Download citation
Download citation
link to html
The title nest-shaped cluster, [Cu3WIOS3(C10H8N2)2], has been synthesized by the reaction of (NH4)2[WOS3], CuI and 2,2'-bipyridine (bipy) in dimethyl­formamide under a purified nitro­gen atmosphere. The cluster has a neutral skeleton containing the bipy ligands, and the central W atom is tetra­hedrally coordinated by three S atoms and one O atom. The three Cu atoms are divided into two different kinds. Two Cu atoms adopt distorted tetra­hedral geometry, with each Cu atom coordinated by two S atoms and the two N atoms of a bipy ligand. The other Cu atom adopts a trigonal mode surrounded by two S atoms and one I atom.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106007438/ob1248sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106007438/ob1248Isup2.hkl
Contains datablock I

CCDC reference: 238241

Comment top

Research into chalcogenometallate anions [MOnS4-n]2− (M = Mo and W; n = 0–2) and their related cluster compounds has been a comparatively active field in modern chemistry, physics and materials science because of the interesting electronic, biological, optical, structural and catalytic properties of these compounds (Marks et al., 1995; Gray & Lawson, 1999). Current research activity concerning the Mo(W)/Cu(Ag)/S clusters is aimed at properties such as catalysis, conductivity and strong nonlinear optical (NLO) characteristics (Fujita et al., 1994; Aumuller et al., 1986; Hou et al., 1996). The literature on this subject is exhaustive, but it mainly focuses on a narrow scope of structure types in which the ligands attached to the Cu (Ag) atoms are only halogen, pyridine, PPh3 or their analogues showing strong affinities to CuI and so shows limitation in the advantage of easy structural modification. As far as we know, there are only a limited number of nest-shaped clusters with a 2,2'-bipy skeleton, and these were reported recently (Hu, Wang et al., 2003; Hu, Zheng et al., 2003; Li et al., 2004). In an attempt to search for better NLO materials, we report here the synthesis and crystal structure of the title compound, (I), [Cu3WIOS3(bipy)2].

Fig. 1 shows the molecular structure of (I) with the atomic labelling scheme. Selected bond lengths and angles are listed in Table 1. Atom W1 is tetrahedrally coordinated by atom O1 and the three µ3-S atoms, which, in turn, coordinate with the three Cu atoms. Within the core, the W—O bond length of 1.717 (4) Å is characteristic of a double bond, while the W—S bond distances 2.2531 (18)–2.2649 (17) Å indicate single bonds. The three Cu atoms are divided into two different kinds. Atom Cu3 adopts a trigonal mode, surrounded by two µ3-S atoms and one I atom, to form the [CuS2I] unit. Atoms Cu1 and Cu2 adopt distorted tetrahedral geometry, with each Cu atom coordinated by two µ3-S atoms and two N atoms of the 2,2'-bipy ligand, forming a [CuS2(bipy)] unit. Owing to their different coordination modes, atom Cu3 has a slightly shorter Cu—W distance than atoms Cu1 and Cu2. The bipy ligands act as bidentate ligands to atoms Cu1 and Cu2. As shown in Fig. 2, the complexes are linked via C—H···O interactions (Table 2), forming a chain structure along the a axis.

Experimental top

All reactions and manipulations were performed in oven-dried glassware under a purified nitrogen atmosphere using standard Schlenk techniques. The solvents and other chemicals were commercially available and used without further purification. The starting material [NH4]2[WOS3] was prepared according to the literature (McDonald et al., 1983). A well ground mixture of CuI (0.191 g, 1.0 mmol), (NH4)2WOS3 (0.174 g, 0.5 mmol), 2,2'-bipy (0.156 g, 1.0 mmol) and (n-Bu)4NI (0.369 g, 1.0 mmol) was added to CH2Cl2 (15 ml) and stirred for 12 h under pure nitrogen. The red solution was filtered and i-PrOH (40 ml) was added to the filtrate. The filtrate was left to stand for several days and red–brown crystals were produced (yield 0.25 g, 27%). Analysis calculated for C20H16Cu3IN4OS3W: C 25.94, H 1.74, N 6.05%; found: C 25.98, H 1.78, N 6.01%.

Refinement top

All H atoms were positioned geometrically, with C—H distances of 0.93 Å and Uiso(H) values of 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing of (I), projected down the b axis. Dotted lines show C—H···O interactions. H atoms have been omitted.
Bis(2,2'-bipyridine)iodo(oxo)tri-µ3-sulfido-tricopper(I)tungsten(VI) top
Crystal data top
[Cu3WIOS3(C10H8N2)2]Z = 2
Mr = 925.97F(000) = 868
Triclinic, P1Dx = 2.372 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.895 (1) ÅCell parameters from 3064 reflections
b = 9.828 (1) Åθ = 2.4–26.8°
c = 16.331 (2) ŵ = 8.30 mm1
α = 79.66 (1)°T = 293 K
β = 85.90 (1)°Block, brown
γ = 67.38 (1)°0.30 × 0.20 × 0.20 mm
V = 1296.4 (3) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4503 independent reflections
Radiation source: sealed tube3824 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 2000)
h = 106
Tmin = 0.148, Tmax = 0.191k = 1111
6494 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.03P)2]
where P = (Fo2 + 2Fc2)/3
4503 reflections(Δ/σ)max = 0.002
298 parametersΔρmax = 1.33 e Å3
0 restraintsΔρmin = 1.35 e Å3
Crystal data top
[Cu3WIOS3(C10H8N2)2]γ = 67.38 (1)°
Mr = 925.97V = 1296.4 (3) Å3
Triclinic, P1Z = 2
a = 8.895 (1) ÅMo Kα radiation
b = 9.828 (1) ŵ = 8.30 mm1
c = 16.331 (2) ÅT = 293 K
α = 79.66 (1)°0.30 × 0.20 × 0.20 mm
β = 85.90 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4503 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 2000)
3824 reflections with I > 2σ(I)
Tmin = 0.148, Tmax = 0.191Rint = 0.026
6494 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.05Δρmax = 1.33 e Å3
4503 reflectionsΔρmin = 1.35 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.47708 (3)0.61446 (3)0.221255 (14)0.03868 (10)
Cu10.24673 (10)0.70810 (9)0.33506 (5)0.0487 (2)
Cu20.24730 (10)0.70558 (9)0.10520 (5)0.0480 (2)
Cu30.41980 (10)0.36417 (9)0.25406 (5)0.0492 (2)
S10.2598 (2)0.83236 (18)0.20645 (10)0.0487 (4)
S20.4595 (2)0.47961 (19)0.12609 (10)0.0488 (4)
S30.4649 (2)0.48618 (18)0.34909 (9)0.0443 (4)
I10.34111 (7)0.14822 (6)0.28889 (3)0.06171 (15)
O10.6552 (6)0.6454 (6)0.2085 (3)0.0643 (14)
C10.0540 (9)0.6287 (9)0.3468 (4)0.067 (2)
H10.02580.60540.29370.081*
C20.1858 (9)0.6023 (9)0.3858 (5)0.070 (2)
H20.24460.56150.36010.084*
C30.2264 (9)0.6385 (9)0.4633 (5)0.069 (2)
H30.31340.62110.49160.083*
C40.1396 (8)0.7005 (8)0.5000 (5)0.0594 (19)
H40.16880.72820.55220.071*
C50.0068 (7)0.7210 (7)0.4573 (4)0.0450 (15)
C60.0983 (8)0.7820 (7)0.4931 (4)0.0439 (15)
C70.0741 (10)0.8223 (8)0.5722 (4)0.063 (2)
H70.01130.81210.60560.076*
C80.1781 (12)0.8769 (9)0.5998 (5)0.079 (3)
H80.16410.90430.65230.095*
C90.3031 (10)0.8908 (8)0.5493 (5)0.068 (2)
H90.37540.92680.56730.082*
C100.3201 (9)0.8507 (7)0.4714 (4)0.0555 (18)
H100.40400.86180.43700.067*
N10.0348 (6)0.6858 (6)0.3817 (3)0.0490 (14)
N20.2209 (6)0.7969 (5)0.4438 (3)0.0428 (12)
C110.3648 (9)0.9037 (8)0.0339 (4)0.0567 (18)
H110.44310.89340.00400.068*
C120.3647 (9)0.9844 (8)0.1091 (5)0.063 (2)
H120.44001.02960.12220.075*
C130.2522 (10)0.9995 (9)0.1666 (5)0.070 (2)
H130.25021.05400.21960.085*
C140.1421 (8)0.9320 (8)0.1439 (4)0.0559 (18)
H140.06480.94040.18200.067*
C150.1460 (7)0.8514 (7)0.0645 (3)0.0407 (14)
C160.0321 (7)0.7779 (7)0.0329 (4)0.0426 (15)
C170.0862 (8)0.7766 (8)0.0836 (4)0.0543 (17)
H170.09490.82090.13930.065*
C180.1903 (9)0.7080 (8)0.0493 (5)0.061 (2)
H180.27120.70650.08180.074*
C190.1752 (8)0.6428 (8)0.0315 (5)0.0573 (18)
H190.24460.59590.05520.069*
C200.0537 (8)0.6474 (8)0.0783 (4)0.0527 (17)
H200.04320.60240.13390.063*
N30.2600 (6)0.8367 (6)0.0097 (3)0.0439 (12)
N40.0481 (6)0.7130 (6)0.0475 (3)0.0427 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.04201 (16)0.05145 (18)0.03022 (14)0.02765 (13)0.00218 (10)0.00227 (11)
Cu10.0528 (5)0.0556 (5)0.0388 (4)0.0223 (4)0.0032 (4)0.0074 (4)
Cu20.0566 (5)0.0563 (5)0.0360 (4)0.0268 (4)0.0124 (4)0.0030 (4)
Cu30.0561 (5)0.0440 (5)0.0516 (5)0.0244 (4)0.0020 (4)0.0051 (4)
S10.0697 (11)0.0397 (9)0.0373 (8)0.0219 (9)0.0098 (8)0.0015 (7)
S20.0565 (10)0.0523 (10)0.0390 (9)0.0208 (9)0.0025 (7)0.0096 (7)
S30.0509 (9)0.0484 (10)0.0339 (8)0.0215 (8)0.0042 (7)0.0001 (7)
I10.0897 (4)0.0651 (3)0.0493 (3)0.0499 (3)0.0082 (2)0.0130 (2)
O10.062 (3)0.091 (4)0.057 (3)0.052 (3)0.004 (2)0.005 (3)
C10.076 (5)0.096 (6)0.041 (4)0.048 (5)0.017 (4)0.001 (4)
C20.059 (5)0.099 (6)0.065 (5)0.051 (5)0.024 (4)0.014 (5)
C30.040 (4)0.088 (6)0.072 (5)0.026 (4)0.004 (4)0.013 (5)
C40.051 (4)0.056 (5)0.057 (4)0.010 (4)0.001 (3)0.000 (4)
C50.040 (4)0.045 (4)0.042 (4)0.013 (3)0.005 (3)0.006 (3)
C60.051 (4)0.038 (4)0.035 (3)0.008 (3)0.004 (3)0.003 (3)
C70.075 (5)0.059 (5)0.048 (4)0.019 (4)0.006 (4)0.004 (4)
C80.104 (7)0.072 (6)0.054 (5)0.018 (5)0.020 (5)0.022 (4)
C90.077 (6)0.053 (5)0.070 (5)0.013 (4)0.028 (5)0.016 (4)
C100.063 (5)0.046 (4)0.058 (4)0.021 (4)0.018 (4)0.002 (3)
N10.048 (3)0.066 (4)0.038 (3)0.028 (3)0.005 (2)0.005 (3)
N20.045 (3)0.038 (3)0.041 (3)0.011 (2)0.008 (2)0.003 (2)
C110.064 (5)0.073 (5)0.049 (4)0.043 (4)0.002 (3)0.009 (4)
C120.070 (5)0.068 (5)0.062 (5)0.038 (4)0.013 (4)0.016 (4)
C130.079 (6)0.068 (5)0.054 (5)0.026 (5)0.013 (4)0.008 (4)
C140.052 (4)0.069 (5)0.041 (4)0.019 (4)0.014 (3)0.001 (3)
C150.042 (3)0.045 (4)0.035 (3)0.016 (3)0.002 (3)0.006 (3)
C160.047 (4)0.041 (4)0.040 (4)0.014 (3)0.008 (3)0.009 (3)
C170.052 (4)0.063 (5)0.052 (4)0.025 (4)0.016 (3)0.009 (3)
C180.050 (4)0.074 (5)0.071 (5)0.028 (4)0.016 (4)0.023 (4)
C190.046 (4)0.067 (5)0.072 (5)0.031 (4)0.006 (4)0.025 (4)
C200.049 (4)0.070 (5)0.050 (4)0.032 (4)0.005 (3)0.016 (4)
N30.048 (3)0.052 (3)0.039 (3)0.026 (3)0.003 (2)0.009 (2)
N40.045 (3)0.054 (3)0.037 (3)0.026 (3)0.001 (2)0.009 (2)
Geometric parameters (Å, º) top
W1—O11.717 (4)C6—C71.396 (9)
W1—S12.2531 (18)C7—C81.369 (11)
W1—S32.2556 (15)C7—H70.9300
W1—S22.2649 (17)C8—C91.372 (11)
W1—Cu32.6551 (8)C8—H80.9300
W1—Cu22.6662 (8)C9—C101.379 (10)
W1—Cu12.6680 (9)C9—H90.9300
Cu1—N12.057 (5)C10—N21.328 (8)
Cu1—N22.076 (5)C10—H100.9300
Cu1—S12.2517 (17)C11—N31.336 (8)
Cu1—S32.2810 (19)C11—C121.337 (9)
Cu2—N42.037 (5)C11—H110.9300
Cu2—N32.099 (5)C12—C131.369 (10)
Cu2—S12.2741 (18)C12—H120.9300
Cu2—S22.2818 (19)C13—C141.377 (10)
Cu3—S22.2650 (17)C13—H130.9300
Cu3—S32.2658 (18)C14—C151.388 (8)
Cu3—I12.4435 (9)C14—H140.9300
C1—N11.336 (8)C15—N31.350 (7)
C1—C21.384 (10)C15—C161.473 (8)
C1—H10.9300C16—N41.345 (7)
C2—C31.363 (11)C16—C171.390 (8)
C2—H20.9300C17—C181.377 (9)
C3—C41.373 (10)C17—H170.9300
C3—H30.9300C18—C191.350 (10)
C4—C51.391 (9)C18—H180.9300
C4—H40.9300C19—C201.386 (9)
C5—N11.331 (8)C19—H190.9300
C5—C61.487 (9)C20—N41.326 (8)
C6—N21.347 (8)C20—H200.9300
O1—W1—S1110.80 (18)C4—C3—H3119.8
O1—W1—S3110.76 (16)C3—C4—C5118.4 (7)
S1—W1—S3108.07 (6)C3—C4—H4120.8
O1—W1—S2110.50 (18)C5—C4—H4120.8
S1—W1—S2108.58 (6)N1—C5—C4121.8 (6)
S3—W1—S2108.03 (6)N1—C5—C6115.7 (5)
O1—W1—Cu3131.77 (18)C4—C5—C6122.5 (6)
S1—W1—Cu3117.43 (5)N2—C6—C7121.2 (6)
S3—W1—Cu354.22 (5)N2—C6—C5115.5 (5)
S2—W1—Cu354.12 (4)C7—C6—C5123.3 (6)
O1—W1—Cu2124.40 (16)C8—C7—C6119.0 (7)
S1—W1—Cu254.28 (5)C8—C7—H7120.5
S3—W1—Cu2124.84 (5)C6—C7—H7120.5
S2—W1—Cu254.39 (5)C7—C8—C9119.3 (8)
Cu3—W1—Cu285.99 (3)C7—C8—H8120.3
O1—W1—Cu1126.51 (17)C9—C8—H8120.3
S1—W1—Cu153.66 (5)C8—C9—C10119.1 (8)
S3—W1—Cu154.42 (5)C8—C9—H9120.4
S2—W1—Cu1122.99 (5)C10—C9—H9120.4
Cu3—W1—Cu184.69 (3)N2—C10—C9122.4 (7)
Cu2—W1—Cu189.58 (3)N2—C10—H10118.8
N1—Cu1—N279.5 (2)C9—C10—H10118.8
N1—Cu1—S1121.81 (15)C5—N1—C1118.4 (6)
N2—Cu1—S1124.53 (15)C5—N1—Cu1114.9 (4)
N1—Cu1—S3112.81 (16)C1—N1—Cu1126.4 (5)
N2—Cu1—S3108.65 (14)C10—N2—C6119.0 (6)
S1—Cu1—S3107.24 (7)C10—N2—Cu1126.9 (5)
N1—Cu1—W1141.09 (16)C6—N2—Cu1113.8 (4)
N2—Cu1—W1137.72 (15)N3—C11—C12124.4 (7)
S1—Cu1—W153.71 (5)N3—C11—H11117.8
S3—Cu1—W153.54 (4)C12—C11—H11117.8
N4—Cu2—N379.56 (19)C11—C12—C13119.0 (7)
N4—Cu2—S1129.03 (16)C11—C12—H12120.5
N3—Cu2—S1107.22 (14)C13—C12—H12120.5
N4—Cu2—S2116.21 (16)C12—C13—C14118.3 (7)
N3—Cu2—S2113.02 (15)C12—C13—H13120.8
S1—Cu2—S2107.27 (6)C14—C13—H13120.8
N4—Cu2—W1157.25 (14)C13—C14—C15120.3 (6)
N3—Cu2—W1122.70 (13)C13—C14—H14119.9
S1—Cu2—W153.56 (5)C15—C14—H14119.9
S2—Cu2—W153.80 (4)N3—C15—C14120.0 (5)
S2—Cu3—S3107.67 (6)N3—C15—C16115.1 (5)
S2—Cu3—I1127.99 (5)C14—C15—C16124.9 (6)
S3—Cu3—I1124.34 (5)N4—C16—C17121.9 (6)
S2—Cu3—W154.11 (5)N4—C16—C15116.5 (5)
S3—Cu3—W153.86 (4)C17—C16—C15121.6 (6)
I1—Cu3—W1174.48 (4)C18—C17—C16118.3 (6)
Cu1—S1—W172.64 (5)C18—C17—H17120.8
Cu1—S1—Cu2112.27 (7)C16—C17—H17120.8
W1—S1—Cu272.16 (6)C19—C18—C17120.1 (6)
W1—S2—Cu371.76 (5)C19—C18—H18119.9
W1—S2—Cu271.80 (6)C17—C18—H18119.9
Cu3—S2—Cu2105.89 (7)C18—C19—C20118.5 (6)
W1—S3—Cu371.92 (5)C18—C19—H19120.7
W1—S3—Cu172.04 (5)C20—C19—H19120.7
Cu3—S3—Cu1104.11 (7)N4—C20—C19123.0 (6)
N1—C1—C2123.3 (7)N4—C20—H20118.5
N1—C1—H1118.3C19—C20—H20118.5
C2—C1—H1118.3C11—N3—C15118.0 (5)
C3—C2—C1117.6 (7)C11—N3—Cu2128.5 (4)
C3—C2—H2121.2C15—N3—Cu2113.5 (4)
C1—C2—H2121.2C20—N4—C16118.2 (5)
C2—C3—C4120.5 (7)C20—N4—Cu2126.6 (4)
C2—C3—H3119.8C16—N4—Cu2114.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.573.202 (9)126
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu3WIOS3(C10H8N2)2]
Mr925.97
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.895 (1), 9.828 (1), 16.331 (2)
α, β, γ (°)79.66 (1), 85.90 (1), 67.38 (1)
V3)1296.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)8.30
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Bruker, 2000)
Tmin, Tmax0.148, 0.191
No. of measured, independent and
observed [I > 2σ(I)] reflections
6494, 4503, 3824
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.079, 1.05
No. of reflections4503
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.33, 1.35

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXTL (Bruker, 2000), SHELXTL.

Selected geometric parameters (Å, º) top
W1—O11.717 (4)Cu1—S12.2517 (17)
W1—S12.2531 (18)Cu1—S32.2810 (19)
W1—S32.2556 (15)Cu2—N42.037 (5)
W1—S22.2649 (17)Cu2—N32.099 (5)
W1—Cu32.6551 (8)Cu2—S12.2741 (18)
W1—Cu22.6662 (8)Cu2—S22.2818 (19)
W1—Cu12.6680 (9)Cu3—S22.2650 (17)
Cu1—N12.057 (5)Cu3—S32.2658 (18)
Cu1—N22.076 (5)Cu3—I12.4435 (9)
O1—W1—S1110.80 (18)N2—Cu1—S3108.65 (14)
O1—W1—S3110.76 (16)S1—Cu1—S3107.24 (7)
S1—W1—S3108.07 (6)N4—Cu2—S1129.03 (16)
O1—W1—S2110.50 (18)N3—Cu2—S1107.22 (14)
S1—W1—S2108.58 (6)N4—Cu2—S2116.21 (16)
S3—W1—S2108.03 (6)N3—Cu2—S2113.02 (15)
N1—Cu1—N279.5 (2)S1—Cu2—S2107.27 (6)
N1—Cu1—S1121.81 (15)S2—Cu3—S3107.67 (6)
N2—Cu1—S1124.53 (15)S2—Cu3—I1127.99 (5)
N1—Cu1—S3112.81 (16)S3—Cu3—I1124.34 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.573.202 (9)126
Symmetry code: (i) x1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds