.0174 (18)0.0147 (17)0.0093 (16)
C130.061 (3)0.054 (2)0.049 (2)0.024 (2)0.008 (2)0.0092 (19)
O50.085 (3)0.108 (3)0.060 (2)0.050 (2)0.0021 (18)0.005 (2)
C140.097 (4)0.072 (3)0.043 (2)0.034 (3)0.018 (2)0.005 (2)
C150.097 (4)0.092 (4)0.066 (3)0.047 (3)0.037 (3)0.010 (3)
C160.071 (3)0.084 (3)0.076 (3)0.042 (3)0.023 (3)0.012 (3)
C170.060 (3)0.059 (2)0.052 (2)0.028 (2)0.013 (2)0.0089 (19)
Geometric parameters (Å, º) top
Zn—O1i2.153 (4)C7—H7B0.970
Zn—O12.153 (4)C8—H8A0.960
Zn—O3i2.098 (3)C8—H8B0.960
Zn—O32.098 (3)C8—H8C0.960
Zn—N1i2.153 (4)C9—C101.478 (9)
Zn—N12.154 (4)C9—H9A0.970
O1—H1A0.81 (4)C9—H9B0.970
O1—H1B0.81 (4)C10—H10A0.960
N1—C11.337 (5)C10—H10B0.960
N1—C51.338 (5)C10—H10C0.960
C1—C21.378 (6)C11—O31.259 (5)
C1—H10.930C11—O41.266 (5)
C2—C31.372 (6)C11—C121.502 (6)
C2—H20.930C12—C171.375 (6)
C3—C41.386 (6)C12—C131.403 (6)
C3—H30.930C13—O51.332 (6)
C4—C51.389 (5)C13—C141.385 (6)
C4—C61.499 (6)O5—H5A0.820
C5—H50.930C14—C151.369 (8)
C6—O21.234 (5)C14—H140.930
C6—N21.342 (5)C15—C161.383 (8)
N2—C71.473 (6)C15—H150.930
N2—C91.478 (6)C16—C171.376 (6)
C7—C81.497 (7)C16—H160.930
C7—H7A0.970C17—H170.930
O3i—Zn—O3180.0N2—C7—H7B108.6
O3i—Zn—O1i87.07 (14)C8—C7—H7B108.6
O3—Zn—O1i92.93 (14)H7A—C7—H7B107.6
O3i—Zn—O192.93 (14)C7—C8—H8A109.5
O3—Zn—O187.07 (14)C7—C8—H8B109.5
O1i—Zn—O1180.0H8A—C8—H8B109.5
O3i—Zn—N1i88.81 (14)C7—C8—H8C109.5
O3—Zn—N1i91.19 (14)H8A—C8—H8C109.5
O1i—Zn—N1i87.13 (14)H8B—C8—H8C109.5
O1—Zn—N1i92.87 (14)N2—C9—C10113.6 (5)
O3i—Zn—N191.19 (14)N2—C9—H9A108.8
O3—Zn—N188.81 (14)C10—C9—H9A108.8
O1i—Zn—N192.87 (14)N2—C9—H9B108.8
O1—Zn—N187.13 (14)C10—C9—H9B108.8
N1i—Zn—N1180.0H9A—C9—H9B107.7
Zn—O1—H1A125 (5)C9—C10—H10A109.5
Zn—O1—H1B96 (4)C9—C10—H10B109.5
H1A—O1—H1B109 (6)H10A—C10—H10B109.5
C1—N1—C5117.9 (3)C9—C10—H10C109.5
C1—N1—Zn122.6 (3)H10A—C10—H10C109.5
C5—N1—Zn119.5 (3)H10B—C10—H10C109.5
N1—C1—C2122.9 (4)C11—O3—Zn127.7 (3)
N1—C1—H1118.5O3—C11—O4124.0 (4)
C2—C1—H1118.5O3—C11—C12118.0 (4)
C3—C2—C1118.8 (4)O4—C11—C12118.1 (4)
C3—C2—H2120.6C17—C12—C13119.2 (4)
C1—C2—H2120.6C17—C12—C11120.4 (4)
C2—C3—C4119.6 (4)C13—C12—C11120.4 (4)
C2—C3—H3120.2O5—C13—C14117.9 (4)
C4—C3—H3120.2O5—C13—C12122.7 (4)
C3—C4—C5117.8 (4)C14—C13—C12119.4 (4)
C3—C4—C6124.1 (3)C13—O5—H5A109.5
C5—C4—C6117.7 (3)C15—C14—C13120.4 (5)
N1—C5—C4123.0 (4)C15—C14—H14119.8
N1—C5—H5118.5C13—C14—H14119.8
C4—C5—H5118.5C14—C15—C16120.4 (5)
O2—C6—N2121.7 (4)C14—C15—H15119.8
O2—C6—C4118.2 (4)C16—C15—H15119.8
N2—C6—C4120.1 (4)C17—C16—C15119.5 (5)
C6—N2—C7118.0 (4)C17—C16—H16120.3
C6—N2—C9123.6 (4)C15—C16—H16120.3
C7—N2—C9118.3 (4)C12—C17—C16121.1 (4)
N2—C7—C8114.5 (5)C12—C17—H17119.4
N2—C7—H7A108.6C16—C17—H17119.4
C8—C7—H7A108.6
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2ii0.81 (4)2.01 (4)2.817 (5)175 (6)
O1—H1B···O4i0.81 (4)1.90 (4)2.698 (5)166 (6)
O5—H5A···O40.821.822.551 (5)147
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C7H5O3)2(C10H14N2O)2(H2O)2]
Mr732.09
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.652 (7), 8.903 (6), 14.664 (16)
α, β, γ (°)97.38 (8), 95.06 (7), 114.22 (6)
V3)892.5 (14)
Z1
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.37 × 0.26 × 0.22
Data collection
DiffractometerBruker SMART 1K CCD
diffractometer
Absorption correctionMulti-scan
(XPREP; Sheldrick, 1997)
Tmin, Tmax0.75, 0.85
No. of measured, independent and
observed [I > 2σ(I)] reflections
3534, 2523, 2425
Rint0.055
θmax (°)23.3
(sin θ/λ)max1)0.556
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.128, 1.12
No. of reflections2523
No. of parameters234
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.46

Computer programs: SMART (Siemens, 1995), SMART, SAINT (Siemens, 1995), SHELXTL (Sheldrick, 1997), SHELXTL and local programs.

Selected geometric parameters (Å, º) top
Zn—O12.153 (4)C11—O31.259 (5)
Zn—O32.098 (3)C11—O41.266 (5)
Zn—N12.154 (4)
O3—Zn—O187.07 (14)O1—Zn—N187.13 (14)
O3—Zn—N188.81 (14)C11—O3—Zn127.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.81 (4)2.01 (4)2.817 (5)175 (6)
O1—H1B···O4ii0.81 (4)1.90 (4)2.698 (5)166 (6)
O5—H5A···O40.821.822.551 (5)147.1
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds