Download citation
Download citation
link to html
The title compound, [Cu(C7H5O3)2(C7H6N2)2]n, is a one-dimensional polymeric complex bridged by salicyl­ate anions. The CuII atom is surrounded by three salicyl­ate and two benz­imidazole ligands, with a tetragonally elongated octahedral coordination geometry. The Cu-O bond distances in the axial directions are 2.6092 (16) and 2.6834 (17) Å. [pi]-[pi] stacking interactions exist between the benz­imidazole rings of neighboring polymeric complex chains.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104029580/ob1209sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104029580/ob1209Isup2.hkl
Contains datablock I

CCDC reference: 263024

Comment top

As ππ stacking between aromatic rings is correlated with the electron transfer process in some biological systems (Deisenhofer & Michel, 1989), metal complexes incorporating aromatic ligands, such as phenanthroline, benzimidazole and bithiazole, have attracted our attention. A series of metal complexes with the benzimidazole (bzim) ligand have been prepared in our laboratory, and their structures have shown the existence of ππ stacking between the bzim rings (Chen et al., 2003). As a part of our ongoing investigations into ππ stacking, we report here the structure of the title compound, (I), [Cu(bzim)2(sali)2]n. A search of the Cambridge Structural Database (November 2003 update; Allen, 2002) indicated that no [M(bzim)2(sali)2]n compound has been reported before.

The structure of a fragment of (I) is illustrated in Fig. 1. The repeat unit of the polymeric complex includes one CuII atom, two salicylate (sali) anions and two bzim molecules. N atoms of the bzim ligands and carboxyl O atoms (O1 and O4) from two sali ligands form the equatorial coordination plane around the Cu atom, with bond distances of 1.9629 (16)–2.0061 (15) Å (Table 1).

The distances between the Cu atom and the other two carboxyl O atoms (O2 and O5) are appreciably different, and both are much longer than those in the equatorial plane. The Cu—O2 distance is longer than the average Cu—O distance in the equatorial plane [1.982 (2) Å] by 0.627 (3) Å, but the smaller Cu—O1—C1 angle [104.68 (14)°] suggests a bonding interaction between atoms Cu and O2 (as discussed below). On the other hand, the Cu···O5 distance [3.061 (2) Å] and the larger Cu—O4—C2 angle [120.94 (16)°] suggest no bonding interaction between atoms Cu and O5.

A comparison of the geometric parameters for carboxyl groups in some CuII complexes is listed in Table 3. The Cu—O1—C1 angles in these complexes fall into two distinct ranges, viz. either larger than 120° or close to 105°. The bond angle of 120° indicates normal sp2 hybridization for atom O1 and corresponds to the long Cu···O2 distance in the complexes, suggesting a monodentate coordinate mode for the carboxyl group. Conversely, the smaller Cu—O1—C1 angle of 105° implies the existence of a bonding interaction between the Cu atom and the other O atom (O2) of the carboxyl group, suggesting a chelate coordination mode. A similar situation was also found in carboxylate–MnII complexes, in which the Mn—O—C angles of 120 and 95° correspond to the monodentate and chelate modes of the carboxyl group, respectively (Liu et al., 2004). Thus the metal—O—C angle may be an additional criterion of the coordination mode for the carboxyl group in transition metal complexes. According to this criterion, the two sali ligands in (I) coordinate to the Cu atom in different modes.

The C1-containing sali group also plays the role of bridging ligand in (I); hydroxy atom O3 coordinates to the Cu atom of the neighboring repeat unit to form a polymeric complex chain along the crystallographic a axis (Figs. 1 and 2). The Cu—O3i distance [symmetry code: (i) x − 1, y, z] is appreciably longer than the Cu—O2 distance (Table 1). The large Cu—O3i—C12i bond angle [143.93 (14)°], besides the Jahn–Teller effect, is a possible reason for the longer Cu—O3i bond. Thus each CuII atom is surrounded by three sali and two bzim ligands in a distorted octahedral coordination geometry.

The C2-containg sali group is not a bridging ligand. Carboxyl O5 atom is hydrogen bonded to the O3i hydroxy group of an adjacent sali ligand, resulting in there being a longer distance between atom O6 and the neighboring complex unit, the nearest distance between atom O6 and the non-H atoms of the neighboring complex unit being 3.684 (3) Å (O6···O4i; Fig. 1).

The packing of the polymeric chains is illustrated in Fig. 2. Neighboring polymeric chains are linked to one another via hydrogen bonds (Table 2) between the bzim and carboxyl groups. The nearly parallel arrangement of the bzim rings from neighboring polymeric chains is also shown in Fig. 2, a partial overlapping between the bzim rings being observed (Fig. 3). The dihedral angle between the bzim groups containing atoms N33 and N43ii is 7.64 (5)°, aso is the angle between the bzim groups containing atoms N33 and N43iii [symmetry codes: (ii) 1/2 − x, y − 1/2, 1/2 − z; (iii) 3/2 − x, y − 1/2, 1/2 − z]. The distances of atoms N31 and C38 from the mean plane of the N43ii-containing bzim group are 3.344 (2) and 3.436 (3) Å, respectively; the distances of atoms C36 and C38 from the mean plane of the N43iii-containing bzim grop are 3.467 (3) and 3.537 (3) Å, respectively. These distances are significantly shorter than that between uncoordinated parallel bzim rings in the MnII–bzim complex [3.600 (6) Å; Chen et al., 2003] and clearly suggest the existence of ππ stacking of bzim rings between polymeric complex chains in (I).

Experimental top

An ethanol solution (5 ml) of benzimidazole (0.24 g, 2 mmol) was mixed with an aqueous solution (8 ml) containing salicylic acid (0.28 g, 2 mmol), Na2CO3 (0.10 g, 1 mmol) and CuCl2·2H2O (0.17 g, 1 mmol). The mixture was refluxed for 4 h and filtered. Blue single crystals of (I) were obtained from the filtrate after 3 d.

Refinement top

H atoms on aromatic rings were placed in calculated positions, with C—H = 0.93 Å and N—H = 0.86 Å, and were included in the final cycles of refinement in a riding model, with Uiso(H) values of 1.2Ueq(carrier atom). H atoms of hydroxy groups were located in difference Fourier maps and refined as riding in their as-found positions relative to the O atoms, with fixed isotropic displacement parameters of 0.05 Å2. The large anisotropy in the displacement parameters of atoms O6 and C24 may imply that the non-bridged sali ligand is disordered.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC and Rigaku, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and XP (Siemens, 1994); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of a fragment of (I), with 30% probability displacement ellipsoids. Dashed lines indicate the hydrogen bonding. Symmetry code: (i) x − 1, y, z.
[Figure 2] Fig. 2. A crystal packing diagram, showing the nearly parallel arrangement of the bzim rings and hydrogen bonding (dashed lines) between neighboring polymeric complex chains.
[Figure 3] Fig. 3. ππ stacking between the bzim rings of neighboring molecules. [Symmetry code: (ii) 1/2 − x, y − 1/2, 1/2 − z.]
catena-Poly[[bis(benzimidazole)(salicylato-κO)copper(II)]- µ-salicylato-O,O':O''] top
Crystal data top
[Cu(C7H5O3)2(C7H6N2)2]F(000) = 1180
Mr = 574.04Dx = 1.538 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 13793 reflections
a = 7.3032 (9) Åθ = 2.0–24.0°
b = 14.0380 (12) ŵ = 0.93 mm1
c = 24.1952 (18) ÅT = 295 K
β = 91.812 (4)°Platelet, blue
V = 2479.3 (4) Å30.32 × 0.22 × 0.08 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4320 independent reflections
Radiation source: fine-focus sealed tube3426 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 10.00 pixels mm-1θmax = 25.0°, θmin = 1.7°
ω scansh = 88
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1616
Tmin = 0.740, Tmax = 0.925l = 2828
18148 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0382P)2 + 1.4329P]
where P = (Fo2 + 2Fc2)/3
4320 reflections(Δ/σ)max = 0.001
352 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Cu(C7H5O3)2(C7H6N2)2]V = 2479.3 (4) Å3
Mr = 574.04Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.3032 (9) ŵ = 0.93 mm1
b = 14.0380 (12) ÅT = 295 K
c = 24.1952 (18) Å0.32 × 0.22 × 0.08 mm
β = 91.812 (4)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4320 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3426 reflections with I > 2σ(I)
Tmin = 0.740, Tmax = 0.925Rint = 0.031
18148 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.05Δρmax = 0.28 e Å3
4320 reflectionsΔρmin = 0.31 e Å3
352 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.49565 (4)0.21655 (2)0.250261 (12)0.03035 (10)
O10.6207 (2)0.16477 (12)0.31890 (6)0.0325 (4)
O20.8491 (2)0.19458 (13)0.26335 (7)0.0388 (4)
O31.1837 (2)0.17869 (13)0.30168 (7)0.0394 (4)
H31.08670.19890.28020.050*
O40.4135 (2)0.26405 (13)0.17731 (7)0.0410 (4)
O50.1259 (3)0.28394 (15)0.20165 (8)0.0530 (5)
