Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802023711/ob6205sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536802023711/ob6205Isup2.hkl |
CCDC reference: 204686
A solution of analine (0.16 g, 1.40 mmol) in acetone (50 ml) was added dropwise to 50 ml of an acetone solution containing an equimolar amount of benzoylthiocyanate in a two-neck round-bottomed flask. The solution was refluxed for about 1 h and then cooled in ice. The white precipitate which formed was filtered off and washed with ethanol-distilled water, then dried in a vacuum (yield 79%). Recrystallization from DMSO yielded single crystals of (I) suitable for X-ray analysis.
After checking their presence in the difference map, all H-atoms were fixed geometrically and allowed to ride on the parent C or N atoms, with C—H = 0.93 Å and N—H = 0.86 Å.
Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).
C14H12N2OS | F(000) = 536 |
Mr = 256.32 | Dx = 1.344 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.8492 (11) Å | Cell parameters from 2753 reflections |
b = 5.1963 (5) Å | θ = 1.6–27.6° |
c = 19.5971 (18) Å | µ = 0.24 mm−1 |
β = 104.484 (2)° | T = 293 K |
V = 1266.9 (2) Å3 | Block, colourless |
Z = 4 | 0.46 × 0.33 × 0.30 mm |
Bruker SMART APEX CCD area-detector difrractometer diffractometer | 2917 independent reflections |
Radiation source: fine-focus sealed tube | 2304 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
Detector resolution: 83.66 pixels mm-1 | θmax = 27.6°, θmin = 1.6° |
ω scan | h = −16→16 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −5→6 |
Tmin = 0.896, Tmax = 0.930 | l = −20→25 |
8234 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.125 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0646P)2 + 0.2031P] where P = (Fo2 + 2Fc2)/3 |
2917 reflections | (Δ/σ)max < 0.001 |
163 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.14 e Å−3 |
C14H12N2OS | V = 1266.9 (2) Å3 |
Mr = 256.32 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.8492 (11) Å | µ = 0.24 mm−1 |
b = 5.1963 (5) Å | T = 293 K |
c = 19.5971 (18) Å | 0.46 × 0.33 × 0.30 mm |
β = 104.484 (2)° |
Bruker SMART APEX CCD area-detector difrractometer diffractometer | 2917 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2304 reflections with I > 2σ(I) |
Tmin = 0.896, Tmax = 0.930 | Rint = 0.017 |
8234 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.125 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.24 e Å−3 |
2917 reflections | Δρmin = −0.14 e Å−3 |
163 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.10979 (3) | 0.70045 (11) | 0.08198 (2) | 0.06806 (19) | |
N1 | 0.17647 (10) | 0.4294 (3) | −0.01131 (7) | 0.0541 (3) | |
H1B | 0.1151 | 0.3563 | −0.0159 | 0.065* | |
C1 | 0.10703 (13) | −0.0163 (3) | −0.10315 (9) | 0.0580 (4) | |
H1A | 0.0832 | −0.0163 | −0.0621 | 0.070* | |
C2 | 0.06561 (16) | −0.1910 (4) | −0.15596 (11) | 0.0677 (5) | |
H2A | 0.0143 | −0.3097 | −0.1502 | 0.081* | |
C3 | 0.09957 (17) | −0.1906 (4) | −0.21662 (11) | 0.0724 (5) | |
H3A | 0.0716 | −0.3095 | −0.2519 | 0.087* | |
C4 | 0.17474 (17) | −0.0155 (5) | −0.22571 (11) | 0.0775 (6) | |
H4A | 0.1970 | −0.0143 | −0.2674 | 0.093* | |
C5 | 0.21709 (15) | 0.1579 (4) | −0.17340 (10) | 0.0702 (5) | |
H5A | 0.2684 | 0.2757 | −0.1796 | 0.084* | |
C6 | 0.18387 (13) | 0.1585 (3) | −0.11134 (9) | 0.0536 (4) | |
C7 | 0.23561 (13) | 0.3456 (3) | −0.05654 (9) | 0.0575 (4) | |
C8 | 0.20285 (12) | 0.6170 (3) | 0.04097 (8) | 0.0512 (4) | |
C9 | 0.35789 (13) | 0.9072 (3) | 0.09429 (8) | 0.0539 (4) | |
C10 | 0.46107 (15) | 0.9478 (4) | 0.08782 (11) | 0.0738 (5) | |
H10A | 0.4882 | 0.8451 | 0.0574 | 0.089* | |
C11 | 0.52398 (17) | 1.1378 (5) | 0.12570 (13) | 0.0849 (6) | |
H11A | 0.5932 | 1.1638 | 0.1206 | 0.102* | |
C12 | 0.48567 (18) | 1.2893 (4) | 0.17092 (12) | 0.0787 (6) | |
H12A | 0.5280 | 1.4195 | 0.1963 | 0.094* | |
C13 | 0.38453 (18) | 1.2466 (4) | 0.17824 (12) | 0.0788 (6) | |
H13A | 0.3587 | 1.3474 | 0.2096 | 0.095* | |
C14 | 0.31939 (15) | 1.0581 (4) | 0.14048 (10) | 0.0690 (5) | |
H14A | 0.2503 | 1.0328 | 0.1461 | 0.083* | |
N2 | 0.30135 (11) | 0.7114 (3) | 0.05072 (7) | 0.0583 (4) | |
H2B | 0.3383 | 0.6379 | 0.0252 | 0.070* | |
O1 | 0.32631 (11) | 0.4254 (3) | −0.05285 (8) | 0.0810 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0541 (3) | 0.1055 (4) | 0.0507 (3) | −0.0062 (2) | 0.0246 (2) | −0.0108 (2) |
N1 | 0.0476 (7) | 0.0707 (9) | 0.0465 (7) | −0.0033 (6) | 0.0166 (5) | −0.0008 (6) |
C1 | 0.0617 (9) | 0.0591 (10) | 0.0556 (9) | 0.0065 (8) | 0.0189 (8) | 0.0130 (7) |
C2 | 0.0697 (11) | 0.0562 (10) | 0.0766 (12) | −0.0064 (8) | 0.0167 (9) | 0.0080 (9) |
C3 | 0.0727 (12) | 0.0720 (12) | 0.0700 (12) | −0.0040 (10) | 0.0132 (10) | −0.0122 (9) |
C4 | 0.0773 (12) | 0.0974 (15) | 0.0638 (11) | −0.0111 (11) | 0.0286 (10) | −0.0176 (10) |
C5 | 0.0664 (11) | 0.0859 (13) | 0.0660 (11) | −0.0157 (10) | 0.0310 (9) | −0.0134 (9) |
C6 | 0.0503 (8) | 0.0597 (9) | 0.0526 (9) | 0.0049 (7) | 0.0160 (7) | 0.0010 (7) |
C7 | 0.0502 (8) | 0.0697 (10) | 0.0558 (9) | 0.0018 (8) | 0.0197 (7) | −0.0020 (8) |
C8 | 0.0481 (8) | 0.0677 (10) | 0.0389 (7) | 0.0038 (7) | 0.0130 (6) | 0.0063 (7) |
C9 | 0.0511 (8) | 0.0615 (10) | 0.0484 (8) | 0.0055 (7) | 0.0114 (7) | 0.0046 (7) |
C10 | 0.0583 (10) | 0.0895 (14) | 0.0781 (13) | −0.0046 (10) | 0.0253 (9) | −0.0133 (11) |
C11 | 0.0613 (11) | 0.0952 (16) | 0.0981 (16) | −0.0161 (11) | 0.0196 (11) | −0.0085 (13) |
C12 | 0.0789 (14) | 0.0693 (12) | 0.0823 (14) | −0.0067 (10) | 0.0096 (11) | −0.0059 (10) |
C13 | 0.0805 (14) | 0.0768 (13) | 0.0799 (14) | 0.0027 (11) | 0.0215 (11) | −0.0171 (10) |
C14 | 0.0611 (10) | 0.0782 (12) | 0.0705 (12) | 0.0001 (9) | 0.0212 (9) | −0.0106 (9) |
N2 | 0.0475 (7) | 0.0749 (9) | 0.0554 (8) | 0.0015 (6) | 0.0183 (6) | −0.0090 (7) |
O1 | 0.0571 (7) | 0.1070 (11) | 0.0874 (10) | −0.0149 (7) | 0.0339 (7) | −0.0355 (8) |
S1—C8 | 1.6567 (15) | C7—O1 | 1.222 (2) |
N1—C7 | 1.3746 (19) | C8—N2 | 1.326 (2) |
N1—C8 | 1.393 (2) | C9—C10 | 1.379 (2) |
N1—H1B | 0.8600 | C9—C14 | 1.379 (2) |
C1—C2 | 1.380 (3) | C9—N2 | 1.408 (2) |
C1—C6 | 1.380 (2) | C10—C11 | 1.371 (3) |
C1—H1A | 0.9300 | C10—H10A | 0.9300 |
C2—C3 | 1.365 (3) | C11—C12 | 1.366 (3) |
C2—H2A | 0.9300 | C11—H11A | 0.9300 |
C3—C4 | 1.371 (3) | C12—C13 | 1.361 (3) |
C3—H3A | 0.9300 | C12—H12A | 0.9300 |
C4—C5 | 1.371 (3) | C13—C14 | 1.378 (3) |
C4—H4A | 0.9300 | C13—H13A | 0.9300 |
C5—C6 | 1.386 (2) | C14—H14A | 0.9300 |
C5—H5A | 0.9300 | N2—H2B | 0.8600 |
C6—C7 | 1.478 (2) | ||
C7—N1—C8 | 128.58 (14) | N2—C8—N1 | 114.38 (14) |
C7—N1—H1B | 115.7 | N2—C8—S1 | 127.73 (13) |
C8—N1—H1B | 115.7 | N1—C8—S1 | 117.88 (12) |
C2—C1—C6 | 119.93 (16) | C10—C9—C14 | 118.97 (17) |
C2—C1—H1A | 120.0 | C10—C9—N2 | 114.63 (15) |
C6—C1—H1A | 120.0 | C14—C9—N2 | 126.40 (15) |
C3—C2—C1 | 120.32 (18) | C11—C10—C9 | 120.69 (19) |
C3—C2—H2A | 119.8 | C11—C10—H10A | 119.7 |
C1—C2—H2A | 119.8 | C9—C10—H10A | 119.7 |
C2—C3—C4 | 120.23 (19) | C12—C11—C10 | 120.5 (2) |
C2—C3—H3A | 119.9 | C12—C11—H11A | 119.8 |
C4—C3—H3A | 119.9 | C10—C11—H11A | 119.8 |
C3—C4—C5 | 120.00 (18) | C13—C12—C11 | 118.9 (2) |
C3—C4—H4A | 120.0 | C13—C12—H12A | 120.6 |
C5—C4—H4A | 120.0 | C11—C12—H12A | 120.6 |
C4—C5—C6 | 120.40 (18) | C12—C13—C14 | 121.8 (2) |
C4—C5—H5A | 119.8 | C12—C13—H13A | 119.1 |
C6—C5—H5A | 119.8 | C14—C13—H13A | 119.1 |
C1—C6—C5 | 119.13 (16) | C13—C14—C9 | 119.15 (18) |
C1—C6—C7 | 123.60 (15) | C13—C14—H14A | 120.4 |
C5—C6—C7 | 117.25 (15) | C9—C14—H14A | 120.4 |
O1—C7—N1 | 121.83 (16) | C8—N2—C9 | 133.16 (14) |
O1—C7—C6 | 121.02 (15) | C8—N2—H2B | 113.4 |
N1—C7—C6 | 117.13 (14) | C9—N2—H2B | 113.4 |
C6—C1—C2—C3 | −0.6 (3) | C7—N1—C8—N2 | −5.2 (2) |
C1—C2—C3—C4 | −0.3 (3) | C7—N1—C8—S1 | 173.54 (14) |
C2—C3—C4—C5 | 0.8 (3) | C14—C9—C10—C11 | −1.1 (3) |
C3—C4—C5—C6 | −0.4 (3) | N2—C9—C10—C11 | 178.10 (19) |
C2—C1—C6—C5 | 1.0 (3) | C9—C10—C11—C12 | 0.4 (3) |
C2—C1—C6—C7 | −177.57 (16) | C10—C11—C12—C13 | 0.7 (4) |
C4—C5—C6—C1 | −0.5 (3) | C11—C12—C13—C14 | −1.1 (3) |
C4—C5—C6—C7 | 178.14 (19) | C12—C13—C14—C9 | 0.4 (3) |
C8—N1—C7—O1 | 3.7 (3) | C10—C9—C14—C13 | 0.7 (3) |
C8—N1—C7—C6 | −174.84 (15) | N2—C9—C14—C13 | −178.43 (18) |
C1—C6—C7—O1 | 152.07 (18) | N1—C8—N2—C9 | 176.40 (16) |
C5—C6—C7—O1 | −26.5 (3) | S1—C8—N2—C9 | −2.2 (3) |
C1—C6—C7—N1 | −29.3 (2) | C10—C9—N2—C8 | −179.38 (18) |
C5—C6—C7—N1 | 152.08 (17) | C14—C9—N2—C8 | −0.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···S1i | 0.86 | 2.87 | 3.6544 (14) | 152 |
N2—H2B···O1 | 0.86 | 1.86 | 2.599 (2) | 143 |
C14—H14A···S1 | 0.93 | 2.59 | 3.237 (2) | 127 |
Symmetry code: (i) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C14H12N2OS |
Mr | 256.32 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 12.8492 (11), 5.1963 (5), 19.5971 (18) |
β (°) | 104.484 (2) |
V (Å3) | 1266.9 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.24 |
Crystal size (mm) | 0.46 × 0.33 × 0.30 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector difrractometer diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.896, 0.930 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8234, 2917, 2304 |
Rint | 0.017 |
(sin θ/λ)max (Å−1) | 0.652 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.125, 1.04 |
No. of reflections | 2917 |
No. of parameters | 163 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.14 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).
S1—C8 | 1.6567 (15) | C7—O1 | 1.222 (2) |
N1—C7 | 1.3746 (19) | C8—N2 | 1.326 (2) |
N1—C8 | 1.393 (2) | C9—N2 | 1.408 (2) |
C7—N1—C8 | 128.58 (14) | N2—C8—S1 | 127.73 (13) |
O1—C7—N1 | 121.83 (16) | N1—C8—S1 | 117.88 (12) |
N2—C8—N1 | 114.38 (14) | C8—N2—C9 | 133.16 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···S1i | 0.86 | 2.87 | 3.6544 (14) | 152 |
N2—H2B···O1 | 0.86 | 1.86 | 2.599 (2) | 143 |
C14—H14A···S1 | 0.93 | 2.59 | 3.237 (2) | 127 |
Symmetry code: (i) −x, −y+1, −z. |
Although some arylbenzoylthioureas such as 3,4-dimethylphenylbenzoylthiourea (Shanmuga Sundara Raj et al., 1999) and 2,6-dimethylphenylbenzoylthiourea (Usman et al., 2002) have been reported, the structure of its unsubstituted phenyl analogue is still not available. Therefore the X-ray crystallographic investigation of the title compound, (I), was carried out.
The C—C bond lengths and bond angles of the phenyl and the benzoyl groups are in the normal ranges (Allen et al., 1987). The central carbonyl-thiourea moiety, (S1/C8/N1/N2/C7/O1) is also in agreement with most benzoylthiourea derivatives (Shanmuga Sundara Raj et al., 1999; Usman et al., 2002; Kaminsky et al., 2002). However, the N2—C9 bond length of 1.408 (2) Å is shorter than in the bulky 2,6-dimethylphenylbenzoylthiourea [1.436 (2) Å] and the C8—N2—C9 bond angle of 133.16 (14)° is larger compared to 123.2 (2)° and 127.9 (2)° in 2,6- (Usman et al., 2002) and 3,4-dimethylphenylbenzoylthiourea (Shanmuga Sundara Raj et al., 1999) respectively. The phenyl and the benzoyl substituents in the molecule lie cis and trans, respectively, to S atom across the thiourea C—N bonds.
The O1/C7/N1/C8/N2 plane has a maximum deviation of 0.035 (1) Å at the atom N1. However, the central carbonyl-thiourea (S1/C8/N1/N2/C7/O1) moiety connecting the two phenyl rings is slightly less planar, with S1 atom deviating by 0.145 (1) Å. The phenyl (C1—C6) and (C9—C14) rings are essentially planar. The two rings make dihedral angles of 28.78 (9)° and 7.52 (9)°, respectively, with the carbonyl-thiourea plane. The dihedral angle between the two aromatic rings is 33.3 (1)°.
As in most benzoylthiourea derivatives, the intramolecular hydrogen bonding N2—H2B···O1 maintains the six-membered ring formation of the N2/C8/N1/C7/O1 plane and the presence of a weak interaction of C14—H14A···S1 (Table 2). In the lattice, the molecules are packed as dimers via weak N1—H1B···S1' interactions and arranged parallel to the a and c axes (Fig. 2).