

![[pi]](/logos/entities/pi_rmgif.gif)

Supporting information
![]() | Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106014132/ob3003sup1.cif |
![]() | Structure factor file (CIF format) https://doi.org/10.1107/S0108270106014132/ob3003Isup2.hkl |
CCDC reference: 612430
Aquaglyclyglycinatocopper(II) was synthesized according to the method of Sato et al. (1986). Compound (I) was synthesized by adding 2-methylbenzimidazole (0.53 mmol) to a hot aqueous solution (20 ml) of aquoglyclyglycinatocopper(II) (0.52 mmol), stirring the mixture at 353 K for 30 min, cooling to room temperature with stirring overnight, and filtering. Purple crystals of (I) were obtained from the filtrate at room temperature over a period of 10 d (yield 42.9%).
H atoms attached to C and N atoms were placed in geometrically idealized positions, with Csp2—H = 0.93, Csp3(methyl)—H = 0.96, Csp3(methylene)—H = 0.97, Nsp2—H = 0.86 and Nsp3—H = 0.90 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N), or 1.5Ueq(C) for methyl H. H atoms attached to O atoms were located in a difference Fourier map and refined with a global Uiso value = ?. The O—H distances are in the range 0.85(s.u.?)–0.87(s.u.?) Å.
Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1999); software used to prepare material for publication: SHELXTL/PC.
[Cu(C4H6N2O3)(C8H8N2)]·3H2O | F(000) = 788 |
Mr = 379.86 | Dx = 1.615 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2224 reflections |
a = 13.094 (5) Å | θ = 2.2–26.4° |
b = 7.840 (3) Å | µ = 1.44 mm−1 |
c = 18.854 (5) Å | T = 298 K |
β = 126.182 (18)° | Needle, purple |
V = 1562.2 (9) Å3 | 0.40 × 0.10 × 0.03 mm |
Z = 4 |
Bruker SMART 1K CCD area-detector diffractometer | 2754 independent reflections |
Radiation source: fine-focus sealed tube | 2461 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
ω scans | θmax = 25.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | h = −15→12 |
Tmin = 0.598, Tmax = 0.958 | k = −7→9 |
6158 measured reflections | l = −22→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.060 | Hydrogen site location: water H atoms from ΔF, others placed geometrically |
wR(F2) = 0.127 | H-atom parameters constrained |
S = 1.23 | w = 1/[σ2(Fo2) + (0.0372P)2 + 2.2578P] where P = (Fo2 + 2Fc2)/3 |
2754 reflections | (Δ/σ)max = 0.002 |
209 parameters | Δρmax = 0.50 e Å−3 |
0 restraints | Δρmin = −0.44 e Å−3 |
[Cu(C4H6N2O3)(C8H8N2)]·3H2O | V = 1562.2 (9) Å3 |
Mr = 379.86 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.094 (5) Å | µ = 1.44 mm−1 |
b = 7.840 (3) Å | T = 298 K |
c = 18.854 (5) Å | 0.40 × 0.10 × 0.03 mm |
β = 126.182 (18)° |
Bruker SMART 1K CCD area-detector diffractometer | 2754 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | 2461 reflections with I > 2σ(I) |
Tmin = 0.598, Tmax = 0.958 | Rint = 0.041 |
6158 measured reflections |
R[F2 > 2σ(F2)] = 0.060 | 0 restraints |
wR(F2) = 0.127 | H-atom parameters constrained |
S = 1.23 | Δρmax = 0.50 e Å−3 |
2754 reflections | Δρmin = −0.44 e Å−3 |
209 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.08222 (5) | 0.96255 (7) | 0.79252 (3) | 0.02617 (19) | |
N1 | 0.2370 (3) | 1.0796 (5) | 0.8176 (2) | 0.0332 (9) | |
H1A | 0.2738 | 1.0130 | 0.7997 | 0.040* | |
H1B | 0.2146 | 1.1783 | 0.7875 | 0.040* | |
N2 | 0.1663 (4) | 0.9875 (5) | 0.9145 (2) | 0.0295 (9) | |
N3 | −0.0182 (3) | 0.9284 (5) | 0.6649 (2) | 0.0283 (9) | |
N4 | −0.0842 (3) | 0.8626 (5) | 0.5303 (2) | 0.0306 (9) | |
H4 | −0.0829 | 0.8233 | 0.4882 | 0.037* | |
C1 | 0.3278 (4) | 1.1141 (6) | 0.9125 (3) | 0.0347 (11) | |
H1C | 0.3398 | 1.2363 | 0.9219 | 0.042* | |
H1D | 0.4089 | 1.0635 | 0.9339 | 0.042* | |
C2 | 0.2826 (4) | 1.0430 (6) | 0.9642 (3) | 0.0320 (10) | |
C3 | 0.1083 (4) | 0.9057 (6) | 0.9514 (3) | 0.0332 (11) | |
H3A | 0.0986 | 0.9869 | 0.9859 | 0.040* | |
H3B | 0.1609 | 0.8124 | 0.9895 | 0.040* | |
C4 | −0.0198 (4) | 0.8391 (6) | 0.8762 (3) | 0.0308 (10) | |
C5 | 0.1361 (4) | 0.7816 (7) | 0.6481 (3) | 0.0416 (13) | |
H5A | 0.1833 | 0.8596 | 0.6384 | 0.062* | |
H5B | 0.1228 | 0.6773 | 0.6170 | 0.062* | |
H5C | 0.1826 | 0.7582 | 0.7098 | 0.062* | |
C6 | 0.0125 (4) | 0.8582 (6) | 0.6157 (3) | 0.0281 (10) | |
C7 | −0.1860 (4) | 0.9405 (5) | 0.5206 (3) | 0.0281 (10) | |
C8 | −0.1437 (4) | 0.9847 (5) | 0.6059 (3) | 0.0265 (10) | |
C9 | −0.2236 (5) | 1.0672 (6) | 0.6206 (3) | 0.0330 (11) | |
H9 | −0.1973 | 1.0945 | 0.6771 | 0.040* | |
C10 | −0.3431 (5) | 1.1068 (6) | 0.5481 (3) | 0.0387 (12) | |
H10 | −0.3980 | 1.1637 | 0.5560 | 0.046* | |
C11 | −0.3848 (5) | 1.0640 (7) | 0.4628 (3) | 0.0439 (13) | |
H11 | −0.4665 | 1.0930 | 0.4155 | 0.053* | |
C12 | −0.3074 (5) | 0.9804 (6) | 0.4477 (3) | 0.0402 (12) | |
H12 | −0.3349 | 0.9516 | 0.3911 | 0.048* | |
O1 | 0.3546 (3) | 1.0411 (5) | 1.0458 (2) | 0.0483 (9) | |
O2 | −0.0505 (3) | 0.8550 (4) | 0.79906 (19) | 0.0340 (8) | |
O3 | −0.0908 (3) | 0.7732 (5) | 0.8918 (2) | 0.0433 (9) | |
O4 | 0.4209 (4) | 0.6322 (5) | 0.6971 (3) | 0.0632 (11) | |
H41 | 0.3816 | 0.5922 | 0.6454 | 0.095* | |
H42 | 0.4995 | 0.6106 | 0.7256 | 0.095* | |
O5 | 0.4109 (3) | 0.8257 (5) | 0.8262 (2) | 0.0598 (11) | |
H51 | 0.4882 | 0.8457 | 0.8672 | 0.090* | |
H52 | 0.4057 | 0.7806 | 0.7831 | 0.090* | |
O6 | 0.3595 (4) | 0.3170 (6) | 0.7410 (3) | 0.0764 (14) | |
H61 | 0.2796 | 0.3109 | 0.7038 | 0.115* | |
H62 | 0.3851 | 0.4132 | 0.7339 | 0.115* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0256 (3) | 0.0332 (3) | 0.0188 (3) | −0.0024 (2) | 0.0126 (2) | −0.0011 (2) |
N1 | 0.031 (2) | 0.037 (2) | 0.033 (2) | −0.0042 (17) | 0.0193 (19) | 0.0051 (17) |
N2 | 0.033 (2) | 0.030 (2) | 0.023 (2) | −0.0035 (17) | 0.0154 (18) | −0.0033 (16) |
N3 | 0.030 (2) | 0.033 (2) | 0.024 (2) | −0.0032 (16) | 0.0176 (18) | −0.0001 (16) |
N4 | 0.038 (2) | 0.038 (2) | 0.022 (2) | −0.0027 (18) | 0.0213 (19) | −0.0060 (17) |
C1 | 0.028 (2) | 0.036 (3) | 0.032 (3) | −0.003 (2) | 0.014 (2) | −0.005 (2) |
C2 | 0.034 (3) | 0.026 (2) | 0.025 (3) | 0.002 (2) | 0.011 (2) | −0.002 (2) |
C3 | 0.037 (3) | 0.039 (3) | 0.024 (2) | 0.000 (2) | 0.018 (2) | −0.001 (2) |
C4 | 0.036 (3) | 0.031 (3) | 0.025 (2) | 0.004 (2) | 0.018 (2) | 0.007 (2) |
C5 | 0.033 (3) | 0.061 (4) | 0.030 (3) | 0.008 (2) | 0.018 (2) | −0.001 (2) |
C6 | 0.027 (2) | 0.036 (3) | 0.024 (2) | −0.004 (2) | 0.016 (2) | −0.001 (2) |
C7 | 0.034 (2) | 0.026 (2) | 0.027 (2) | −0.0035 (19) | 0.019 (2) | −0.0019 (19) |
C8 | 0.028 (2) | 0.025 (2) | 0.024 (2) | −0.0101 (18) | 0.014 (2) | −0.0041 (18) |
C9 | 0.040 (3) | 0.030 (3) | 0.033 (3) | −0.001 (2) | 0.023 (2) | −0.003 (2) |
C10 | 0.036 (3) | 0.038 (3) | 0.045 (3) | 0.005 (2) | 0.025 (3) | 0.003 (2) |
C11 | 0.029 (3) | 0.054 (3) | 0.035 (3) | −0.004 (2) | 0.011 (2) | 0.005 (2) |
C12 | 0.036 (3) | 0.048 (3) | 0.023 (3) | −0.005 (2) | 0.009 (2) | 0.001 (2) |
O1 | 0.044 (2) | 0.059 (2) | 0.0205 (19) | −0.0082 (18) | 0.0067 (17) | −0.0001 (17) |
O2 | 0.0309 (17) | 0.050 (2) | 0.0202 (16) | −0.0085 (15) | 0.0144 (15) | 0.0001 (15) |
O3 | 0.0381 (19) | 0.066 (3) | 0.0300 (19) | −0.0058 (18) | 0.0225 (17) | 0.0100 (17) |
O4 | 0.067 (3) | 0.072 (3) | 0.058 (3) | 0.002 (2) | 0.041 (2) | −0.006 (2) |
O5 | 0.037 (2) | 0.086 (3) | 0.052 (3) | −0.003 (2) | 0.024 (2) | −0.020 (2) |
O6 | 0.052 (3) | 0.092 (4) | 0.066 (3) | 0.001 (2) | 0.024 (2) | 0.027 (3) |
Cu1—N2 | 1.884 (4) | C4—O2 | 1.265 (5) |
Cu1—N3 | 1.964 (4) | C5—C6 | 1.480 (6) |
Cu1—O2 | 1.999 (3) | C5—H5A | 0.9600 |
Cu1—N1 | 2.011 (4) | C5—H5B | 0.9600 |
N1—C1 | 1.476 (6) | C5—H5C | 0.9600 |
N1—H1A | 0.9000 | C7—C12 | 1.391 (7) |
N1—H1B | 0.9000 | C7—C8 | 1.400 (6) |
N2—C2 | 1.305 (6) | C8—C9 | 1.391 (6) |
N2—C3 | 1.449 (6) | C9—C10 | 1.374 (7) |
N3—C6 | 1.328 (5) | C9—H9 | 0.9300 |
N3—C8 | 1.404 (6) | C10—C11 | 1.401 (7) |
N4—C6 | 1.338 (5) | C10—H10 | 0.9300 |
N4—C7 | 1.377 (6) | C11—C12 | 1.370 (7) |
N4—H4 | 0.8600 | C11—H11 | 0.9300 |
C1—C2 | 1.513 (6) | C12—H12 | 0.9300 |
C1—H1C | 0.9700 | O4—H41 | 0.8493 |
C1—H1D | 0.9700 | O4—H42 | 0.8511 |
C2—O1 | 1.243 (5) | O5—H51 | 0.8506 |
C3—C4 | 1.513 (6) | O5—H52 | 0.8505 |
C3—H3A | 0.9700 | O6—H61 | 0.8502 |
C3—H3B | 0.9700 | O6—H62 | 0.8672 |
C4—O3 | 1.241 (5) | ||
N2—Cu1—N3 | 174.91 (15) | H3A—C3—H3B | 108.4 |
N2—Cu1—O2 | 82.62 (14) | O3—C4—O2 | 122.7 (4) |
N3—Cu1—O2 | 92.31 (13) | O3—C4—C3 | 119.5 (4) |
N2—Cu1—N1 | 83.35 (16) | O2—C4—C3 | 117.9 (4) |
N3—Cu1—N1 | 101.72 (15) | C6—C5—H5A | 109.5 |
O2—Cu1—N1 | 165.96 (14) | C6—C5—H5B | 109.5 |
C1—N1—Cu1 | 110.3 (3) | H5A—C5—H5B | 109.5 |
C1—N1—H1A | 109.6 | C6—C5—H5C | 109.5 |
Cu1—N1—H1A | 109.6 | H5A—C5—H5C | 109.5 |
C1—N1—H1B | 109.6 | H5B—C5—H5C | 109.5 |
Cu1—N1—H1B | 109.6 | N3—C6—N4 | 111.6 (4) |
H1A—N1—H1B | 108.1 | N3—C6—C5 | 126.1 (4) |
C2—N2—C3 | 121.6 (4) | N4—C6—C5 | 122.3 (4) |
C2—N2—Cu1 | 120.3 (3) | N4—C7—C12 | 133.1 (4) |
C3—N2—Cu1 | 116.5 (3) | N4—C7—C8 | 105.2 (4) |
C6—N3—C8 | 105.8 (4) | C12—C7—C8 | 121.7 (4) |
C6—N3—Cu1 | 130.7 (3) | C9—C8—C7 | 120.6 (4) |
C8—N3—Cu1 | 123.5 (3) | C9—C8—N3 | 130.9 (4) |
C6—N4—C7 | 108.9 (4) | C7—C8—N3 | 108.5 (4) |
C6—N4—H4 | 125.5 | C10—C9—C8 | 117.1 (4) |
C7—N4—H4 | 125.5 | C10—C9—H9 | 121.4 |
N1—C1—C2 | 111.9 (4) | C8—C9—H9 | 121.4 |
N1—C1—H1C | 109.2 | C9—C10—C11 | 122.1 (5) |
C2—C1—H1C | 109.2 | C9—C10—H10 | 119.0 |
N1—C1—H1D | 109.2 | C11—C10—H10 | 119.0 |
C2—C1—H1D | 109.2 | C12—C11—C10 | 121.2 (5) |
H1C—C1—H1D | 107.9 | C12—C11—H11 | 119.4 |
O1—C2—N2 | 126.5 (5) | C10—C11—H11 | 119.4 |
O1—C2—C1 | 120.2 (4) | C11—C12—C7 | 117.2 (5) |
N2—C2—C1 | 113.3 (4) | C11—C12—H12 | 121.4 |
N2—C3—C4 | 107.9 (4) | C7—C12—H12 | 121.4 |
N2—C3—H3A | 110.1 | C4—O2—Cu1 | 114.5 (3) |
C4—C3—H3A | 110.1 | H41—O4—H42 | 109.7 |
N2—C3—H3B | 110.1 | H51—O5—H52 | 109.2 |
C4—C3—H3B | 110.1 | H61—O6—H62 | 108.7 |
N2—Cu1—N1—C1 | 1.6 (3) | Cu1—N3—C6—C5 | 1.5 (7) |
N3—Cu1—N1—C1 | −178.9 (3) | C7—N4—C6—N3 | 0.2 (5) |
O2—Cu1—N1—C1 | 3.8 (8) | C7—N4—C6—C5 | 179.7 (4) |
O2—Cu1—N2—C2 | 172.9 (4) | C6—N4—C7—C12 | 178.8 (5) |
N1—Cu1—N2—C2 | −7.6 (4) | C6—N4—C7—C8 | 0.8 (5) |
O2—Cu1—N2—C3 | 7.2 (3) | N4—C7—C8—C9 | 179.8 (4) |
N1—Cu1—N2—C3 | −173.4 (3) | C12—C7—C8—C9 | 1.5 (7) |
O2—Cu1—N3—C6 | −128.7 (4) | N4—C7—C8—N3 | −1.4 (5) |
N1—Cu1—N3—C6 | 51.9 (4) | C12—C7—C8—N3 | −179.7 (4) |
O2—Cu1—N3—C8 | 53.7 (3) | C6—N3—C8—C9 | −179.9 (5) |
N1—Cu1—N3—C8 | −125.7 (3) | Cu1—N3—C8—C9 | −1.8 (6) |
Cu1—N1—C1—C2 | 3.4 (5) | C6—N3—C8—C7 | 1.5 (5) |
C3—N2—C2—O1 | −3.4 (7) | Cu1—N3—C8—C7 | 179.6 (3) |
Cu1—N2—C2—O1 | −168.4 (4) | C7—C8—C9—C10 | −1.7 (6) |
C3—N2—C2—C1 | 176.3 (4) | N3—C8—C9—C10 | 179.8 (4) |
Cu1—N2—C2—C1 | 11.3 (5) | C8—C9—C10—C11 | 1.1 (7) |
N1—C1—C2—O1 | 170.6 (4) | C9—C10—C11—C12 | −0.1 (8) |
N1—C1—C2—N2 | −9.1 (6) | C10—C11—C12—C7 | −0.2 (7) |
C2—N2—C3—C4 | −173.4 (4) | N4—C7—C12—C11 | −178.3 (5) |
Cu1—N2—C3—C4 | −7.9 (5) | C8—C7—C12—C11 | −0.5 (7) |
N2—C3—C4—O3 | −175.4 (4) | O3—C4—O2—Cu1 | −179.2 (4) |
N2—C3—C4—O2 | 3.9 (6) | C3—C4—O2—Cu1 | 1.6 (5) |
C8—N3—C6—N4 | −1.1 (5) | N2—Cu1—O2—C4 | −4.8 (3) |
Cu1—N3—C6—N4 | −179.0 (3) | N3—Cu1—O2—C4 | 175.6 (3) |
C8—N3—C6—C5 | 179.4 (4) | N1—Cu1—O2—C4 | −7.1 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H62···O4 | 0.87 | 2.01 | 2.867 (6) | 171 |
O6—H61···O3i | 0.85 | 2.05 | 2.892 (5) | 174 |
O5—H52···O4 | 0.85 | 2.10 | 2.934 (5) | 168 |
O5—H51···O1ii | 0.85 | 1.93 | 2.756 (5) | 163 |
O4—H42···O6iii | 0.85 | 2.25 | 2.787 (6) | 121 |
O4—H41···O1iv | 0.85 | 1.99 | 2.796 (5) | 158 |
N4—H4···O3iv | 0.86 | 1.91 | 2.773 (5) | 176 |
N1—H1B···O2v | 0.90 | 2.25 | 3.021 (5) | 144 |
N1—H1A···O5 | 0.90 | 2.14 | 2.956 (5) | 151 |
C1—H1C···Cg1v | 0.97 | 2.77 | 3.604 (6) | 144 |
C3—H3B···Cg1i | 0.97 | 2.81 | 3.547 (6) | 133 |
Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) −x+1, −y+2, −z+2; (iii) −x+1, y+1/2, −z+3/2; (iv) x, −y+3/2, z−1/2; (v) −x, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C4H6N2O3)(C8H8N2)]·3H2O |
Mr | 379.86 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 13.094 (5), 7.840 (3), 18.854 (5) |
β (°) | 126.182 (18) |
V (Å3) | 1562.2 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.44 |
Crystal size (mm) | 0.40 × 0.10 × 0.03 |
Data collection | |
Diffractometer | Bruker SMART 1K CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2000) |
Tmin, Tmax | 0.598, 0.958 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6158, 2754, 2461 |
Rint | 0.041 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.060, 0.127, 1.23 |
No. of reflections | 2754 |
No. of parameters | 209 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.50, −0.44 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 1999), SHELXTL/PC.
Cu1—N2 | 1.884 (4) | Cu1—O2 | 1.999 (3) |
Cu1—N3 | 1.964 (4) | Cu1—N1 | 2.011 (4) |
N2—Cu1—N3 | 174.91 (15) | N2—Cu1—N1 | 83.35 (16) |
N2—Cu1—O2 | 82.62 (14) | N3—Cu1—N1 | 101.72 (15) |
N3—Cu1—O2 | 92.31 (13) | O2—Cu1—N1 | 165.96 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H62···O4 | 0.87 | 2.01 | 2.867 (6) | 170.9 |
O6—H61···O3i | 0.85 | 2.05 | 2.892 (5) | 173.6 |
O5—H52···O4 | 0.85 | 2.10 | 2.934 (5) | 167.7 |
O5—H51···O1ii | 0.85 | 1.93 | 2.756 (5) | 163.1 |
O4—H42···O6iii | 0.85 | 2.25 | 2.787 (6) | 121.4 |
O4—H41···O1iv | 0.85 | 1.99 | 2.796 (5) | 158.0 |
N4—H4···O3iv | 0.86 | 1.91 | 2.773 (5) | 175.9 |
N1—H1B···O2v | 0.90 | 2.25 | 3.021 (5) | 143.5 |
N1—H1A···O5 | 0.90 | 2.14 | 2.956 (5) | 150.7 |
C1—H1C···Cg1v | 0.97 | 2.77 | 3.604 (6) | 144 |
C3—H3B···Cg1i | 0.97 | 2.81 | 3.547 (6) | 133 |
Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) −x+1, −y+2, −z+2; (iii) −x+1, y+1/2, −z+3/2; (iv) x, −y+3/2, z−1/2; (v) −x, y+1/2, −z+3/2. |
Dipeptide metal complexes have attracted interest because they can act as model complexes to study metal–protein interactions (Tasiopoulos et al., 1998, 2000, 2002). Some ternary complexes of metal ions with peptides and other ligands can cleave DNA (García-Raso et al., 2003). To date, many crystal structures of peptide–metal complexes have been studied, with some of them investigated for their magnetic properties (García-Raso et al., 1998, 2002). As peptide–metal complexes can form abundant hydrogen bonds, by which the complexes possibly interact with proteins and further affect their structures and functions, the strutures and weak interactions of peptide–metal complexes have attracted our interest. During our experiment, the title compound, (I), [Cu(gg)(mbenz)]·3H2O (H2gg is glycylglycine and mbenz is 2-methylbenzimidazole), was synthesized and its crystal structure was determined.
Some features of the molecular geometry of (I) are listed in Table 1, and the molecular conformation is illustrated in Fig. 1. Compound (I) consists of a ternary complex and three water molecules. In the ternary complex, Cu is coordinated by one O atom and three N atoms, i.e. with the glycylglycinate ligand providing one O and two N atoms and the methylbenzimidazole ligand providing one N atom, forming a square-planar geometry. This square-planar coordination environment is in good agreement with that of compound (II), [Cu(gg)(bzim)]·3H2O (bzim is benzimidazole; García-Raso et al., 1996). However, in (I), due to the steric effect of the methyl group of the 2-methylbenzimidazole ligand, the glycylglycinate (N1/N2/O1–O3/C1–C4) and 2-methylbenzimidazole (N3/N4/C5–C12) ligands are twisted with a dihedral angle of 53.8 (1)°, in contrast with (II), where the dihedral angle is 19.0 (1)°.
The supramolecular interactions in (I) are listed in Table 2 and illustrated in Fig. 2. The ternary complexes assemble in an antiparallel and alternating fashion into one-dimensional chains along the b axis through C—H···π interactions and N—H···O hydrogen bonds (N1—H1B···O2v; see Table 2) between neighbouring complexes, as well as water chains (Fig. 2) which also link the one-dimensional complex chains into a three-dimensional supramolecular structure. The two C—H···π (C1—H···Cg1v and C3—H···Cg1i) interactions are obviously different from what was seen in (II), where only the water chains take part in constructing one-dimensional chains of the [Cu(gg)(bzim)] complexes. Evidently, the C—H···π interactions and direct hydrogen bonding result from the conformational change, i.e. the larger twist between the peptide and benzimidazole groups in (I) than in (II), because of the steric effect of the methyl group of 2-methylbenzimidazole. This steric effect also changes the arrangement of the water molecules. In (I), the three water molecules are hydrogen bonded into a water helix with branches (Fig. 2), instead of the smooth helix in (II). Therefore, the steric effect of a methyl group can affect the molecular structure, which further changes the packing mode of the complexes in the crystal.