O60.1256 (3)0.3192 (2)0.12855 (13)0.0955 (9)
H60.06600.30310.16100.050*
N310.4673 (3)0.07259 (16)0.22141 (9)0.0452 (6)
H310.44570.12890.23360.054*
N330.4931 (3)0.08398 (15)0.22048 (8)0.0349 (5)
N410.5212 (3)0.50478 (16)0.27998 (9)0.0420 (5)
H410.54020.56140.26780.050*
N430.4996 (3)0.34802 (14)0.28054 (8)0.0331 (5)
C10.7884 (3)0.16193 (16)0.30773 (9)0.0285 (5)
C20.2460 (4)0.27998 (17)0.16642 (10)0.0347 (6)
C110.9198 (3)0.11529 (17)0.34758 (9)0.0289 (5)
C121.1095 (3)0.12609 (16)0.34239 (9)0.0301 (5)
C131.2298 (3)0.08195 (19)0.38008 (10)0.0390 (6)
H131.35550.09070.37750.047*
C141.1627 (4)0.0254 (2)0.42109 (11)0.0471 (7)
H141.24350.00380.44630.057*
C150.9768 (4)0.0115 (2)0.42537 (11)0.0513 (7)
H150.93270.02820.45270.062*
C160.8572 (4)0.0566 (2)0.38917 (10)0.0404 (6)
H160.73180.04770.39250.048*
C210.1901 (4)0.29381 (18)0.10707 (11)0.0419 (6)
C220.0074 (5)0.3131 (2)0.09180 (15)0.0642 (9)
C230.0400 (7)0.3254 (3)0.0361 (2)0.0959 (15)
H230.16080.33880.02550.115*
C240.0879 (9)0.3180 (3)0.00300 (18)0.1025 (18)
H240.05360.32700.04000.123*
C250.2663 (7)0.2976 (3)0.01085 (13)0.0844 (13)
H250.35240.29130.01640.101*
C260.3168 (5)0.2864 (2)0.06603 (11)0.0590 (9)
H260.43860.27360.07570.071*
C320.4502 (4)0.00860 (19)0.24930 (11)0.0412 (6)
H320.41170.01150.28550.049*
C340.6029 (3)0.0958 (2)0.12218 (11)0.0439 (7)
H340.61870.16160.12160.053*
C350.6384 (4)0.0400 (2)0.07688 (12)0.0549 (8)
H350.67550.06910.04460.066*
C360.6204 (4)0.0590 (2)0.07795 (13)0.0576 (8)
H360.64580.09380.04640.069*
C370.5665 (4)0.1063 (2)0.12417 (12)0.0515 (7)
H370.55740.17230.12520.062*
C380.5260 (3)0.04988 (19)0.16937 (11)0.0397 (6)
C390.5420 (3)0.04869 (18)0.16892 (10)0.0350 (6)
C420.5371 (3)0.42397 (19)0.25137 (11)0.0400 (6)
H420.57120.42180.21470.048*
C440.4115 (4)0.3345 (2)0.38109 (10)0.0413 (6)
H440.40520.26830.38240.050*
C450.3755 (4)0.3894 (2)0.42652 (12)0.0509 (7)
H450.34600.35940.45930.061*
C460.3818 (4)0.4884 (2)0.42507 (12)0.0534 (8)
H460.35320.52280.45650.064*
C470.4292 (4)0.5361 (2)0.37842 (12)0.0491 (7)
H470.43490.60230.37740.059*
C480.4685 (3)0.48120 (18)0.33261 (11)0.0371 (6)
C490.4578 (3)0.38193 (17)0.33303 (10)0.0318 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.03097 (16)0.03057 (16)0.02933 (16)0.00464 (13)0.00213 (12)0.00162 (13)
O10.0268 (8)0.0375 (10)0.0333 (9)0.0055 (7)0.0016 (7)0.0018 (7)
O20.0322 (9)0.0491 (11)0.0351 (9)0.0047 (8)0.0012 (8)0.0126 (8)
O30.0280 (9)0.0451 (11)0.0450 (10)0.0025 (8)0.0005 (8)0.0109 (8)
O40.0454 (11)0.0459 (11)0.0314 (9)0.0117 (8)0.0026 (8)0.0026 (8)
O50.0486 (11)0.0657 (15)0.0453 (11)0.0022 (10)0.0090 (10)0.0037 (10)
O60.0495 (14)0.121 (2)0.115 (2)0.0024 (15)0.0219 (16)0.0344 (19)
N310.0534 (14)0.0325 (13)0.0496 (14)0.0081 (10)0.0008 (11)0.0032 (11)
N330.0360 (11)0.0350 (12)0.0337 (11)0.0013 (9)0.0006 (9)0.0005 (9)
N410.0504 (13)0.0291 (12)0.0464 (13)0.0022 (10)0.0005 (11)0.0083 (10)
N430.0357 (11)0.0303 (11)0.0329 (11)0.0013 (9)0.0015 (9)0.0046 (9)
C10.0314 (12)0.0252 (13)0.0288 (12)0.0031 (9)0.0005 (10)0.0021 (10)
C20.0448 (15)0.0253 (13)0.0340 (13)0.0003 (11)0.0014 (12)0.0020 (10)
C110.0311 (12)0.0297 (13)0.0257 (12)0.0035 (10)0.0004 (10)0.0023 (9)
C120.0330 (12)0.0280 (13)0.0291 (12)0.0012 (10)0.0005 (10)0.0016 (10)
C130.0329 (13)0.0393 (15)0.0442 (15)0.0039 (11)0.0076 (12)0.0004 (12)
C140.0499 (16)0.0489 (18)0.0417 (15)0.0084 (13)0.0115 (13)0.0086 (13)
C150.0544 (17)0.059 (2)0.0401 (15)0.0002 (15)0.0000 (14)0.0203 (14)
C160.0357 (13)0.0490 (17)0.0365 (14)0.0005 (12)0.0024 (12)0.0067 (12)
C210.0588 (17)0.0281 (14)0.0379 (15)0.0007 (12)0.0111 (14)0.0032 (11)
C220.067 (2)0.051 (2)0.073 (2)0.0118 (16)0.030 (2)0.0125 (17)
C230.105 (3)0.084 (3)0.094 (3)0.021 (3)0.065 (3)0.027 (3)
C240.177 (5)0.070 (3)0.056 (2)0.027 (3)0.060 (3)0.010 (2)
C250.161 (4)0.058 (2)0.0344 (17)0.007 (2)0.002 (2)0.0002 (16)
C260.097 (2)0.0452 (18)0.0348 (16)0.0126 (17)0.0038 (17)0.0020 (13)
C320.0443 (15)0.0410 (16)0.0382 (14)0.0043 (11)0.0001 (13)0.0016 (12)
C340.0410 (15)0.0444 (17)0.0465 (16)0.0061 (12)0.0044 (13)0.0023 (13)
C350.0546 (18)0.065 (2)0.0453 (17)0.0084 (15)0.0111 (14)0.0032 (15)
C360.0583 (18)0.062 (2)0.0523 (19)0.0097 (16)0.0025 (15)0.0184 (16)
C370.0559 (18)0.0405 (17)0.0578 (19)0.0031 (13)0.0034 (15)0.0124 (14)
C380.0360 (13)0.0387 (16)0.0441 (15)0.0026 (11)0.0023 (12)0.0032 (12)
C390.0298 (12)0.0372 (15)0.0379 (14)0.0025 (10)0.0008 (11)0.0010 (11)
C420.0413 (15)0.0426 (16)0.0360 (14)0.0005 (11)0.0007 (12)0.0061 (13)
C440.0481 (15)0.0364 (16)0.0397 (15)0.0011 (12)0.0050 (12)0.0047 (12)
C450.0580 (18)0.056 (2)0.0397 (16)0.0013 (14)0.0107 (14)0.0002 (13)
C460.0568 (18)0.056 (2)0.0476 (17)0.0055 (15)0.0065 (15)0.0138 (15)
C470.0499 (17)0.0360 (16)0.0613 (19)0.0063 (13)0.0028 (15)0.0110 (14)
C480.0342 (13)0.0328 (14)0.0441 (15)0.0026 (11)0.0042 (12)0.0025 (11)
C490.0274 (12)0.0322 (14)0.0356 (13)0.0017 (10)0.0041 (11)0.0012 (10)
Geometric parameters (Å, º) top
Cu—O12.0061 (15)C15—H150.9300
Cu—O22.6092 (16)C16—H160.9300
Cu—O3i2.6834 (17)C21—C261.383 (4)
Cu—O41.9629 (16)C21—C221.399 (4)
Cu—N331.996 (2)C22—C231.393 (5)
Cu—N431.985 (2)C23—C241.353 (7)
O1—C11.263 (3)C23—H230.9300
O2—C11.261 (3)C24—C251.366 (6)
O3—C121.357 (3)C24—H240.9300
O3—H30.9103C25—C261.383 (4)
O4—C21.263 (3)C25—H250.9300
O5—C21.243 (3)C26—H260.9300
O6—C221.340 (4)C32—H320.9300
O6—H60.9126C34—C351.379 (4)
N31—C321.332 (3)C34—C391.395 (4)
N31—C381.380 (3)C34—H340.9300
N31—H310.8600C35—C361.396 (4)
N33—C321.311 (3)C35—H350.9300
N33—C391.399 (3)C36—C371.369 (4)
N41—C421.336 (3)C36—H360.9300
N41—C481.382 (3)C37—C381.389 (4)
N41—H410.8600C37—H370.9300
N43—C421.312 (3)C38—C391.389 (4)
N43—C491.399 (3)C42—H420.9300
C1—C111.490 (3)C44—C451.375 (4)
C2—C211.493 (3)C44—C491.391 (3)
C11—C161.389 (3)C44—H440.9300
C11—C121.403 (3)C45—C461.390 (4)
C12—C131.391 (3)C45—H450.9300
C13—C141.373 (4)C46—C471.367 (4)
C13—H130.9300C46—H460.9300
C14—C151.379 (4)C47—C481.387 (4)
C14—H140.9300C47—H470.9300
C15—C161.372 (4)C48—C491.396 (3)
O4—Cu—N4390.94 (8)C22—C21—C2120.6 (3)
O4—Cu—N3389.60 (8)O6—C22—C23118.2 (4)
N43—Cu—N33179.44 (8)O6—C22—C21122.8 (3)
O4—Cu—O1170.28 (7)C23—C22—C21119.0 (4)
N43—Cu—O191.74 (7)C24—C23—C22120.7 (4)
N33—Cu—O187.70 (8)C24—C23—H23119.6
O2—Cu—O155.52 (6)C22—C23—H23119.6
O2—Cu—O3i140.50 (5)C23—C24—C25121.3 (4)
O2—Cu—O4114.98 (7)C23—C24—H24119.4
O2—Cu—N3187.04 (5)C25—C24—H24119.4
O2—Cu—N4193.20 (5)C24—C25—C26119.0 (4)
O3i—Cu—O185.15 (6)C24—C25—H25120.5
O3i—Cu—O4104.15 (6)C26—C25—H25120.5
O3i—Cu—N3181.06 (5)C21—C26—C25121.4 (4)
O3i—Cu—N4198.53 (5)C21—C26—H26119.3
C1—O1—Cu104.68 (14)C25—C26—H26119.3
C2—O4—Cu120.94 (16)N33—C32—N31113.2 (2)
Cuii—O3—C12143.93 (14)N33—C32—H32123.4
C12—O3—H3105.3N31—C32—H32123.4
C22—O6—H6102.7C35—C34—C39116.6 (3)
C32—N31—C38107.5 (2)C35—C34—H34121.7
C32—N31—H31126.2C39—C34—H34121.7
C38—N31—H31126.2C34—C35—C36122.1 (3)
C32—N33—C39105.1 (2)C34—C35—H35119.0
C32—N33—Cu124.09 (18)C36—C35—H35119.0
C39—N33—Cu130.72 (17)C37—C36—C35121.8 (3)
C42—N41—C48107.8 (2)C37—C36—H36119.1
C42—N41—H41126.1C35—C36—H36119.1
C48—N41—H41126.1C36—C37—C38116.2 (3)
C42—N43—C49105.5 (2)C36—C37—H37121.9
C42—N43—Cu123.90 (18)C38—C37—H37121.9
C49—N43—Cu130.55 (16)N31—C38—C39105.4 (2)
O2—C1—O1122.7 (2)N31—C38—C37131.8 (3)
O2—C1—C11118.3 (2)C39—C38—C37122.8 (3)
O1—C1—C11119.0 (2)C38—C39—C34120.5 (2)
O5—C2—O4124.4 (2)C38—C39—N33108.8 (2)
O5—C2—C21118.4 (2)C34—C39—N33130.7 (2)
O4—C2—C21117.2 (2)N43—C42—N41112.8 (2)
C16—C11—C12118.5 (2)N43—C42—H42123.6
C16—C11—C1120.6 (2)N41—C42—H42123.6
C12—C11—C1120.8 (2)C45—C44—C49117.2 (3)
O3—C12—C13117.4 (2)C45—C44—H44121.4
O3—C12—C11122.8 (2)C49—C44—H44121.4
C13—C12—C11119.9 (2)C44—C45—C46122.2 (3)
C14—C13—C12119.9 (2)C44—C45—H45118.9
C14—C13—H13120.0C46—C45—H45118.9
C12—C13—H13120.0C47—C46—C45121.3 (3)
C13—C14—C15120.7 (2)C47—C46—H46119.3
C13—C14—H14119.6C45—C46—H46119.3
C15—C14—H14119.6C46—C47—C48116.9 (3)
C16—C15—C14119.7 (3)C46—C47—H47121.6
C16—C15—H15120.1C48—C47—H47121.6
C14—C15—H15120.1N41—C48—C47132.3 (3)
C15—C16—C11121.2 (2)N41—C48—C49105.3 (2)
C15—C16—H16119.4C47—C48—C49122.4 (3)
C11—C16—H16119.4C44—C49—C48120.0 (2)
C26—C21—C22118.6 (3)C44—C49—N43131.4 (2)
C26—C21—C2120.8 (3)C48—C49—N43108.6 (2)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.911.772.596 (2)149
O3—H3···O5ii0.912.272.856 (3)122
O6—H6···O50.911.712.558 (3)153
N31—H31···O5iii0.862.072.840 (3)149
N41—H41···O2iv0.862.183.026 (3)167
C34—H34···O40.932.503.064 (3)119
Symmetry codes: (ii) x+1, y, z; (iii) x+1/2, y1/2, z+1/2; (iv) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C7H5O3)2(C7H6N2)2]
Mr574.04
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)7.3032 (9), 14.0380 (12), 24.1952 (18)
β (°) 91.812 (4)
V3)2479.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.32 × 0.22 × 0.08
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.740, 0.925
No. of measured, independent and
observed [I > 2σ(I)] reflections
18148, 4320, 3426
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.084, 1.05
No. of reflections4320
No. of parameters352
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.31

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO, CrystalStructure (Rigaku/MSC and Rigaku, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and XP (Siemens, 1994), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cu—O12.0061 (15)Cu—O41.9629 (16)
Cu—O22.6092 (16)Cu—N331.996 (2)
Cu—O3i2.6834 (17)Cu—N431.985 (2)
O2—Cu—O3i140.50 (5)O3i—Cu—N4198.53 (5)
O3i—Cu—O185.15 (6)C1—O1—Cu104.68 (14)
O3i—Cu—O4104.15 (6)C2—O4—Cu120.94 (16)
O3i—Cu—N3181.06 (5)Cuii—O3—C12143.93 (14)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.911.772.596 (2)149
O3—H3···O5ii0.912.272.856 (3)122
O6—H6···O50.911.712.558 (3)153
N31—H31···O5iii0.862.072.840 (3)149
N41—H41···O2iv0.862.183.026 (3)167
C34—H34···O40.932.503.064 (3)119
Symmetry codes: (ii) x+1, y, z; (iii) x+1/2, y1/2, z+1/2; (iv) x+3/2, y+1/2, z+1/2.
Geometric parameters (° and Å) for selected carboxyl groups in CuII complexes top
CarboxylateCu—O1—C1Cu—O1Cu···O2
Salicylate1,a127.4 (2)1.981 (2)3.233 (2)
Hydroxybenzoate1,b126.4 (1)1.956 (2)3.199 (2)
Nitrobenzoate1,c127.0 (2)1.959 (2)3.279 (2)
Chlorofluorobenzoate1,d126.9 (4)2.019 (3)3.141 (3)
Benzenetetracarboxylate1,e121.5 (2)1.994 (2)3.110 (2)
Terephthalate2,f106.0 (5)2.006 (8)2.657 (8)
Phthalate2,g104.9 (2)1.981 (2)2.632 (2)
Aminomethylbenzoate2,h104.8 (2)1.954 (3)2.572 (3)
Methylbenzoate2,i104.54 (13)1.9435 (14)2.5923 (19)
Salicylate2,j104.68 (14)2.0061 (15)2.6092 (16)
Notes: (1) chelate coordination mode; (2) monodentate coordination mode. References: (a) Hoang et al., 1992; (b) Hökelek et al., 1998; (c) Hökelek et al., 1997; (d) Hoang et al., 1995; (e) Chen et al., 1996; (f) Cano et al., 1997; (g) Bakalbassis & Terzis, 1994; (h) Boudreau & Haendler, 1986; (i) Xu & Xu, 2004; (j) this work.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds