Download citation
Download citation
link to html
The need for fast approximate algorithms for Debye summation arises in computations performed in crystallography, small/wide-angle X-ray scattering and small-angle neutron scattering. When integrated into structure refinement protocols these algorithms can provide significant speed up over direct all-atom-to-all-atom computation. However, these protocols often employ an iterative gradient-based optimization procedure, which then requires derivatives of the profile with respect to atomic coordinates. This article presents an accurate, O(N) cost algorithm for the computation of scattering profile derivatives. The results reported here show orders of magnitude improvement in computational efficiency, while maintaining the prescribed accuracy. This opens the possibility to efficiently integrate small-angle scattering data into the structure determination and refinement of macromolecular systems.

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds