Download citation
Download citation
link to html
The title compound, [Zn2Cl2(C17H16N2O2)(C3H7NO)], is a doubly oxy­gen-bridged dinuclear complex with non-crystallographic mirror symmetry. One of the Zn2+ ions has a distorted square-pyramidal environment involving two O and two N atoms of the bis­(salicyl­idene)-1,3-propane­diaminate ligand, and an O atom of di­methyl­form­amide in the axial position. The other Zn2+ ion has a distorted tetrahedral coordination, with average Zn—O and Zn—Cl distances of 1.994 (3) and 2.2108 (14) Å. The Zn...Zn distance is 3.161 (1) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802001678/ob6112sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802001678/ob6112Isup2.hkl
Contains datablock I

CCDC reference: 182573

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.029
  • wR factor = 0.090
  • Data-to-parameter ratio = 10.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.17 From the CIF: _reflns_number_total 2927 Count of symmetry unique reflns 2928 Completeness (_total/calc) 99.97% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure

Comment top

Dinuclear complexes with double oxygen bridges are of interest because of the magnetic superexchange interactions between the bridged metal ions. The magnetic properties of homo- and heteropolynuclear compounds are curently under investigation (Tuna et al., 1999). The synthesis and structures of oxygen-bridged polynuclear complexes based on Schiff base ligands, such as [Zn{Zn(CH3COO)(SALPD)}2] (Ülkü et al., 2001, and references therein), [ZnBr2Ni(SALPD)(C3H7NO)2] (Arıcı et al., 2001), [ZnCl2Cu(SALPD)] (Tatar et al., 1999), [ZnCl2Zn(SALPD)(C2H7O2)] (Atakol et al., 1999a), [ZnCl2Ni(SALPD)(C6H7N)2] (Atakol et al., 1999b), [ZnI2Cu(SALPD)] (Ercan et al., 1999a) and [ZnI2Cu(SALPD)(C6H7N)] (Ercan et al., 1999b) [SALPD is N,N'-bis(salicylidene)-1,3-propanediaminate (C17H16N2O2)], have been the subject of considerable interest in our laboratory.

In the present work, a zinc–Schiff base complex, [ZnCl2Zn(SALPD)(C3H7NO)], (I), consisting of a doubly oxygen-bridged homodinuclear structure was prepared, and the crystal structure of this new dimeric complex determined. The coordination around the Zn1 ion is a distorted square pyramid. The basal plane, defined by the O1, O2, N1 and N2 atoms, consists of two N atoms and two bridging O atoms from a bis(salicylidene)-1,3-propanediaminate (SALPD2-) ligand. The axial position of the square pyramid is occupied by an O atom [Zn1—O3 2.041 (3) Å] of the dimethylformamide group. Within the coordination sphere, the average Zn1—N and Zn1—O (SALPD2-) bond lengths are 2.043 (3) and 2.053 (3) Å, respectively. The bond angles in the five-coordinated polyhedra have values between 75.90 (10) (O1—Zn1—O2) and 105.60 (14)° (O3—Zn1—N1). The dihedral angle between the O1—Zn1—O2 and N1—Zn1—N2 planes is 32.78 (1)°. The Zn1 ion is located 0.412 (3) Å from the basal plane towards the O3 atom.

The Zn2 ion has a distorted tetrahedral coordination involving two bridging O atoms from the SALPD2- ligand and two Cl atoms. The Zn2—O1, Zn2—O2, Zn2—Cl1 and Zn2—Cl2 bond lengths are 1.991 (3), 1.997 (3), 2.2163 (14) and 2.2054 (14) Å, respectively. The Cl1—Zn2—Cl2 and O1—Zn2—O2 angles are 119.75 (7) and 78.56 (10)°, respectively, and these two planes almost perpendicular to each other, the dihedral angle being 89.82 (1)°.

The bridging plane (Zn1—O1—Zn2—O2) in the title compound is not exactly planar, as also observed in the corresponding Cu—Zn complex, [(II), Tatar et al., 1999]. The planes through atoms O1—Zn1—O2 and O1—Zn2—O2 have a dihedral angle of 3.07 (1)° between them; this is smaller than the value of 14.04 (4)° observed in (II). The bridging plane and the coordinaton plane composed of atoms O1, N1, O2 and N2 around the Zn1 ion form a dihedral angle of 16.03 (1)°, which is greater than the values for related compounds: 0.44 (9)° (Atakol et al., 1999b), 1.9 (3)° (Ercan et al., 1999a), 8.6 (5)° (Tatar et al., 1999), and 11.4 (4)° (Ercan et al., 1999b). In the molecule, the Zn1···Zn2 separation is 3.161 (1) Å.

In compound (I), the SALPD2- ligand is not planar; the six-membered chelate ring composed of atoms Zn1, N1, C8, C9, C10 and N2 has a chair conformation and the diagonally positioned atoms (Zn1 and C9) are displaced from the plane defined by the other four atoms of the ring by 0.278 (3) and -0.717 (3) Å, respectively. The phenyl rings are almost planar and the average bond lengths and bond angles in the phenyl rings are 1.390 Å and 119.99°.

Experimental top

The ligand N,N'-bis(salicylidene)-1,3-propanediamine (0.282 g, 1 mmol) was dissolved in a dimethylformamide (dmf)–acetonitrile (MeCN) mixture (30 ml 1:2) by heating. A solution of ZnCl2 (0.272 g, 2 mmol) in hot dmf (20 ml) was added. The resulting mixture was set aside for 10 d and the crystals which formed were filtered off and dried in air.

Refinement top

The achiral title molecule crystallizes in a chiral space group. The H atoms were positioned geometrically from the corresponding C atoms with Ueq(H) = 1.2Ueq(C), and a riding model was used during the refinement process.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) drawings of [Zn2Cl2(C17H16N2O2)(C3H7NO)] with the atom-numbering schemes. The displacement ellipsoids are drawn at the 40% probability level.
(I) top
Crystal data top
[Zn2Cl2(C17H16N2O2)(C3H7NO)]F(000) = 1128
Mr = 555.09Dx = 1.581 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2bcCell parameters from 25 reflections
a = 10.1959 (9) Åθ = 10.4–18.3°
b = 14.443 (3) ŵ = 2.31 mm1
c = 15.8359 (15) ÅT = 293 K
V = 2332.0 (5) Å3Prism, colorless
Z = 40.40 × 0.40 × 0.40 mm
Data collection top
Enraf Nonius CAD4
diffractometer
2718 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 27.2°, θmin = 2.5°
ω/2θ scansh = 013
Absorption correction: ψ scan
(North et al., 1968)
k = 018
Tmin = 0.383, Tmax = 0.397l = 200
2929 measured reflections3 standard reflections every 120 min
2927 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0568P)2 + 0.9618P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.68 e Å3
2927 reflectionsΔρmin = 0.41 e Å3
272 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0136 (8)
Primary atom site location: structure-invariant direct methodsAbsolute structure: (Flack, 1983), no Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (2)
Crystal data top
[Zn2Cl2(C17H16N2O2)(C3H7NO)]V = 2332.0 (5) Å3
Mr = 555.09Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.1959 (9) ŵ = 2.31 mm1
b = 14.443 (3) ÅT = 293 K
c = 15.8359 (15) Å0.40 × 0.40 × 0.40 mm
Data collection top
Enraf Nonius CAD4
diffractometer
2718 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.015
Tmin = 0.383, Tmax = 0.3973 standard reflections every 120 min
2929 measured reflections intensity decay: 2%
2927 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.090Δρmax = 0.68 e Å3
S = 1.11Δρmin = 0.41 e Å3
2927 reflectionsAbsolute structure: (Flack, 1983), no Friedel pairs
272 parametersAbsolute structure parameter: 0.01 (2)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Number of psi-scan sets used was 7 Theta correction was applied. Averaged transmission function was used. No Fourier smoothing was applied.

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4857 (4)0.0231 (3)0.2883 (2)0.0309 (8)
C20.5789 (5)0.0323 (4)0.3289 (3)0.0451 (11)
H20.64030.06410.29660.054*
C30.5822 (6)0.0409 (4)0.4157 (3)0.0487 (12)
H30.64580.07780.44100.058*
C40.4918 (6)0.0049 (4)0.4651 (3)0.0492 (12)
H40.49460.00020.52360.059*
C50.3972 (5)0.0583 (3)0.4264 (3)0.0454 (12)
H50.33490.08840.45930.054*
C60.3930 (4)0.0680 (3)0.3379 (2)0.0341 (9)
C70.2915 (4)0.1283 (3)0.3063 (3)0.0401 (9)
H70.24330.16050.34660.048*
C80.1476 (5)0.2068 (4)0.2139 (3)0.0516 (12)
H8A0.06780.17090.20820.062*
H8B0.13770.24690.26270.062*
C90.1650 (5)0.2644 (3)0.1378 (3)0.0569 (12)
H9A0.25290.29010.13870.068*
H9B0.10400.31590.14080.068*
C100.1452 (5)0.2157 (4)0.0543 (3)0.0531 (12)
H10A0.06420.18050.05630.064*
H10B0.13680.26160.00990.064*
C110.2803 (4)0.1439 (3)0.0446 (3)0.0379 (9)
H110.22870.17810.08150.046*
C120.3802 (4)0.0870 (3)0.0828 (2)0.0322 (8)
C130.3796 (5)0.0798 (4)0.1714 (3)0.0430 (10)
H130.31500.11090.20160.052*
C140.4702 (5)0.0289 (3)0.2148 (3)0.0435 (11)
H140.46630.02480.27340.052*
C150.5677 (6)0.0163 (4)0.1703 (3)0.0469 (11)
H150.62990.05100.19930.056*
C160.5738 (5)0.0104 (3)0.0835 (3)0.0391 (10)
H160.63990.04150.05460.047*
C170.4810 (4)0.0420 (3)0.0379 (3)0.0320 (9)
C180.3079 (4)0.1207 (3)0.1199 (3)0.0431 (9)
H180.39890.11600.12120.052*
C190.1181 (6)0.2199 (4)0.1140 (5)0.0712 (17)
H19A0.10110.28530.11320.107*
H19B0.08330.19210.06370.107*
H19C0.07690.19280.16260.107*
C200.3405 (8)0.2860 (4)0.1168 (7)0.124 (4)
H20A0.28690.34060.11510.186*
H20B0.39380.28690.16680.186*
H20C0.39600.28430.06780.186*
Cl10.69430 (16)0.13510 (9)0.11283 (9)0.0669 (4)
Cl20.78812 (13)0.12033 (10)0.13306 (9)0.0600 (3)
N10.2599 (4)0.1427 (2)0.2286 (2)0.0374 (8)
N20.2542 (4)0.1530 (2)0.0338 (2)0.0351 (7)
N30.2569 (4)0.2042 (2)0.1178 (3)0.0543 (10)
O10.4899 (3)0.0332 (2)0.20459 (17)0.0370 (7)
O20.4901 (3)0.04781 (19)0.04569 (18)0.0368 (7)
O30.2441 (3)0.04817 (17)0.1202 (2)0.0384 (6)
Zn10.33938 (4)0.07588 (3)0.12725 (3)0.03059 (13)
Zn20.63601 (4)0.01228 (3)0.12336 (3)0.03427 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0287 (19)0.0336 (18)0.0303 (17)0.0038 (17)0.0000 (15)0.0002 (15)
C20.043 (3)0.051 (3)0.041 (2)0.010 (2)0.006 (2)0.006 (2)
C30.053 (3)0.056 (3)0.036 (2)0.007 (3)0.000 (2)0.010 (2)
C40.060 (3)0.059 (3)0.0282 (19)0.004 (3)0.0008 (19)0.007 (2)
C50.048 (3)0.053 (3)0.0350 (19)0.004 (2)0.0064 (19)0.0060 (19)
C60.032 (2)0.036 (2)0.0344 (17)0.0022 (18)0.0021 (16)0.0015 (16)
C70.036 (2)0.041 (2)0.044 (2)0.0022 (18)0.0056 (17)0.0122 (18)
C80.045 (3)0.055 (3)0.055 (2)0.026 (2)0.003 (2)0.010 (2)
C90.050 (3)0.036 (2)0.084 (3)0.014 (2)0.004 (3)0.002 (2)
C100.050 (3)0.055 (3)0.054 (2)0.026 (3)0.003 (2)0.011 (2)
C110.0316 (19)0.038 (2)0.045 (2)0.0069 (17)0.0046 (17)0.0119 (17)
C120.030 (2)0.034 (2)0.0332 (17)0.0028 (18)0.0025 (15)0.0047 (15)
C130.039 (2)0.053 (3)0.0369 (19)0.007 (2)0.0097 (18)0.006 (2)
C140.049 (3)0.048 (2)0.033 (2)0.008 (2)0.0027 (19)0.0041 (18)
C150.051 (3)0.047 (3)0.043 (2)0.000 (3)0.010 (2)0.006 (2)
C160.044 (3)0.038 (2)0.0346 (19)0.007 (2)0.0046 (18)0.0015 (18)
C170.038 (2)0.0274 (17)0.0307 (18)0.0071 (17)0.0006 (16)0.0018 (14)
C180.042 (2)0.0305 (19)0.057 (2)0.0003 (16)0.000 (2)0.0007 (19)
C190.059 (3)0.049 (3)0.105 (5)0.017 (3)0.006 (4)0.003 (3)
C200.076 (4)0.033 (3)0.263 (12)0.014 (3)0.025 (8)0.001 (5)
Cl10.0836 (10)0.0468 (6)0.0704 (8)0.0303 (7)0.0038 (7)0.0035 (6)
Cl20.0500 (6)0.0674 (8)0.0625 (7)0.0143 (6)0.0067 (6)0.0113 (7)
N10.0366 (19)0.0350 (16)0.0406 (17)0.0081 (16)0.0002 (15)0.0058 (14)
N20.0319 (18)0.0332 (16)0.0403 (17)0.0070 (15)0.0003 (14)0.0063 (13)
N30.050 (2)0.0316 (16)0.081 (3)0.0004 (16)0.001 (3)0.004 (2)
O10.0321 (15)0.0494 (16)0.0296 (13)0.0113 (14)0.0000 (11)0.0005 (11)
O20.0350 (16)0.0441 (15)0.0312 (13)0.0109 (14)0.0022 (11)0.0031 (11)
O30.0378 (14)0.0308 (12)0.0466 (15)0.0009 (11)0.0004 (15)0.0008 (13)
Zn10.0315 (2)0.0277 (2)0.0325 (2)0.00666 (16)0.0005 (2)0.00044 (18)
Zn20.0304 (2)0.0392 (2)0.0332 (2)0.00806 (17)0.0015 (2)0.0034 (2)
Geometric parameters (Å, º) top
Zn1—Zn23.161 (1)C13—C141.366 (7)
C1—O11.334 (4)C13—H130.9300
C1—C61.390 (6)C14—C151.382 (7)
C1—C21.398 (6)C14—H140.9300
C2—C31.381 (6)C15—C161.378 (6)
C2—H20.9300C15—H150.9300
C3—C41.377 (7)C16—C171.410 (6)
C3—H30.9300C16—H160.9300
C4—C51.379 (7)C17—O21.330 (5)
C4—H40.9300C18—O31.234 (5)
C5—C61.409 (5)C18—N31.314 (5)
C5—H50.9300C18—H180.9300
C6—C71.442 (6)C19—N31.435 (7)
C7—N11.289 (5)C19—H19A0.9600
C7—H70.9300C19—H19B0.9600
C8—C91.476 (7)C19—H19C0.9600
C8—N11.491 (6)C20—N31.456 (7)
C8—H8A0.9700C20—H20A0.9600
C8—H8B0.9700C20—H20B0.9600
C9—C101.511 (7)C20—H20C0.9600
C9—H9A0.9700Cl1—Zn22.2163 (14)
C9—H9B0.9700Cl2—Zn22.2054 (14)
C10—N21.470 (6)N1—Zn12.040 (3)
C10—H10A0.9700N2—Zn12.046 (3)
C10—H10B0.9700O1—Zn21.991 (3)
C11—N21.276 (5)O1—Zn12.058 (3)
C11—C121.441 (6)O2—Zn21.997 (3)
C11—H110.9300O2—Zn12.048 (3)
C12—C171.408 (6)O3—Zn12.041 (3)
C12—C131.406 (5)
O1—C1—C6122.1 (4)C15—C16—C17120.9 (5)
O1—C1—C2119.9 (4)C15—C16—H16119.6
C6—C1—C2118.0 (4)C17—C16—H16119.6
C3—C2—C1121.7 (5)O2—C17—C12121.6 (4)
C3—C2—H2119.1O2—C17—C16119.8 (4)
C1—C2—H2119.1C12—C17—C16118.6 (4)
C4—C3—C2120.4 (5)O3—C18—N3124.8 (4)
C4—C3—H3119.8O3—C18—H18117.6
C2—C3—H3119.8N3—C18—H18117.6
C3—C4—C5118.9 (4)N3—C19—H19A109.5
C3—C4—H4120.5N3—C19—H19B109.5
C5—C4—H4120.5H19A—C19—H19B109.5
C4—C5—C6121.3 (5)N3—C19—H19C109.5
C4—C5—H5119.4H19A—C19—H19C109.5
C6—C5—H5119.4H19B—C19—H19C109.5
C1—C6—C5119.6 (5)N3—C20—H20A109.5
C1—C6—C7125.1 (4)N3—C20—H20B109.5
C5—C6—C7115.3 (4)H20A—C20—H20B109.5
N1—C7—C6127.4 (4)N3—C20—H20C109.5
N1—C7—H7116.3H20A—C20—H20C109.5
C6—C7—H7116.3H20B—C20—H20C109.5
C9—C8—N1112.7 (4)C7—N1—C8116.1 (3)
C9—C8—H8A109.1C7—N1—Zn1125.1 (3)
N1—C8—H8A109.1C8—N1—Zn1118.5 (3)
C9—C8—H8B109.1C11—N2—C10115.9 (4)
N1—C8—H8B109.1C11—N2—Zn1124.0 (3)
H8A—C8—H8B107.8C10—N2—Zn1119.8 (3)
C8—C9—C10115.9 (4)C18—N3—C19122.4 (4)
C8—C9—H9A108.3C18—N3—C20120.8 (5)
C10—C9—H9A108.3C19—N3—C20116.7 (5)
C8—C9—H9B108.3C1—O1—Zn2130.5 (2)
C10—C9—H9B108.3C1—O1—Zn1126.9 (2)
H9A—C9—H9B107.4Zn2—O1—Zn1102.65 (12)
N2—C10—C9112.3 (4)C17—O2—Zn2130.5 (3)
N2—C10—H10A109.1C17—O2—Zn1126.0 (3)
C9—C10—H10A109.1Zn2—O2—Zn1102.79 (13)
N2—C10—H10B109.1C18—O3—Zn1119.6 (3)
C9—C10—H10B109.1O3—Zn1—N1105.60 (14)
H10A—C10—H10B107.9O3—Zn1—N2103.66 (13)
N2—C11—C12127.9 (4)N1—Zn1—N298.22 (13)
N2—C11—H11116.0O3—Zn1—O298.58 (12)
C12—C11—H11116.0N1—Zn1—O2152.58 (14)
C17—C12—C13118.1 (5)N2—Zn1—O288.28 (12)
C17—C12—C11124.5 (4)O3—Zn1—O197.17 (12)
C13—C12—C11117.3 (4)N1—Zn1—O188.27 (13)
C14—C13—C12122.7 (5)N2—Zn1—O1155.53 (13)
C14—C13—H13118.7O2—Zn1—O175.90 (10)
C12—C13—H13118.7O1—Zn2—O278.56 (10)
C13—C14—C15118.9 (4)O1—Zn2—Cl2111.93 (10)
C13—C14—H14120.5O2—Zn2—Cl2112.63 (9)
C15—C14—H14120.5O1—Zn2—Cl1113.28 (10)
C14—C15—C16120.8 (5)O2—Zn2—Cl1113.59 (9)
C14—C15—H15119.6Cl2—Zn2—Cl1119.75 (7)
C16—C15—H15119.6
O1—C1—C2—C3176.7 (5)C18—O3—Zn1—N2132.1 (4)
C6—C1—C2—C31.6 (8)C18—O3—Zn1—O241.8 (4)
C1—C2—C3—C40.5 (9)C18—O3—Zn1—O134.9 (4)
C2—C3—C4—C50.9 (9)C7—N1—Zn1—O380.9 (4)
C3—C4—C5—C61.2 (8)C8—N1—Zn1—O392.9 (3)
O1—C1—C6—C5177.0 (4)C7—N1—Zn1—N2172.4 (4)
C2—C1—C6—C51.3 (7)C8—N1—Zn1—N213.8 (3)
O1—C1—C6—C71.0 (7)C7—N1—Zn1—O270.1 (5)
C2—C1—C6—C7179.2 (4)C8—N1—Zn1—O2116.1 (4)
C4—C5—C6—C10.1 (8)C7—N1—Zn1—O116.1 (4)
C4—C5—C6—C7178.0 (4)C8—N1—Zn1—O1170.1 (3)
C1—C6—C7—N18.3 (7)C11—N2—Zn1—O377.4 (4)
C5—C6—C7—N1173.6 (5)C10—N2—Zn1—O395.2 (3)
N1—C8—C9—C1074.7 (6)C11—N2—Zn1—N1174.2 (4)
C8—C9—C10—N273.1 (6)C10—N2—Zn1—N113.2 (3)
N2—C11—C12—C1710.6 (8)C11—N2—Zn1—O221.0 (4)
N2—C11—C12—C13172.4 (5)C10—N2—Zn1—O2166.4 (3)
C17—C12—C13—C141.9 (8)C11—N2—Zn1—O170.1 (5)
C11—C12—C13—C14179.2 (4)C10—N2—Zn1—O1117.3 (4)
C12—C13—C14—C151.0 (8)C17—O2—Zn1—O373.2 (3)
C13—C14—C15—C160.1 (8)Zn2—O2—Zn1—O397.72 (13)
C14—C15—C16—C170.2 (9)C17—O2—Zn1—N1134.9 (3)
C13—C12—C17—O2178.1 (4)Zn2—O2—Zn1—N154.1 (3)
C11—C12—C17—O21.1 (7)C17—O2—Zn1—N230.3 (3)
C13—C12—C17—C162.0 (6)Zn2—O2—Zn1—N2158.72 (14)
C11—C12—C17—C16179.0 (4)C17—O2—Zn1—O1168.5 (3)
C15—C16—C17—O2178.9 (5)Zn2—O2—Zn1—O12.43 (11)
C15—C16—C17—C121.2 (7)C1—O1—Zn1—O380.4 (3)
C6—C7—N1—C8178.2 (4)Zn2—O1—Zn1—O399.53 (14)
C6—C7—N1—Zn14.3 (7)C1—O1—Zn1—N125.1 (3)
C9—C8—N1—C7144.1 (4)Zn2—O1—Zn1—N1154.96 (15)
C9—C8—N1—Zn141.5 (5)C1—O1—Zn1—N2131.3 (4)
C12—C11—N2—C10179.5 (4)Zn2—O1—Zn1—N248.8 (3)
C12—C11—N2—Zn16.6 (7)C1—O1—Zn1—O2177.5 (4)
C9—C10—N2—C11147.9 (4)Zn2—O1—Zn1—O22.44 (11)
C9—C10—N2—Zn138.9 (5)C1—O1—Zn2—O2177.5 (4)
O3—C18—N3—C191.2 (9)Zn1—O1—Zn2—O22.47 (12)
O3—C18—N3—C20179.5 (7)C1—O1—Zn2—Cl272.6 (4)
C6—C1—O1—Zn2158.5 (3)Zn1—O1—Zn2—Cl2107.51 (11)
C2—C1—O1—Zn219.7 (6)C1—O1—Zn2—Cl166.5 (4)
C6—C1—O1—Zn121.6 (6)Zn1—O1—Zn2—Cl1113.41 (11)
C2—C1—O1—Zn1160.2 (3)C17—O2—Zn2—O1167.9 (3)
C12—C17—O2—Zn2167.5 (3)Zn1—O2—Zn2—O12.48 (12)
C16—C17—O2—Zn212.6 (6)C17—O2—Zn2—Cl282.9 (3)
C12—C17—O2—Zn124.1 (5)Zn1—O2—Zn2—Cl2106.69 (11)
C16—C17—O2—Zn1155.8 (3)C17—O2—Zn2—Cl157.3 (3)
N3—C18—O3—Zn1178.2 (4)Zn1—O2—Zn2—Cl1113.07 (10)
C18—O3—Zn1—N1125.1 (4)

Experimental details

Crystal data
Chemical formula[Zn2Cl2(C17H16N2O2)(C3H7NO)]
Mr555.09
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)10.1959 (9), 14.443 (3), 15.8359 (15)
V3)2332.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.31
Crystal size (mm)0.40 × 0.40 × 0.40
Data collection
DiffractometerEnraf Nonius CAD4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.383, 0.397
No. of measured, independent and
observed [I > 2σ(I)] reflections
2929, 2927, 2718
Rint0.015
(sin θ/λ)max1)0.642
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.090, 1.11
No. of reflections2927
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.41
Absolute structure(Flack, 1983), no Friedel pairs
Absolute structure parameter0.01 (2)

Computer programs: CAD-4 EXPRESS (Enraf Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Zn1—Zn23.161 (1)O1—Zn21.991 (3)
Cl1—Zn22.2163 (14)O1—Zn12.058 (3)
Cl2—Zn22.2054 (14)O2—Zn21.997 (3)
N1—Zn12.040 (3)O2—Zn12.048 (3)
N2—Zn12.046 (3)O3—Zn12.041 (3)
C7—N1—Zn1125.1 (3)O3—Zn1—O298.58 (12)
C8—N1—Zn1118.5 (3)N1—Zn1—O2152.58 (14)
C11—N2—Zn1124.0 (3)N2—Zn1—O288.28 (12)
C10—N2—Zn1119.8 (3)O3—Zn1—O197.17 (12)
C1—O1—Zn2130.5 (2)N1—Zn1—O188.27 (13)
C1—O1—Zn1126.9 (2)N2—Zn1—O1155.53 (13)
Zn2—O1—Zn1102.65 (12)O2—Zn1—O175.90 (10)
C17—O2—Zn2130.5 (3)O1—Zn2—O278.56 (10)
C17—O2—Zn1126.0 (3)O1—Zn2—Cl2111.93 (10)
Zn2—O2—Zn1102.79 (13)O2—Zn2—Cl2112.63 (9)
C18—O3—Zn1119.6 (3)O1—Zn2—Cl1113.28 (10)
O3—Zn1—N1105.60 (14)O2—Zn2—Cl1113.59 (9)
O3—Zn1—N2103.66 (13)Cl2—Zn2—Cl1119.75 (7)
N1—Zn1—N298.22 (13)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds