Download citation
Download citation
link to html
The abrupt green-to-yellow thermochromism observed for certain A2CuCl4 compounds has long been attributed to the presence of strong N—H hydrogen bonding in the low-temperature phase that favors square-planar CuCl42− (green in color) through reduction of ligand–ligand repulsion. Weakening of the hydrogen bonding at higher temperature results in the transformation to (far more common) flattened-tetrahedral geometry – the expected geometry for CuBr42− complexes due to their greater ligand–ligand repulsion. The square-planar to flattened-tetrahedral transitions in (1,2,6-trimethylpyridinium)2CuX4 provide the first examples of this phase transformation in the absence of N—H hydrogen bonding and for a CuBr42− complex. These results suggest that the square-planar to flattened-tetrahedral transformation in CuX42− systems may be more common than previously thought.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205252061402664X/og5072sup1.cif
Contains datablocks global, Cl100K, Cl295K, Cl350K, Br100K, Br295K, 26lutcl100k, 26lutclrt, 26lutbr100k, 26lutbrrt, 26lut100kortho, 26lutrtortho, 123tmpcubr4, nmphcucl4

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205252061402664X/og5072Cl100Ksup2.hkl
Contains datablock shelx

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205252061402664X/og5072Cl295Ksup3.hkl
Contains datablock shelx

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205252061402664X/og5072Cl350Ksup4.hkl
Contains datablock shelx

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205252061402664X/og5072Br100Ksup5.hkl
Contains datablock shelx

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205252061402664X/og5072Br295Ksup6.hkl
Contains datablock shelx

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205252061402664X/og507226lutcl100ksup7.hkl
Contains datablock shelx

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205252061402664X/og507226lutclrtsup8.hkl
Contains datablock shelx

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205252061402664X/og507226lutbr100ksup9.hkl
Contains datablock shelx

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205252061402664X/og507226lutbrrtsup10.hkl
Contains datablock shelx

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205252061402664X/og507226lut100korthosup11.hkl
Contains datablock shelx

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205252061402664X/og507226lutrtorthosup12.hkl
Contains datablock shelx

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205252061402664X/og5072123tmpcubr4sup13.hkl
Contains datablock shelx

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205252061402664X/og5072nmphcucl4sup14.hkl
Contains datablock shelx

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S205252061402664X/og5072sup15.pdf
Extra figures and tables

mov

Quicktime video file https://doi.org/10.1107/S205252061402664X/og5072sup16.mov
Video of crystals of I undergoing transition, 1st cycle

mov

Quicktime video file https://doi.org/10.1107/S205252061402664X/og5072sup17.mov
Video of crystalsof I undergoing transition, 3rd cycle

mov

Quicktime video file https://doi.org/10.1107/S205252061402664X/og5072sup18.mov
Video of crystals of I undergoing transition, 4th cycle

mov

Quicktime video file https://doi.org/10.1107/S205252061402664X/og5072sup19.mov
Video of crystals of II undergoing transition upon cooling.

mov

Quicktime video file https://doi.org/10.1107/S205252061402664X/og5072sup20.mov
Video of crystals of I undergoing transition, second cycle

CCDC references: 1037511; 1037512; 1037513; 1037514; 1037515; 1037516; 1037517; 1037518; 1037519; 1037520; 1037521; 1037522; 1037523

Computing details top

Data collection: Collect (Nonius BV, 1997-2000) for Cl100K; Collect (Bruker AXS BV, 1997-2004) for Cl295K, Cl350K, Br100K, Br295K, 26lutcl100k, 26lutclrt, 26lutbr100k, 26lutbrrt, 26lut100kortho, 26lutrtortho, 123tmpcubr4, nmphcucl4. For all compounds, cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997). Program(s) used to solve structure: SIR92 (Giacovazzo et al., 1993) for 26lut100kortho; SHELXS86 (Sheldrick, 1986) for 26lutrtortho; SIR92 (Altomare et al., 1994) for 123tmpcubr4, nmphcucl4. For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) for Cl100K, Cl295K, Cl350K, Br100K, Br295K, 26lutcl100k, 26lutclrt, 26lutbr100k, 26lutbrrt, 26lut100kortho, 26lutrtortho; ORTEP for Windows (Farrugia, 2012) for 123tmpcubr4, nmphcucl4. Software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) for Cl100K, Cl295K, Cl350K, Br100K, Br295K, 26lutcl100k, 26lutclrt, 26lutbr100k, 26lutbrrt, 26lut100kortho, 26lutrtortho; WinGX publication routines (Farrugia, 2012) for 123tmpcubr4, nmphcucl4.

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
[Figure 10]
[Figure 11]
[Figure 12]
[Figure 13]
[Figure 14]
[Figure 15]
[Figure 16]
(Cl100K) bis(1,2,6-trimethylpyridinium) tetrachloridocuprate(II) top
Crystal data top
2(C8H12N)·Cl4CuF(000) = 462
Mr = 449.74Dx = 1.601 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
a = 12.9074 (4) ÅCell parameters from 2151 reflections
b = 9.2262 (4) Åθ = 2.9–35.0°
c = 8.6377 (3) ŵ = 1.74 mm1
β = 114.925 (2)°T = 100 K
V = 932.82 (6) Å3Block, dark green
Z = 20.21 × 0.18 × 0.12 mm
Data collection top
KappaCCD
diffractometer
2151 independent reflections
Radiation source: Enraf Nonius FR5901935 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 9 pixels mm-1θmax = 35.0°, θmin = 3.4°
CCD rotation images, thick slices scansh = 020
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
k = 014
Tmin = 0.674, Tmax = 0.787l = 1312
15464 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065All H-atom parameters refined
S = 1.08 w = 1/[σ2(Fo2) + (0.0283P)2 + 0.6906P]
where P = (Fo2 + 2Fc2)/3
2151 reflections(Δ/σ)max < 0.001
80 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
2(C8H12N)·Cl4CuV = 932.82 (6) Å3
Mr = 449.74Z = 2
Monoclinic, C2/mMo Kα radiation
a = 12.9074 (4) ŵ = 1.74 mm1
b = 9.2262 (4) ÅT = 100 K
c = 8.6377 (3) Å0.21 × 0.18 × 0.12 mm
β = 114.925 (2)°
Data collection top
KappaCCD
diffractometer
2151 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
1935 reflections with I > 2σ(I)
Tmin = 0.674, Tmax = 0.787Rint = 0.036
15464 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.065All H-atom parameters refined
S = 1.08Δρmax = 0.44 e Å3
2151 reflectionsΔρmin = 0.68 e Å3
80 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10000.01213 (6)
Cl10.06870 (3)00.28688 (4)0.01716 (7)
Cl200.24919 (4)00.01781 (7)
N10.16689 (10)0.50.69761 (15)0.0150 (2)
C110.19794 (16)0.50.8827 (2)0.0252 (3)
H11A0.20390.59810.92270.038*0.25
H11B0.270.45180.94150.038*0.25
H11C0.14020.45010.90450.038*0.25
H11D0.20540.40190.92310.038*0.25
H11E0.13940.54820.90420.038*0.25
H11F0.26920.54990.94130.038*0.25
C20.15386 (8)0.37049 (11)0.61484 (13)0.01470 (16)
C210.16974 (10)0.23177 (12)0.71163 (15)0.02023 (19)
C30.12551 (9)0.37025 (11)0.44109 (13)0.01543 (16)
C40.11144 (12)0.50.35383 (18)0.0162 (2)
H21A0.1204 (15)0.2267 (19)0.772 (2)0.028 (4)*
H21B0.2497 (15)0.2252 (19)0.799 (2)0.028 (4)*
H21C0.1529 (15)0.150 (2)0.636 (2)0.030 (5)*
H30.1164 (14)0.2761 (19)0.384 (2)0.021 (4)*
H40.0930 (18)0.50.234 (3)0.017 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01340 (10)0.01157 (10)0.01138 (10)00.00518 (8)0
Cl10.02395 (16)0.01313 (13)0.01228 (13)00.00556 (11)0
Cl20.02771 (17)0.01185 (13)0.01307 (13)00.00783 (12)0
N10.0168 (5)0.0160 (5)0.0133 (5)00.0073 (4)0
C110.0342 (8)0.0284 (8)0.0138 (6)00.0110 (6)0
C20.0143 (4)0.0140 (4)0.0164 (4)0.0003 (3)0.0070 (3)0.0008 (3)
C210.0237 (5)0.0169 (4)0.0221 (4)0.0012 (4)0.0116 (4)0.0044 (4)
C30.0163 (4)0.0147 (4)0.0152 (4)0.0008 (3)0.0065 (3)0.0010 (3)
C40.0165 (6)0.0172 (6)0.0140 (5)00.0054 (4)0
Geometric parameters (Å, º) top
Cu1—Cl12.2527 (3)C11—H11F0.96
Cu1—Cl22.2990 (3)C2—C31.3868 (14)
N1—C21.3660 (11)C2—C211.4949 (14)
N1—C111.4755 (19)C21—H21A0.982 (17)
C11—H11A0.96C21—H21B0.992 (18)
C11—H11B0.96C21—H21C0.963 (19)
C11—H11C0.96C3—C41.3852 (12)
C11—H11D0.96C3—H30.979 (17)
C11—H11E0.96C4—H40.96 (2)
C2—N1—C2i122.03 (12)H11B—C11—H11F56.3
C2—N1—C11118.98 (6)H11C—C11—H11F141.1
C2i—N1—C11118.98 (6)H11D—C11—H11F109.5
N1—C11—H11A109.5H11E—C11—H11F109.5
N1—C11—H11B109.5N1—C2—C3119.07 (9)
H11A—C11—H11B109.5N1—C2—C21119.91 (9)
N1—C11—H11C109.5C3—C2—C21121.02 (9)
H11A—C11—H11C109.5C2—C21—H21A111.9 (10)
H11B—C11—H11C109.5C2—C21—H21B109.5 (10)
N1—C11—H11D109.5H21A—C21—H21B106.8 (15)
H11A—C11—H11D141.1C2—C21—H21C110.5 (11)
H11B—C11—H11D56.3H21A—C21—H21C108.4 (15)
H11C—C11—H11D56.3H21B—C21—H21C109.7 (15)
N1—C11—H11E109.5C4—C3—C2120.12 (10)
H11A—C11—H11E56.3C4—C3—H3122.3 (10)
H11B—C11—H11E141.1C2—C3—H3117.6 (10)
H11C—C11—H11E56.3C3—C4—C3i119.58 (13)
H11D—C11—H11E109.5C3—C4—H4i120.21 (7)
N1—C11—H11F109.5C3—C4—H4120.21 (7)
H11A—C11—H11F56.3
Symmetry code: (i) x, y+1, z.
(Cl295K) bis(1,2,6-trimethylpyridinium) tetrachloridocuprate(II) top
Crystal data top
2(C8H12N)·Cl4CuF(000) = 462
Mr = 449.74Dx = 1.550 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 2673 reflections
a = 13.1910 (6) Åθ = 0.4–37.8°
b = 9.2068 (4) ŵ = 1.69 mm1
c = 8.7242 (4) ÅT = 295 K
β = 114.595 (2)°Irregular, dark green
V = 963.40 (7) Å30.30 × 0.27 × 0.11 mm
Z = 2
Data collection top
KappaCCD
diffractometer
2683 independent reflections
Radiation source: Enraf Nonius FR5902199 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 9 pixels mm-1θmax = 37.8°, θmin = 3.4°
CCD rotation images, thick slices scansh = 2222
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
k = 1515
Tmin = 0.605, Tmax = 0.679l = 1414
16662 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.5819P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2683 reflectionsΔρmax = 0.97 e Å3
63 parametersΔρmin = 0.65 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.051 (4)
Primary atom site location: structure-invariant direct methods
Crystal data top
2(C8H12N)·Cl4CuV = 963.40 (7) Å3
Mr = 449.74Z = 2
Monoclinic, C2/mMo Kα radiation
a = 13.1910 (6) ŵ = 1.69 mm1
b = 9.2068 (4) ÅT = 295 K
c = 8.7242 (4) Å0.30 × 0.27 × 0.11 mm
β = 114.595 (2)°
Data collection top
KappaCCD
diffractometer
2683 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
2199 reflections with I > 2σ(I)
Tmin = 0.605, Tmax = 0.679Rint = 0.017
16662 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.03Δρmax = 0.97 e Å3
2683 reflectionsΔρmin = 0.65 e Å3
63 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10000.03164 (11)
Cl10.07072 (6)00.28351 (6)0.05048 (15)
Cl200.24890 (6)00.05661 (17)
N10.16613 (14)0.50.6966 (2)0.0376 (3)
C110.1975 (3)0.50.8794 (3)0.0604 (7)
H11A0.20350.59830.9190.091*0.25
H11B0.26790.45180.93610.091*0.25
H11C0.14160.44990.90250.091*0.25
H11D0.20520.40170.91940.091*0.25
H11E0.14070.54820.90230.091*0.25
H11F0.26710.55010.93590.091*0.25
C20.15287 (12)0.37061 (15)0.61426 (19)0.0382 (3)
C210.16918 (17)0.2315 (2)0.7094 (3)0.0563 (4)
H21A0.24520.22450.79070.084*
H21B0.15210.15130.63240.084*
H21C0.12070.22930.76640.084*
C30.12391 (13)0.37090 (16)0.4430 (2)0.0420 (3)
H30.11420.28340.38540.05*
C40.10934 (19)0.50.3569 (3)0.0438 (4)
H40.08980.50.24140.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03373 (16)0.02926 (15)0.03201 (15)00.01377 (11)0
Cl10.0733 (4)0.0350 (2)0.0333 (2)00.0124 (2)0
Cl20.0968 (5)0.0306 (2)0.0389 (2)00.0248 (3)0
N10.0381 (7)0.0408 (8)0.0358 (7)00.0173 (6)0
C110.0739 (17)0.0729 (18)0.0357 (10)00.0240 (11)0
C20.0376 (6)0.0357 (6)0.0433 (6)0.0001 (4)0.0191 (5)0.0031 (5)
C210.0663 (10)0.0439 (8)0.0648 (10)0.0045 (7)0.0333 (9)0.0140 (8)
C30.0441 (6)0.0384 (7)0.0429 (7)0.0030 (5)0.0175 (5)0.0053 (5)
C40.0464 (9)0.0480 (11)0.0350 (8)00.0148 (7)0
Geometric parameters (Å, º) top
Cu1—Cl12.2510 (5)C11—H11F0.96
Cu1—Cl22.2916 (5)C2—C31.380 (2)
N1—C21.3641 (16)C2—C211.492 (2)
N1—C111.472 (3)C21—H21A0.96
C11—H11A0.96C21—H21B0.96
C11—H11B0.96C21—H21C0.96
C11—H11C0.96C3—C41.3760 (19)
C11—H11D0.96C3—H30.93
C11—H11E0.96C4—H40.93
C2—N1—C2i121.69 (17)N1—C2—C3119.04 (13)
C2—N1—C11119.15 (9)N1—C2—C21119.95 (15)
N1—C11—H11A109.5C3—C2—C21121.01 (14)
N1—C11—H11B109.5C2—C21—H21A109.5
H11A—C11—H11B109.5C2—C21—H21B109.5
N1—C11—H11C109.5H21A—C21—H21B109.5
H11A—C11—H11C109.5C2—C21—H21C109.5
H11B—C11—H11C109.5H21A—C21—H21C109.5
N1—C11—H11D109.5H21B—C21—H21C109.5
N1—C11—H11E109.5C2—C3—C4120.36 (14)
H11D—C11—H11E109.5C2—C3—H3119.8
N1—C11—H11F109.5C4—C3—H3119.8
H11D—C11—H11F109.5C3i—C4—C3119.5 (2)
H11E—C11—H11F109.5C3—C4—H4120.3
Symmetry code: (i) x, y+1, z.
(Cl350K) bis(1,2,6-trimethylpyridinium) tetrachloridocuprate(II) top
Crystal data top
2(C8H12N)·Cl4CuZ = 2
Mr = 449.74F(000) = 462
Triclinic, P1Dx = 1.465 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9236 (4) ÅCell parameters from 4596 reflections
b = 9.1502 (4) Åθ = 3.5–27.5°
c = 16.1341 (8) ŵ = 1.60 mm1
α = 75.409 (2)°T = 350 K
β = 86.964 (3)°Irregular, yellow
γ = 64.493 (3)°0.30 × 0.27 × 0.11 mm
V = 1019.63 (8) Å3
Data collection top
KappaCCD
diffractometer
4665 independent reflections
Radiation source: Enraf Nonius FR5903361 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.5°
CCD rotation images, thick slices scansh = 109
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
k = 1111
Tmin = 0.607, Tmax = 0.708l = 2020
19702 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.223H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1178P)2 + 1.47486P]
where P = (Fo2 + 2Fc2)/3
4665 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 1.15 e Å3
0 restraintsΔρmin = 0.62 e Å3
0 constraints
Crystal data top
2(C8H12N)·Cl4Cuγ = 64.493 (3)°
Mr = 449.74V = 1019.63 (8) Å3
Triclinic, P1Z = 2
a = 7.9236 (4) ÅMo Kα radiation
b = 9.1502 (4) ŵ = 1.60 mm1
c = 16.1341 (8) ÅT = 350 K
α = 75.409 (2)°0.30 × 0.27 × 0.11 mm
β = 86.964 (3)°
Data collection top
KappaCCD
diffractometer
4665 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
3361 reflections with I > 2σ(I)
Tmin = 0.607, Tmax = 0.708Rint = 0.026
19702 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.223H-atom parameters constrained
S = 1.07Δρmax = 1.15 e Å3
4665 reflectionsΔρmin = 0.62 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.22382 (9)0.00383 (7)0.74640 (4)0.0522 (2)
Cl10.0662 (2)0.28216 (19)0.72557 (11)0.0794 (5)
Cl20.2857 (3)0.0672 (2)0.88837 (9)0.0827 (5)
Cl30.1757 (3)0.2213 (2)0.74462 (9)0.0759 (5)
Cl40.3755 (3)0.00888 (19)0.62486 (11)0.0861 (6)
N110.2455 (7)0.3496 (6)0.0966 (3)0.0646 (12)
C1110.2436 (14)0.3140 (11)0.1915 (4)0.100 (3)
H11A0.36470.23070.21660.150*
H11B0.15110.27330.21030.150*
H11C0.21370.41470.20900.150*
C120.2549 (8)0.4921 (8)0.0531 (4)0.0641 (14)
C1210.2642 (13)0.6124 (11)0.1001 (6)0.104 (3)
H12A0.15150.65520.12950.156*
H12B0.27680.70360.05970.156*
H12C0.37020.55490.14110.156*
C130.2513 (9)0.5277 (8)0.0347 (4)0.0729 (16)
H130.25620.62650.06530.087*
C140.2409 (9)0.4227 (9)0.0777 (4)0.0763 (17)
H140.23640.44930.13740.092*
C150.2370 (10)0.2772 (9)0.0323 (4)0.0781 (17)
H150.23300.20210.06080.094*
C160.2389 (9)0.2412 (8)0.0554 (5)0.0753 (17)
C1610.2404 (14)0.0787 (10)0.1067 (7)0.117 (3)
H16A0.32490.03520.15660.175*
H16B0.28080.00030.07210.175*
H16C0.11650.09760.12400.175*
N210.2641 (7)0.6836 (6)0.4246 (3)0.0652 (13)
C2110.2098 (13)0.8662 (9)0.4081 (7)0.112 (3)
H21A0.21180.89390.46150.168*
H21B0.08590.92820.38060.168*
H21C0.29660.89430.37140.168*
C220.1950 (8)0.6077 (8)0.4922 (4)0.0639 (14)
C2210.0665 (11)0.7081 (11)0.5498 (5)0.099 (2)
H22A0.02640.63750.59250.149*
H22B0.04090.79910.51620.149*
H22C0.13200.75190.57740.149*
C230.2462 (9)0.4406 (8)0.5076 (4)0.0672 (14)
H230.20330.38700.55480.081*
C240.3593 (9)0.3513 (7)0.4546 (4)0.0671 (14)
H240.39040.23780.46450.081*
C250.4271 (8)0.4287 (8)0.3868 (4)0.0659 (14)
H250.50670.36670.35130.079*
C260.3792 (8)0.5979 (8)0.3703 (4)0.0660 (14)
C2610.4510 (14)0.6825 (12)0.2971 (5)0.108 (3)
H26A0.34790.76920.25920.162*
H26B0.53080.60280.26680.162*
H26C0.52130.73090.31770.162*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0614 (4)0.0505 (4)0.0470 (4)0.0253 (3)0.0093 (3)0.0152 (3)
Cl10.0868 (11)0.0545 (8)0.0799 (10)0.0136 (7)0.0163 (8)0.0219 (7)
Cl20.1290 (15)0.0779 (10)0.0519 (8)0.0529 (10)0.0044 (8)0.0173 (7)
Cl30.1200 (13)0.0788 (10)0.0573 (8)0.0661 (10)0.0185 (8)0.0250 (7)
Cl40.1210 (14)0.0566 (8)0.0736 (10)0.0357 (9)0.0502 (9)0.0188 (7)
N110.063 (3)0.068 (3)0.060 (3)0.026 (2)0.009 (2)0.017 (2)
C1110.151 (8)0.118 (6)0.049 (3)0.080 (6)0.027 (4)0.015 (4)
C120.061 (3)0.067 (3)0.070 (4)0.029 (3)0.015 (3)0.025 (3)
C1210.123 (7)0.118 (6)0.112 (6)0.074 (6)0.039 (5)0.063 (5)
C130.081 (4)0.065 (4)0.071 (4)0.033 (3)0.018 (3)0.014 (3)
C140.079 (4)0.081 (4)0.065 (4)0.033 (4)0.009 (3)0.017 (3)
C150.083 (4)0.084 (4)0.078 (4)0.038 (4)0.019 (3)0.036 (4)
C160.073 (4)0.061 (4)0.088 (5)0.030 (3)0.018 (3)0.016 (3)
C1610.136 (8)0.078 (5)0.140 (8)0.058 (5)0.039 (6)0.018 (5)
N210.068 (3)0.050 (2)0.072 (3)0.018 (2)0.019 (2)0.016 (2)
C2110.113 (6)0.052 (4)0.155 (8)0.021 (4)0.027 (6)0.022 (4)
C220.062 (3)0.067 (3)0.060 (3)0.019 (3)0.007 (3)0.025 (3)
C2210.085 (5)0.115 (6)0.099 (5)0.024 (4)0.007 (4)0.065 (5)
C230.072 (4)0.067 (4)0.059 (3)0.029 (3)0.000 (3)0.012 (3)
C240.070 (3)0.055 (3)0.072 (4)0.023 (3)0.002 (3)0.016 (3)
C250.062 (3)0.067 (4)0.067 (3)0.020 (3)0.003 (3)0.029 (3)
C260.065 (3)0.071 (4)0.063 (3)0.030 (3)0.012 (3)0.016 (3)
C2610.140 (8)0.123 (7)0.075 (5)0.079 (6)0.004 (5)0.006 (5)
Geometric parameters (Å, º) top
Cu1—Cl12.2433 (16)C161—H16B0.96
Cu1—Cl22.2369 (16)C161—H16C0.96
Cu1—Cl32.2578 (15)N21—C261.365 (8)
Cu1—Cl42.2461 (15)N21—C221.362 (8)
N11—C161.346 (8)N21—C2111.489 (8)
N11—C121.348 (7)C211—H21A0.96
N11—C1111.483 (8)C211—H21B0.96
C111—H11A0.96C211—H21C0.96
C111—H11B0.96C22—C231.359 (9)
C111—H11C0.96C22—C2211.506 (9)
C12—C131.370 (9)C221—H22A0.96
C12—C1211.513 (9)C221—H22B0.96
C121—H12A0.96C221—H22C0.96
C121—H12B0.96C23—C241.356 (8)
C121—H12C0.96C23—H230.93
C13—C141.351 (9)C24—C251.365 (9)
C13—H130.93C24—H240.93
C14—C151.361 (9)C25—C261.381 (8)
C14—H140.93C25—H250.93
C15—C161.368 (10)C26—C2611.471 (10)
C15—H150.93C261—H26A0.96
C16—C1611.503 (9)C261—H26B0.96
C161—H16A0.96C261—H26C0.96
Cl1—Cu1—Cl299.02 (7)H16A—C161—H16C109.5
Cl1—Cu1—Cl3140.46 (8)H16B—C161—H16C109.5
Cl1—Cu1—Cl496.66 (6)C26—N21—C22121.9 (5)
Cl2—Cu1—Cl395.36 (6)C26—N21—C211118.7 (6)
Cl2—Cu1—Cl4139.43 (9)C22—N21—C211119.3 (6)
Cl3—Cu1—Cl495.84 (6)N21—C211—H21A109.5
C16—N11—C12121.1 (5)N21—C211—H21B109.5
C16—N11—C111120.5 (6)H21A—C211—H21B109.5
C12—N11—C111118.5 (5)N21—C211—H21C109.5
N11—C111—H11A109.5H21A—C211—H21C109.5
N11—C111—H11B109.5H21B—C211—H21C109.5
H11A—C111—H11B109.5N21—C22—C23119.1 (6)
N11—C111—H11C109.5N21—C22—C221120.0 (6)
H11A—C111—H11C109.5C23—C22—C221120.9 (7)
H11B—C111—H11C109.5C22—C221—H22A109.5
N11—C12—C13118.6 (6)C22—C221—H22B109.5
N11—C12—C121120.7 (6)H22A—C221—H22B109.5
C13—C12—C121120.7 (6)C22—C221—H22C109.5
C12—C121—H12A109.5H22A—C221—H22C109.5
C12—C121—H12B109.5H22B—C221—H22C109.5
H12A—C121—H12B109.5C22—C23—C24120.7 (6)
C12—C121—H12C109.5C22—C23—H23119.7
H12A—C121—H12C109.5C24—C23—H23119.7
H12B—C121—H12C109.5C22—C23—H23119.7
C12—C13—C14121.5 (6)C23—C24—C25119.7 (6)
C12—C13—H13119.3C23—C24—H24120.1
C14—C13—H13119.3C25—C24—H24120.1
C13—C14—C15118.8 (6)C24—C25—C26120.9 (6)
C13—C14—H14120.6C24—C25—H25119.6
C15—C14—H14120.6C26—C25—H25119.6
C14—C15—C16120.1 (6)N21—C26—C25117.6 (6)
C14—C15—H15120N21—C26—C261121.1 (7)
C16—C15—H15120C25—C26—C261121.3 (7)
N11—C16—C15119.9 (6)C26—C261—H26A109.5
N11—C16—C161119.3 (7)C26—C261—H26B109.5
C15—C16—C161120.7 (7)H26A—C261—H26B109.5
C16—C161—H16A109.5C26—C261—H26C109.5
C16—C161—H16B109.5H26A—C261—H26C109.5
H16A—C161—H16B109.5H26B—C261—H26C109.5
C16—C161—H16C109.5
(Br100K) bis(1,2,6-trimethylpyridinium) tetrabromidocuprate(II) top
Crystal data top
2(C8H12N)·Br4CuF(000) = 606
Mr = 627.55Dx = 2.081 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
a = 13.0879 (12) ÅCell parameters from 1207 reflections
b = 9.4953 (10) Åθ = 2.9–27.5°
c = 8.7957 (9) ŵ = 9.07 mm1
β = 113.631 (6)°T = 100 K
V = 1001.41 (17) Å3Block, dark purple
Z = 20.25 × 0.17 × 0.13 mm
Data collection top
KappaCCD
diffractometer
1212 independent reflections
Radiation source: Enraf Nonius FR5901013 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 5.0°
CCD rotation images, thick slices scansh = 1616
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
k = 1212
Tmin = 0.140, Tmax = 0.341l = 1111
8979 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183H-atom parameters constrained
S = 1.21 w = 1/[σ2(Fo2) + (0.1097P)2 + 4.1327P]
where P = (Fo2 + 2Fc2)/3
1212 reflections(Δ/σ)max < 0.001
62 parametersΔρmax = 1.81 e Å3
0 restraintsΔρmin = 1.24 e Å3
Crystal data top
2(C8H12N)·Br4CuV = 1001.41 (17) Å3
Mr = 627.55Z = 2
Monoclinic, C2/mMo Kα radiation
a = 13.0879 (12) ŵ = 9.07 mm1
b = 9.4953 (10) ÅT = 100 K
c = 8.7957 (9) Å0.25 × 0.17 × 0.13 mm
β = 113.631 (6)°
Data collection top
KappaCCD
diffractometer
1212 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
1013 reflections with I > 2σ(I)
Tmin = 0.140, Tmax = 0.341Rint = 0.039
8979 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.183H-atom parameters constrained
S = 1.21Δρmax = 1.81 e Å3
1212 reflectionsΔρmin = 1.24 e Å3
62 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.00000.00000.00000.0263 (4)
Br10.06296 (8)0.00000.29540 (11)0.0297 (4)
Br20.00000.25773 (10)0.00000.0302 (4)
N10.1715 (7)0.50000.7027 (12)0.0314 (18)
C110.2080 (9)0.50000.8868 (12)0.034 (2)
H11A0.21420.59530.92590.052*0.25
H11B0.27910.45420.93760.052*0.25
H11C0.15410.45050.91520.052*0.25
H11D0.21740.40470.92650.052*0.25
H11E0.15250.54580.91490.052*0.25
H11F0.27750.54950.93730.052*0.25
C20.1577 (6)0.3754 (7)0.6217 (9)0.0297 (15)
C210.1743 (6)0.2393 (7)0.7156 (9)0.0313 (15)
H21A0.25070.23180.79280.047*
H21B0.15620.16180.63910.047*
H21C0.12670.23730.77490.047*
C30.1260 (6)0.3744 (7)0.4529 (9)0.0304 (15)
H30.11600.28940.39620.036*
C40.1091 (9)0.50000.3679 (13)0.031 (2)
H40.08630.50000.25320.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0285 (8)0.0282 (8)0.0247 (8)0.0000.0135 (7)0.000
Br10.0364 (6)0.0287 (5)0.0254 (5)0.0000.0137 (4)0.000
Br20.0386 (6)0.0279 (5)0.0257 (5)0.0000.0147 (4)0.000
N10.024 (4)0.035 (4)0.036 (5)0.0000.013 (3)0.000
C110.034 (5)0.042 (6)0.026 (5)0.0000.011 (4)0.000
C20.026 (3)0.031 (4)0.035 (4)0.000 (3)0.015 (3)0.002 (3)
C210.038 (4)0.029 (3)0.031 (4)0.002 (3)0.018 (3)0.003 (3)
C30.030 (3)0.033 (4)0.029 (3)0.005 (3)0.013 (3)0.006 (3)
C40.033 (5)0.032 (5)0.031 (5)0.0000.015 (4)0.000
Geometric parameters (Å, º) top
Cu1—Br12.3903 (10)C11—H11F0.96
Cu1—Br22.4472 (10)C2—C31.372 (11)
N1—C21.355 (8)C2—C211.501 (9)
N1—C111.493 (14)C21—H21A0.96
C11—H11A0.96C21—H21B0.96
C11—H11B0.96C21—H21C0.96
C11—H11C0.96C3—C41.377 (9)
C11—H11D0.96C3—H30.93
C11—H11E0.96C4—H40.93
Br2i—Cu1—Br190.00 (1)H11A—C11—H11F56.3
C2—N1—C2ii121.6 (9)H11B—C11—H11F56.3
C2—N1—C11119.1 (5)H11C—C11—H11F141.1
N1—C11—H11A109.5H11D—C11—H11F109.5
N1—C11—H11B109.5H11E—C11—H11F109.5
H11A—C11—H11B109.5N1—C2—C3119.5 (7)
N1—C11—H11C109.5N1—C2—C21120.2 (7)
H11A—C11—H11C109.5C3—C2—C21120.3 (6)
H11B—C11—H11C109.5C2—C21—H21A109.5
N1—C11—H11D109.5C2—C21—H21B109.5
H11A—C11—H11D141.1H21A—C21—H21B109.5
H11B—C11—H11D56.3C2—C21—H21C109.5
H11C—C11—H11D56.3H21A—C21—H21C109.5
N1—C11—H11E109.5H21B—C21—H21C109.5
H11A—C11—H11E56.3C2—C3—C4119.7 (7)
H11B—C11—H11E141.1C2—C3—H3120.2
H11C—C11—H11E56.3C4—C3—H3120.2
H11D—C11—H11E109.5C3ii—C4—C3119.9 (10)
N1—C11—H11F109.5C3—C4—H4120
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z.
(Br295K) bis(1,2,6-trimethylpyridinium) tetrabromidocuprate(II) top
Crystal data top
2(C8H12N)·Br4CuZ = 2
Mr = 627.55F(000) = 606
Triclinic, P1Dx = 1.914 Mg m3
a = 8.0517 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3247 (3) ÅCell parameters from 4896 reflections
c = 16.4524 (5) Åθ = 2.9–27.5°
α = 75.997 (2)°µ = 8.34 mm1
β = 88.567 (2)°T = 295 K
γ = 65.757 (2)°Block, dark purple
V = 1088.97 (6) Å30.18 × 0.13 × 0.09 mm
Data collection top
KappaCCD
diffractometer
4944 independent reflections
Radiation source: Enraf Nonius FR5903455 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 5.0°
CCD rotation images, thick slices scansh = 1010
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
k = 1112
Tmin = 0.283, Tmax = 0.441l = 2121
19577 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0263P)2 + 1.3223P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4944 reflectionsΔρmax = 1.02 e Å3
215 parametersΔρmin = 1.17 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0180 (7)
Crystal data top
2(C8H12N)·Br4Cuγ = 65.757 (2)°
Mr = 627.55V = 1088.97 (6) Å3
Triclinic, P1Z = 2
a = 8.0517 (2) ÅMo Kα radiation
b = 9.3247 (3) ŵ = 8.34 mm1
c = 16.4524 (5) ÅT = 295 K
α = 75.997 (2)°0.18 × 0.13 × 0.09 mm
β = 88.567 (2)°
Data collection top
KappaCCD
diffractometer
4944 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
3455 reflections with I > 2σ(I)
Tmin = 0.283, Tmax = 0.441Rint = 0.034
19577 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.03Δρmax = 1.02 e Å3
4944 reflectionsΔρmin = 1.17 e Å3
215 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.23260 (7)0.00372 (6)0.74777 (3)0.04590 (15)
Br10.07127 (7)0.28358 (6)0.72708 (3)0.06407 (17)
Br20.29786 (9)0.07481 (7)0.89555 (3)0.06827 (18)
Br30.18592 (8)0.24057 (6)0.74565 (3)0.06183 (16)
Br40.38368 (8)0.00421 (6)0.62053 (3)0.06410 (17)
N110.2434 (5)0.3495 (5)0.1013 (2)0.0565 (10)
C1110.2490 (9)0.3140 (8)0.1946 (3)0.0794 (17)
H11A0.17840.41240.21100.119*
H11B0.37330.27060.21770.119*
H11C0.19890.23600.21540.119*
C120.2593 (7)0.4860 (6)0.0582 (3)0.0576 (12)
C1210.2854 (9)0.5956 (8)0.1049 (4)0.0830 (18)
H12A0.38380.53270.14810.125*
H12B0.17510.64840.12990.125*
H12C0.31420.67610.06650.125*
C130.2524 (7)0.5203 (6)0.0275 (3)0.0644 (13)
H130.26220.61440.05760.077*
C140.2315 (7)0.4186 (6)0.0698 (3)0.0668 (14)
H140.22590.44340.12820.080*
C150.2190 (8)0.2809 (7)0.0254 (3)0.0679 (14)
H150.20540.21090.05380.081*
C160.2260 (7)0.2438 (6)0.0606 (4)0.0646 (13)
C1610.2174 (10)0.0896 (8)0.1099 (5)0.099 (2)
H16A0.11390.11520.14280.149*
H16B0.32730.02480.14640.149*
H16C0.20550.03000.07200.149*
C2110.2032 (9)0.8685 (7)0.4065 (5)0.091 (2)
H21A0.21970.91150.34920.137*
H21B0.27690.88870.44350.137*
H21C0.07690.92040.41650.137*
N210.2588 (5)0.6919 (4)0.4223 (3)0.0549 (10)
C220.1918 (7)0.6173 (6)0.4887 (3)0.0565 (12)
C2210.0659 (9)0.7157 (9)0.5422 (4)0.090 (2)
H22A0.04010.79970.50790.134*
H22B0.12760.76400.56820.134*
H22C0.02930.64660.58480.134*
C230.2432 (7)0.4534 (6)0.5046 (3)0.0601 (12)
H230.20080.40080.55010.072*
C240.3562 (7)0.3666 (6)0.4541 (3)0.0582 (12)
H240.38890.25550.46460.070*
C250.4210 (7)0.4422 (6)0.3887 (3)0.0585 (12)
H250.49920.38220.35480.070*
C260.3723 (7)0.6065 (6)0.3718 (3)0.0555 (11)
C2610.4412 (9)0.6899 (8)0.2994 (4)0.0854 (18)
H26A0.50030.74780.31880.128*
H26B0.34070.76510.25910.128*
H26C0.52710.61080.27360.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0537 (3)0.0432 (3)0.0414 (3)0.0197 (2)0.0081 (2)0.0131 (2)
Br10.0676 (3)0.0457 (3)0.0650 (3)0.0081 (2)0.0079 (2)0.0177 (2)
Br20.1038 (4)0.0597 (3)0.0438 (3)0.0342 (3)0.0005 (3)0.0167 (2)
Br30.0925 (4)0.0637 (3)0.0489 (3)0.0484 (3)0.0170 (2)0.0215 (2)
Br40.0887 (4)0.0478 (3)0.0536 (3)0.0274 (3)0.0300 (3)0.0132 (2)
N110.056 (2)0.058 (2)0.049 (2)0.0188 (19)0.0100 (18)0.0125 (19)
C1110.089 (4)0.093 (4)0.048 (3)0.037 (3)0.013 (3)0.007 (3)
C120.057 (3)0.056 (3)0.061 (3)0.024 (2)0.015 (2)0.016 (2)
C1210.104 (5)0.095 (5)0.079 (4)0.059 (4)0.030 (4)0.045 (4)
C130.077 (3)0.051 (3)0.058 (3)0.022 (3)0.013 (3)0.010 (2)
C140.080 (4)0.062 (3)0.053 (3)0.024 (3)0.010 (3)0.016 (3)
C150.079 (4)0.066 (3)0.067 (3)0.030 (3)0.013 (3)0.032 (3)
C160.063 (3)0.052 (3)0.076 (4)0.021 (2)0.017 (3)0.018 (3)
C1610.123 (6)0.069 (4)0.118 (6)0.054 (4)0.040 (5)0.024 (4)
C2110.100 (5)0.046 (3)0.123 (6)0.025 (3)0.011 (4)0.020 (3)
N210.059 (2)0.039 (2)0.061 (2)0.0144 (18)0.0157 (19)0.0113 (18)
C220.055 (3)0.064 (3)0.048 (3)0.017 (2)0.004 (2)0.023 (2)
C2210.084 (4)0.107 (5)0.080 (4)0.022 (4)0.007 (3)0.060 (4)
C230.064 (3)0.058 (3)0.051 (3)0.022 (2)0.002 (2)0.006 (2)
C240.065 (3)0.041 (2)0.060 (3)0.017 (2)0.000 (2)0.007 (2)
C250.057 (3)0.053 (3)0.063 (3)0.015 (2)0.005 (2)0.023 (2)
C260.059 (3)0.059 (3)0.052 (3)0.027 (2)0.003 (2)0.014 (2)
C2610.107 (5)0.096 (5)0.070 (4)0.064 (4)0.014 (3)0.013 (3)
Geometric parameters (Å, º) top
Cu1—Br12.3881 (7)C161—H16B0.9600
Cu1—Br22.3717 (7)C161—H16C0.9600
Cu1—Br32.3958 (7)N21—C261.358 (6)
Cu1—Br42.3957 (7)N21—C221.370 (6)
N11—C161.370 (7)N21—C2111.475 (6)
N11—C121.353 (6)C211—H21A0.9600
N11—C1111.488 (6)C211—H21B0.9600
C111—H11A0.9600C211—H21C0.9600
C111—H11B0.9600C22—C231.366 (7)
C111—H11C0.9600C22—C2211.492 (7)
C12—C131.366 (7)C221—H22A0.9600
C12—C1211.498 (7)C221—H22B0.9600
C121—H12A0.9600C221—H22C0.9600
C121—H12B0.9600C23—C241.362 (7)
C121—H12C0.9600C23—H230.9300
C13—C141.367 (7)C24—C251.355 (7)
C13—H130.9300C24—H240.9300
C14—C151.356 (7)C25—C261.372 (7)
C14—H140.9300C25—H250.9300
C15—C161.370 (7)C26—C2611.484 (7)
C15—H150.9300C261—H26A0.9600
C16—C1611.499 (7)C261—H26B0.9600
C161—H16A0.9600C261—H26C0.9600
Br1—Cu1—Br298.19 (3)C16—C161—H16C109.5
Br1—Cu1—Br3141.67 (3)H16A—C161—H16C109.5
Br1—Cu1—Br496.79 (3)H16B—C161—H16C109.5
Br2—Cu1—Br395.14 (3)C26—N21—C22121.3 (4)
Br2—Cu1—Br4140.58 (3)C26—N21—C211120.5 (5)
Br3—Cu1—Br495.25 (2)C22—N21—C211118.2 (5)
C16—N11—C12121.1 (4)N21—C211—H21A109.5
C16—N11—C111120.3 (4)N21—C211—H21B109.5
C12—N11—C111118.6 (5)H21A—C211—H21B109.5
N11—C111—H11A109.5N21—C211—H21C109.5
N11—C111—H11B109.5H21A—C211—H21C109.5
H11A—C111—H11B109.5H21B—C211—H21C109.5
N11—C111—H11C109.5N21—C22—C23118.9 (4)
H11A—C111—H11C109.5N21—C22—C221119.6 (5)
H11B—C111—H11C109.5C23—C22—C221121.5 (5)
N11—C12—C13119.0 (5)C22—C221—H22A109.5
N11—C12—C121119.8 (5)C22—C221—H22B109.5
C13—C12—C121121.2 (5)H22A—C221—H22B109.5
C12—C121—H12A109.5C22—C221—H22C109.5
C12—C121—H12B109.5H22A—C221—H22C109.5
H12A—C121—H12B109.5H22B—C221—H22C109.5
C12—C121—H12C109.5C22—C23—C24120.4 (5)
H12A—C121—H12C109.5C22—C23—H23119.8
H12B—C121—H12C109.5C24—C23—H23119.8
C12—C13—C14121.0 (5)C23—C24—H24120.0
C12—C13—H13119.5C23—C24—C25120.0 (5)
C14—C13—H13119.5C25—C24—H24120.0
C13—C14—C15119.2 (5)C24—C25—C26120.7 (5)
C13—C14—H14120.4C24—C25—H25119.6
C15—C14—H14120.4C26—C25—H25119.6
C14—C15—C16120.8 (5)C25—C26—N21118.8 (4)
C14—C15—H15119.6C25—C26—C261120.8 (5)
C16—C15—H15119.6N21—C26—C261120.5 (5)
C15—C16—N11118.9 (5)C26—C261—H26A109.5
C15—C16—C161121.0 (6)C26—C261—H26B109.5
N11—C16—C161120.2 (5)H26A—C261—H26B109.5
C16—C161—H16A109.5C26—C261—H26C109.5
C16—C161—H16B109.5H26A—C261—H26C109.5
H16A—C161—H16B109.5H26B—C261—H26C109.5
(26lutcl100k) bis(2,6-dimethylpyridinium) tetrachlorocuprate(II) top
Crystal data top
2(C7H10N)·Cl4CuF(000) = 860
Mr = 421.69Dx = 1.566 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 14.3451 (3) ÅCell parameters from 4572 reflections
b = 7.5569 (2) Åθ = 2.9–36.3°
c = 16.6038 (3) ŵ = 1.81 mm1
β = 96.309 (1)°T = 100 K
V = 1789.03 (7) Å3Prism, yellow
Z = 40.34 × 0.17 × 0.13 mm
Data collection top
KappaCCD
diffractometer
4334 independent reflections
Radiation source: Enraf Nonius FR5903401 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 9 pixels mm-1θmax = 36.3°, θmin = 3.8°
CCD rotation images, thick slices scansh = 2323
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
k = 1212
Tmin = 0.677, Tmax = 0.795l = 2727
30011 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033All H-atom parameters refined
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0296P)2 + 2.1947P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4334 reflectionsΔρmax = 0.53 e Å3
137 parametersΔρmin = 0.71 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0024 (3)
Crystal data top
2(C7H10N)·Cl4CuV = 1789.03 (7) Å3
Mr = 421.69Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.3451 (3) ŵ = 1.81 mm1
b = 7.5569 (2) ÅT = 100 K
c = 16.6038 (3) Å0.34 × 0.17 × 0.13 mm
β = 96.309 (1)°
Data collection top
KappaCCD
diffractometer
4334 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
3401 reflections with I > 2σ(I)
Tmin = 0.677, Tmax = 0.795Rint = 0.029
30011 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.078All H-atom parameters refined
S = 1.03Δρmax = 0.53 e Å3
4334 reflectionsΔρmin = 0.71 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.78691 (3)0.75000.01429 (6)
Cl10.64461 (2)0.67683 (5)0.792735 (19)0.01941 (7)
Cl20.53611 (2)0.87687 (5)0.628816 (19)0.02024 (8)
N10.70853 (8)0.54299 (15)0.62716 (7)0.01482 (19)
H10.6910 (12)0.568 (2)0.6738 (11)0.014 (4)*
C20.79524 (9)0.59802 (18)0.61463 (8)0.0156 (2)
C210.85264 (10)0.6858 (2)0.68376 (9)0.0213 (3)
H21A0.839 (2)0.805 (4)0.6897 (17)0.062 (8)*
H21B0.8464 (17)0.628 (3)0.7312 (15)0.040 (6)*
H21C0.9142 (19)0.677 (3)0.6778 (15)0.047 (7)*
C30.82433 (9)0.57174 (19)0.53882 (8)0.0177 (2)
H30.8868 (14)0.608 (3)0.5291 (11)0.019 (5)*
C40.76444 (10)0.49097 (19)0.47862 (8)0.0187 (2)
H40.7848 (13)0.472 (3)0.4266 (11)0.020 (5)*
C50.67645 (10)0.43193 (19)0.49512 (8)0.0179 (2)
H50.6349 (14)0.374 (3)0.4548 (12)0.019 (5)*
C60.64907 (9)0.45752 (18)0.57128 (8)0.0156 (2)
C610.55873 (10)0.3916 (2)0.59706 (10)0.0217 (3)
H61A0.5188 (17)0.351 (3)0.5489 (14)0.039 (6)*
H61B0.5280 (17)0.475 (4)0.6231 (15)0.044 (7)*
H61C0.5681 (19)0.297 (4)0.6306 (16)0.051 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01556 (10)0.01682 (11)0.01117 (10)0.0000.00451 (7)0.000
Cl10.02007 (14)0.02513 (17)0.01322 (13)0.00581 (12)0.00270 (10)0.00067 (11)
Cl20.02107 (14)0.02548 (17)0.01538 (14)0.00395 (12)0.00744 (10)0.00633 (11)
N10.0156 (4)0.0160 (5)0.0133 (4)0.0008 (4)0.0033 (3)0.0004 (4)
C20.0155 (5)0.0146 (5)0.0166 (5)0.0014 (4)0.0021 (4)0.0008 (4)
C210.0183 (6)0.0235 (7)0.0217 (6)0.0027 (5)0.0011 (5)0.0039 (5)
C30.0173 (5)0.0186 (6)0.0178 (6)0.0022 (5)0.0048 (4)0.0019 (5)
C40.0225 (6)0.0201 (6)0.0141 (5)0.0039 (5)0.0051 (4)0.0002 (4)
C50.0198 (6)0.0180 (6)0.0156 (5)0.0027 (5)0.0001 (4)0.0016 (4)
C60.0150 (5)0.0155 (6)0.0164 (5)0.0010 (4)0.0016 (4)0.0002 (4)
C610.0180 (6)0.0245 (7)0.0228 (7)0.0033 (5)0.0031 (5)0.0003 (5)
Geometric parameters (Å, º) top
Cu1—Cl12.2749 (3)C3—C41.386 (2)
Cu1—Cl22.2379 (3)C3—H30.967 (19)
N1—C61.3534 (17)C4—C51.394 (2)
N1—C21.3491 (17)C4—H40.953 (19)
N1—H10.862 (18)C5—C61.3784 (19)
C2—C31.3833 (18)C5—H50.951 (19)
C2—C211.493 (2)C6—C611.4942 (19)
C21—H21A0.93 (3)C61—H61A0.98 (2)
C21—H21B0.91 (2)C61—H61B0.91 (3)
C21—H21C0.90 (3)C61—H61C0.91 (3)
Cl1—Cu1—Cl1i137.10 (2)C2—C3—H3119.3 (11)
Cl1—Cu1—Cl295.640 (12)C4—C3—H3121.0 (11)
Cl1—Cu1—Cl2i97.116 (12)C3—C4—C5120.15 (12)
Cl2—Cu1—Cl2i144.63 (2)C3—C4—H4119.5 (12)
C6—N1—C2124.31 (11)C5—C4—H4120.3 (12)
C6—N1—H1119.8 (12)C4—C5—C6119.39 (13)
C2—N1—H1115.9 (12)C4—C5—H5121.3 (12)
N1—C2—C3118.14 (12)C6—C5—H5119.3 (12)
N1—C2—C21117.28 (12)C5—C6—N1118.31 (12)
C3—C2—C21124.57 (12)C5—C6—C61124.03 (13)
C2—C21—H21A114.0 (18)N1—C6—C61117.63 (12)
C2—C21—H21B110.6 (15)C6—C61—H61A108.6 (14)
H21A—C21—H21B109 (2)C6—C61—H61B112.7 (16)
C2—C21—H21C110.3 (16)H61A—C61—H61B110 (2)
H21A—C21—H21C108 (2)C6—C61—H61C111.3 (17)
H21B—C21—H21C104 (2)H61A—C61—H61C107 (2)
C2—C3—C4119.62 (12)H61B—C61—H61C108 (2)
Symmetry code: (i) x+1, y, z+3/2.
(26lutclrt) bis(2,6-dimethylpyridinium)tetrachloridocuprate(II) top
Crystal data top
2(C7H10N)·Cl4CuF(000) = 860
Mr = 421.66Dx = 1.512 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
a = 14.4831 (3) ÅCell parameters from 3125 reflections
b = 7.7267 (2) Åθ = 2.9–31.0°
c = 16.6432 (3) ŵ = 1.75 mm1
β = 95.840 (1)°T = 295 K
V = 1852.82 (7) Å3Irregular, yellow
Z = 40.33 × 0.28 × 0.17 mm
Data collection top
KappaCCD
diffractometer
2939 independent reflections
Radiation source: Enraf Nonius FR5902250 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 9 pixels mm-1θmax = 31.0°, θmin = 4.6°
CCD rotation images, thick slices scansh = 2020
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
k = 1011
Tmin = 0.578, Tmax = 0.653l = 2424
26631 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0429P)2 + 1.1046P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2939 reflectionsΔρmax = 0.55 e Å3
97 parametersΔρmin = 0.40 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0246 (12)
Crystal data top
2(C7H10N)·Cl4CuV = 1852.82 (7) Å3
Mr = 421.66Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.4831 (3) ŵ = 1.75 mm1
b = 7.7267 (2) ÅT = 295 K
c = 16.6432 (3) Å0.33 × 0.28 × 0.17 mm
β = 95.840 (1)°
Data collection top
KappaCCD
diffractometer
2939 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
2250 reflections with I > 2σ(I)
Tmin = 0.578, Tmax = 0.653Rint = 0.020
26631 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.05Δρmax = 0.55 e Å3
2939 reflectionsΔρmin = 0.40 e Å3
97 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.50000.78550 (4)0.75000.04263 (13)
Cl10.64137 (4)0.67281 (8)0.79331 (3)0.06004 (17)
Cl20.53700 (4)0.87649 (8)0.63014 (3)0.06239 (18)
N10.70831 (10)0.5432 (2)0.62804 (9)0.0418 (3)
H10.68960.56330.67460.050*
C20.79312 (13)0.5994 (2)0.61480 (11)0.0445 (4)
C210.84952 (17)0.6870 (3)0.68284 (16)0.0633 (6)
H21A0.81500.69100.72910.095*0.50
H21B0.86390.80270.66710.095*0.50
H21C0.90610.62380.69620.095*0.50
H21D0.90830.72060.66590.095*0.50
H21E0.85940.60890.72780.095*0.50
H21F0.81720.78780.69870.095*0.50
C30.82219 (14)0.5718 (3)0.53938 (13)0.0512 (5)
H30.88070.60830.52830.061*
C40.76432 (16)0.4902 (3)0.48086 (12)0.0546 (5)
H40.78310.47460.42950.066*
C50.67803 (15)0.4310 (3)0.49782 (12)0.0511 (5)
H50.63930.37410.45830.061*
C60.65021 (13)0.4571 (2)0.57318 (11)0.0435 (4)
C610.56038 (16)0.3936 (3)0.59925 (15)0.0630 (6)
H61A0.55600.42690.65430.094*0.50
H61B0.55780.26980.59490.094*0.50
H61C0.50970.44340.56530.094*0.50
H61D0.52630.33310.55540.094*0.50
H61E0.52450.49030.61480.094*0.50
H61F0.57260.31660.64440.094*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0478 (2)0.0486 (2)0.03362 (17)0.0000.01455 (12)0.000
Cl10.0623 (3)0.0808 (4)0.0377 (2)0.0206 (3)0.0083 (2)0.0031 (2)
Cl20.0650 (3)0.0784 (4)0.0477 (3)0.0128 (3)0.0251 (2)0.0229 (2)
N10.0432 (8)0.0455 (8)0.0375 (7)0.0029 (6)0.0090 (6)0.0003 (6)
C20.0432 (9)0.0423 (9)0.0485 (10)0.0034 (7)0.0075 (7)0.0014 (7)
C210.0528 (12)0.0680 (14)0.0691 (14)0.0092 (10)0.0056 (10)0.0125 (11)
C30.0474 (10)0.0531 (11)0.0557 (11)0.0057 (8)0.0180 (8)0.0069 (9)
C40.0660 (13)0.0587 (12)0.0414 (9)0.0153 (10)0.0174 (8)0.0032 (8)
C50.0594 (12)0.0512 (11)0.0420 (9)0.0101 (9)0.0018 (8)0.0037 (8)
C60.0441 (9)0.0427 (9)0.0437 (9)0.0037 (7)0.0039 (7)0.0006 (7)
C610.0497 (11)0.0725 (15)0.0670 (14)0.0105 (11)0.0075 (10)0.0023 (11)
Geometric parameters (Å, º) top
Cu1—Cl12.2736 (5)C3—C41.372 (3)
Cu1—Cl22.2312 (6)C3—H30.9300
N1—C61.352 (2)C4—C51.387 (3)
N1—C21.342 (2)C4—H40.9300
N1—H10.8600C5—C61.371 (3)
C2—C31.381 (3)C5—H50.9300
C2—C211.490 (3)C6—C611.495 (3)
C21—H21A0.9600C61—H61A0.9600
C21—H21B0.9600C61—H61B0.9600
C21—H21C0.9600C61—H61C0.9600
C21—H21D0.9600C61—H61D0.9600
C21—H21E0.9600C61—H61E0.9600
C21—H21F0.9600C61—H61F0.9600
Cl1—Cu1—Cl1i134.96 (4)C2—C3—H3120.1
Cl1—Cu1—Cl296.52 (2)C4—C3—H3120.1
Cl1—Cu1—Cl2i97.34 (2)C3—C4—C5120.35 (18)
Cl2—Cu1—Cl2i143.27 (4)C3—C4—H4119.8
C6—N1—C2124.43 (16)C5—C4—H4119.8
C6—N1—H1117.8C4—C5—C6119.53 (19)
C2—N1—H1117.8C4—C5—H5120.2
N1—C2—C3117.93 (18)C6—C5—H5120.2
N1—C2—C21117.54 (18)C5—C6—N1118.00 (18)
C3—C2—C21124.53 (19)C5—C6—C61124.25 (19)
C2—C21—H21A109.5N1—C6—C61117.73 (18)
C2—C21—H21B109.5C6—C61—H61A109.5
H21A—C21—H21B109.5C6—C61—H61B109.5
C2—C21—H21C109.5H61A—C61—H61B109.5
H21A—C21—H21C109.5C6—C61—H61C109.5
H21B—C21—H21C109.5H61A—C61—H61C109.5
C2—C21—H21D109.5H61B—C61—H61C109.5
C2—C21—H21E109.5C6—C61—H61D109.5
H21D—C21—H21E109.5C6—C61—H61E109.5
C2—C21—H21F109.5H61D—C61—H61E109.5
H21D—C21—H21F109.5C6—C61—H61F109.5
H21E—C21—H21F109.5H61D—C61—H61F109.5
C2—C3—C4119.71 (19)H61E—C61—H61F109.5
Symmetry code: (i) x+1, y, z+3/2.
(26lutbr100k) bis(2,6-dimethylpyridinium) tetrabromidocuprate(II) top
Crystal data top
2(C7H10N)·Br4CuF(000) = 1148
Mr = 599.5Dx = 2.068 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3568 reflections
a = 14.5510 (3) Åθ = 2.9–32.0°
b = 7.8249 (2) ŵ = 9.43 mm1
c = 17.0624 (3) ÅT = 100 K
β = 97.540 (1)°Prism, dark purple
V = 1925.93 (7) Å30.34 × 0.23 × 0.05 mm
Z = 4
Data collection top
KappaCCD
diffractometer
3356 independent reflections
Radiation source: Enraf Nonius FR5902453 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 9 pixels mm-1θmax = 32.1°, θmin = 3.9°
CCD rotation images, thick slices scansh = 2121
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
k = 1111
Tmin = 0.094, Tmax = 0.159l = 2525
40655 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0447P)2 + 6.079P]
where P = (Fo2 + 2Fc2)/3
3356 reflections(Δ/σ)max = 0.001
96 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 1.14 e Å3
0 constraints
Crystal data top
2(C7H10N)·Br4CuV = 1925.93 (7) Å3
Mr = 599.5Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.5510 (3) ŵ = 9.43 mm1
b = 7.8249 (2) ÅT = 100 K
c = 17.0624 (3) Å0.34 × 0.23 × 0.05 mm
β = 97.540 (1)°
Data collection top
KappaCCD
diffractometer
3356 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
2453 reflections with I > 2σ(I)
Tmin = 0.094, Tmax = 0.159Rint = 0.044
40655 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.05Δρmax = 0.80 e Å3
3356 reflectionsΔρmin = 1.14 e Å3
96 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.50.81548 (8)0.750.01725 (14)
Br10.64826 (3)0.69894 (5)0.802284 (19)0.02023 (10)
Br20.54469 (3)0.91164 (5)0.62839 (2)0.02324 (11)
N10.7063 (2)0.5633 (4)0.63017 (17)0.0178 (6)
H10.68890.59040.67480.021*
C20.7902 (2)0.6155 (4)0.6161 (2)0.0169 (7)
C210.8476 (3)0.7115 (5)0.6798 (2)0.0264 (8)
H21A0.8140.7240.72420.04*0.5
H21B0.86190.82240.66050.04*0.5
H21C0.90410.65020.69570.04*0.5
H21D0.9060.74040.66270.04*0.5
H21E0.85820.6420.72650.04*0.5
H21F0.81590.81420.69130.04*0.5
C30.8178 (3)0.5756 (5)0.5439 (2)0.0204 (7)
H30.87590.6090.53240.025*
C40.7584 (3)0.4855 (5)0.4886 (2)0.0220 (7)
H40.77580.46180.43930.026*
C50.6727 (3)0.4304 (5)0.5067 (2)0.0218 (8)
H50.63350.3670.47030.026*
C60.6466 (3)0.4707 (5)0.5791 (2)0.0193 (7)
C610.5571 (3)0.4142 (5)0.6057 (2)0.0248 (8)
H61A0.55350.45710.65790.037*0.5
H61B0.55460.29160.60620.037*0.5
H61C0.50610.45770.56990.037*0.5
H61D0.52260.34720.56480.037*0.5
H61E0.52150.51260.61650.037*0.5
H61F0.57010.34660.65280.037*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0188 (3)0.0197 (3)0.0142 (3)00.0057 (2)0
Br10.02187 (18)0.02394 (19)0.01505 (16)0.00360 (14)0.00304 (12)0.00055 (14)
Br20.02448 (19)0.0279 (2)0.01908 (17)0.00444 (16)0.00933 (13)0.00703 (15)
N10.0188 (14)0.0212 (15)0.0146 (13)0.0018 (12)0.0061 (11)0.0016 (11)
C20.0196 (17)0.0118 (15)0.0197 (16)0.0015 (13)0.0041 (13)0.0034 (13)
C210.0248 (19)0.027 (2)0.0271 (19)0.0069 (16)0.0029 (15)0.0079 (16)
C30.0206 (17)0.0197 (17)0.0218 (17)0.0027 (15)0.0061 (14)0.0042 (14)
C40.0232 (18)0.0253 (19)0.0181 (16)0.0083 (16)0.0054 (14)0.0010 (15)
C50.0240 (18)0.0235 (19)0.0170 (16)0.0029 (15)0.0009 (13)0.0026 (14)
C60.0187 (17)0.0176 (16)0.0212 (16)0.0012 (14)0.0010 (13)0.0013 (14)
C610.0212 (18)0.028 (2)0.0262 (18)0.0025 (16)0.0063 (14)0.0007 (16)
Geometric parameters (Å, º) top
Cu1—Br12.4034 (4)C3—C41.385 (5)
Cu1—Br22.3768 (4)C3—H30.93
N1—C61.356 (5)C4—C51.392 (5)
N1—C21.339 (5)C4—H40.93
N1—H10.86C5—C61.376 (5)
C2—C31.382 (5)C5—H50.93
C2—C211.484 (5)C6—C611.500 (5)
C21—H21A0.96C61—H61A0.96
C21—H21B0.96C61—H61B0.96
C21—H21C0.96C61—H61C0.96
C21—H21D0.96C61—H61D0.96
C21—H21E0.96C61—H61E0.96
C21—H21F0.96C61—H61F0.96
Br1—Cu1—Br1i135.40 (3)C2—C3—H3120.2
Br1—Cu1—Br296.261 (12)C4—C3—H3120.2
Br1—Cu1—Br2i97.538 (13)C3—C4—C5120.3 (3)
Br2—Cu1—Br2i143.09 (4)C3—C4—H4119.9
C6—N1—C2124.8 (3)C5—C4—H4119.9
C6—N1—H1117.6C4—C5—C6119.3 (3)
C2—N1—H1117.6C4—C5—H5120.4
N1—C2—C3118.0 (3)C6—C5—H5120.4
N1—C2—C21117.6 (3)C5—C6—N1118.0 (3)
C3—C2—C21124.4 (3)C5—C6—C61123.8 (3)
C2—C21—H21A109.5N1—C6—C61118.1 (3)
C2—C21—H21B109.5C6—C61—H61A109.5
H21A—C21—H21B109.5C6—C61—H61B109.5
C2—C21—H21C109.5H61A—C61—H61B109.5
H21A—C21—H21C109.5C6—C61—H61C109.5
H21B—C21—H21C109.5H61A—C61—H61C109.5
C2—C21—H21D109.5H61B—C61—H61C109.5
C2—C21—H21E109.5C6—C61—H61D109.5
H21D—C21—H21E109.5C6—C61—H61E109.5
C2—C21—H21F109.5H61D—C61—H61E109.5
H21D—C21—H21F109.5C6—C61—H61F109.5
H21E—C21—H21F109.5H61D—C61—H61F109.5
C2—C3—C4119.6 (3)H61E—C61—H61F109.5
Symmetry code: (i) x+1, y, z+3/2.
(26lutbrrt) bis(2,6-dimethylpyridinium) tetrabromidocuprate(II) top
Crystal data top
2(C7H10N)·Br4CuF(000) = 1148
Mr = 599.5Dx = 2.001 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 14.6041 (3) ÅCell parameters from 2720 reflections
b = 7.9883 (2) Åθ = 2.9–28.7°
c = 17.1986 (3) ŵ = 9.13 mm1
β = 97.345 (1)°T = 295 K
V = 1989.96 (7) Å3Prism, dark purple
Z = 40.25 × 0.21 × 0.13 mm
Data collection top
KappaCCD
diffractometer
2558 independent reflections
Radiation source: Enraf Nonius FR5902034 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 9 pixels mm-1θmax = 28.7°, θmin = 4.8°
CCD rotation images, thick slices scansh = 1919
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
k = 910
Tmin = 0.115, Tmax = 0.176l = 2322
26583 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0299P)2 + 3.2871P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
2558 reflectionsΔρmax = 0.73 e Å3
98 parametersΔρmin = 0.78 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0047 (2)
Crystal data top
2(C7H10N)·Br4CuV = 1989.96 (7) Å3
Mr = 599.5Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.6041 (3) ŵ = 9.13 mm1
b = 7.9883 (2) ÅT = 295 K
c = 17.1986 (3) Å0.25 × 0.21 × 0.13 mm
β = 97.345 (1)°
Data collection top
KappaCCD
diffractometer
2558 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
2034 reflections with I > 2σ(I)
Tmin = 0.115, Tmax = 0.176Rint = 0.020
26583 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.06Δρmax = 0.73 e Å3
2558 reflectionsΔρmin = 0.78 e Å3
98 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.50000.80484 (7)0.75000.04252 (14)
Br10.64681 (2)0.68803 (5)0.801568 (17)0.05525 (13)
Br20.54416 (2)0.90076 (5)0.629655 (19)0.06362 (14)
N10.70734 (16)0.5567 (3)0.63033 (13)0.0424 (5)
H10.69010.58170.67490.036 (7)*
C20.7903 (2)0.6114 (4)0.61582 (18)0.0450 (6)
C210.8472 (3)0.7059 (5)0.6789 (2)0.0665 (10)
H21A0.81420.71540.72350.100*0.50
H21B0.85980.81570.66020.100*0.50
H21C0.90430.64780.69380.100*0.50
H21D0.90470.73720.66150.100*0.50
H21E0.85900.63690.72480.100*0.50
H21F0.81460.80480.69120.100*0.50
C30.8166 (2)0.5746 (4)0.54375 (19)0.0532 (8)
H30.87370.61030.53160.064*
C40.7589 (2)0.4856 (5)0.48976 (18)0.0556 (8)
H40.77630.46360.44060.067*
C50.6752 (2)0.4286 (4)0.50786 (18)0.0539 (8)
H50.63680.36590.47160.065*
C60.6487 (2)0.4650 (4)0.57986 (17)0.0450 (6)
C610.5607 (2)0.4083 (5)0.6070 (2)0.0656 (9)
H61A0.55740.44970.65900.098*0.50
H61B0.55870.28820.60730.098*0.50
H61C0.50930.45060.57210.098*0.50
H61D0.52620.34260.56660.098*0.50
H61E0.52490.50410.61830.098*0.50
H61F0.57430.34180.65350.098*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0480 (3)0.0479 (3)0.0342 (2)0.0000.01496 (19)0.000
Br10.0595 (2)0.0693 (2)0.03708 (17)0.01365 (16)0.00671 (13)0.00147 (13)
Br20.0676 (2)0.0771 (3)0.0518 (2)0.01493 (18)0.02882 (15)0.02479 (17)
N10.0468 (13)0.0432 (13)0.0391 (12)0.0044 (10)0.0122 (10)0.0000 (10)
C20.0454 (15)0.0411 (15)0.0493 (15)0.0049 (13)0.0099 (12)0.0025 (13)
C210.058 (2)0.068 (2)0.074 (2)0.0123 (18)0.0111 (17)0.0123 (19)
C30.0510 (17)0.0586 (19)0.0534 (17)0.0065 (15)0.0192 (14)0.0075 (15)
C40.0627 (19)0.065 (2)0.0405 (15)0.0131 (17)0.0138 (14)0.0009 (15)
C50.0603 (19)0.0563 (19)0.0433 (16)0.0083 (16)0.0004 (13)0.0054 (14)
C60.0458 (15)0.0446 (16)0.0447 (14)0.0038 (13)0.0058 (12)0.0002 (13)
C610.0537 (19)0.072 (2)0.072 (2)0.0116 (18)0.0096 (16)0.0014 (19)
Geometric parameters (Å, º) top
Cu1—Br12.4016 (4)C3—C41.371 (5)
Cu1—Br22.3724 (3)C3—H30.9300
N1—C61.354 (4)C4—C51.377 (5)
N1—C21.342 (4)C4—H40.9300
N1—H10.8600C5—C61.375 (4)
C2—C31.375 (4)C5—H50.9300
C2—C211.486 (5)C6—C611.493 (5)
C21—H21A0.9600C61—H61A0.9600
C21—H21B0.9600C61—H61B0.9600
C21—H21C0.9600C61—H61C0.9600
C21—H21D0.9600C61—H61D0.9600
C21—H21E0.9600C61—H61E0.9600
C21—H21F0.9600C61—H61F0.9600
Br1—Cu1—Br1i134.28 (3)C2—C3—H3119.9
Br1—Cu1—Br296.790 (11)C4—C3—H3119.9
Br1—Cu1—Br2i97.627 (12)C3—C4—C5120.4 (3)
Br2—Cu1—Br2i142.32 (3)C3—C4—H4119.8
C6—N1—C2124.7 (3)C5—C4—H4119.8
C6—N1—H1117.7C4—C5—C6119.6 (3)
C2—N1—H1117.7C4—C5—H5120.2
N1—C2—C3117.5 (3)C6—C5—H5120.2
N1—C2—C21117.6 (3)C5—C6—N1117.7 (3)
C3—C2—C21124.9 (3)C5—C6—C61124.7 (3)
C2—C21—H21A109.5N1—C6—C61117.6 (3)
C2—C21—H21B109.5C6—C61—H61A109.5
H21A—C21—H21B109.5C6—C61—H61B109.5
C2—C21—H21C109.5H61A—C61—H61B109.5
H21A—C21—H21C109.5C6—C61—H61C109.5
H21B—C21—H21C109.5H61A—C61—H61C109.5
C2—C21—H21D109.5H61B—C61—H61C109.5
C2—C21—H21E109.5C6—C61—H61D109.5
H21D—C21—H21E109.5C6—C61—H61E109.5
C2—C21—H21F109.5H61D—C61—H61E109.5
H21D—C21—H21F109.5C6—C61—H61F109.5
H21E—C21—H21F109.5H61D—C61—H61F109.5
C2—C3—C4120.2 (3)H61E—C61—H61F109.5
Symmetry code: (i) x+1, y, z+3/2.
(26lut100kortho) bis(2,6-dimethylpyridinium) tetrachloridocuprate(II) top
Crystal data top
2(C7H10N)·Cl4CuDx = 1.509 Mg m3
Mr = 421.66Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 3360 reflections
a = 16.9587 (3) Åθ = 2.9–31.0°
b = 7.8858 (1) ŵ = 1.75 mm1
c = 13.8774 (3) ÅT = 100 K
V = 1855.86 (6) Å3Irregular, yellow
Z = 40.33 × 0.25 × 0.13 mm
F(000) = 860
Data collection top
KappaCCD
diffractometer
2952 independent reflections
Graphite monochromator2386 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.019
CCD scansθmax = 31.0°, θmin = 4.4°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 2424
Tmin = 0.629, Tmax = 0.663k = 1111
59438 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0372P)2 + 0.970P]
where P = (Fo2 + 2Fc2)/3
2952 reflections(Δ/σ)max = 0.001
120 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
2(C7H10N)·Cl4CuV = 1855.86 (6) Å3
Mr = 421.66Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 16.9587 (3) ŵ = 1.75 mm1
b = 7.8858 (1) ÅT = 100 K
c = 13.8774 (3) Å0.33 × 0.25 × 0.13 mm
Data collection top
KappaCCD
diffractometer
2952 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
2386 reflections with I > 2σ(I)
Tmin = 0.629, Tmax = 0.663Rint = 0.019
59438 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.51 e Å3
2952 reflectionsΔρmin = 0.63 e Å3
120 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.19627 (4)0.75000.01663 (8)
Cl10.45461 (2)0.32504 (6)0.61533 (3)0.02629 (11)
Cl20.61240 (2)0.08444 (5)0.69371 (3)0.02111 (10)
N10.61990 (8)0.35374 (18)0.50879 (10)0.0182 (3)
H10.5746 (13)0.352 (3)0.5401 (15)0.026 (5)*
C20.68341 (9)0.4285 (2)0.54931 (12)0.0195 (3)
C210.67203 (10)0.5189 (3)0.64282 (13)0.0271 (4)
H21A0.64330.44740.68640.060 (8)*
H21B0.64300.62160.63200.043 (7)*
H21C0.72250.54580.67010.048 (7)*
C30.75438 (10)0.4191 (2)0.50011 (13)0.0230 (3)
H30.7997 (13)0.470 (3)0.5290 (16)0.030 (5)*
C40.75726 (11)0.3391 (2)0.41113 (14)0.0258 (4)
H40.8055 (14)0.332 (3)0.3788 (16)0.030 (6)*
C50.69008 (11)0.2682 (2)0.37218 (13)0.0238 (3)
H50.6899 (13)0.214 (3)0.3147 (16)0.030 (6)*
C60.61975 (10)0.2748 (2)0.42278 (12)0.0206 (3)
C610.54389 (11)0.1994 (3)0.38877 (15)0.0317 (4)
H61A0.53030.10460.42890.088 (11)*
H61B0.54970.16180.32330.082 (10)*
H61C0.50290.28320.39220.071 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01104 (13)0.02169 (14)0.01716 (14)0.0000.00110 (9)0.000
Cl10.01537 (17)0.0362 (2)0.0273 (2)0.00237 (15)0.00065 (15)0.01257 (17)
Cl20.01509 (17)0.0278 (2)0.02043 (19)0.00431 (14)0.00318 (13)0.00174 (15)
N10.0146 (6)0.0222 (6)0.0177 (6)0.0015 (5)0.0007 (5)0.0016 (5)
C20.0171 (7)0.0208 (7)0.0205 (7)0.0025 (6)0.0027 (6)0.0037 (6)
C210.0229 (8)0.0342 (10)0.0242 (9)0.0082 (7)0.0005 (7)0.0056 (7)
C30.0164 (7)0.0260 (8)0.0266 (8)0.0029 (6)0.0002 (6)0.0062 (7)
C40.0199 (8)0.0283 (9)0.0291 (9)0.0038 (7)0.0074 (7)0.0071 (7)
C50.0283 (8)0.0230 (8)0.0202 (8)0.0053 (7)0.0034 (7)0.0025 (7)
C60.0229 (8)0.0193 (8)0.0196 (8)0.0020 (6)0.0016 (6)0.0005 (6)
C610.0251 (9)0.0389 (10)0.0312 (10)0.0028 (8)0.0042 (7)0.0115 (9)
Geometric parameters (Å, º) top
Cu1—Cl12.2619 (4)C3—C41.388 (3)
Cu1—Cl22.2409 (4)C3—H30.95 (2)
N1—C61.346 (2)C4—C51.379 (3)
N1—C21.351 (2)C4—H40.93 (2)
N1—H10.88 (2)C5—C61.385 (2)
C2—C31.386 (2)C5—H50.90 (2)
C2—C211.493 (2)C6—C611.494 (2)
C21—H21A0.9600C61—H61A0.9600
C21—H21B0.9600C61—H61B0.9600
C21—H21C0.9600C61—H61C0.9600
Cl1—Cu1—Cl1i126.65 (3)C2—C3—H3118.0 (13)
Cl1—Cu1—Cl2100.259 (15)C4—C3—H3122.4 (13)
Cl2—Cu1—Cl1i100.094 (15)C3—C4—C5120.27 (16)
Cl2—Cu1—Cl2i133.65 (3)C3—C4—H4119.1 (14)
C6—N1—C2124.93 (15)C5—C4—H4120.6 (14)
C6—N1—H1115.4 (14)C4—C5—C6119.82 (17)
C2—N1—H1119.7 (14)C4—C5—H5122.7 (14)
N1—C2—C3117.66 (15)C6—C5—H5117.5 (14)
N1—C2—C21117.85 (14)C5—C6—N1117.72 (16)
C3—C2—C21124.47 (15)C5—C6—C61124.51 (16)
C2—C21—H21A109.5N1—C6—C61117.77 (15)
C2—C21—H21B109.5C6—C61—H61A109.5
H21A—C21—H21B109.5C6—C61—H61B109.5
C2—C21—H21C109.5H61A—C61—H61B109.5
H21A—C21—H21C109.5C6—C61—H61C109.5
H21B—C21—H21C109.5H61A—C61—H61C109.5
C2—C3—C4119.56 (16)H61B—C61—H61C109.5
Symmetry code: (i) x+1, y, z+3/2.
(26lutrtortho) bis(2,6-dimethylpyridinium) tetrachloridocuprate(II) top
Crystal data top
2(C7H10N)·Cl4CuDx = 1.455 Mg m3
Mr = 421.66Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 2517 reflections
a = 16.9411 (5) Åθ = 2.9–27.5°
b = 8.2218 (2) ŵ = 1.68 mm1
c = 13.8212 (4) ÅT = 295 K
V = 1925.10 (9) Å3Irregular, yellow
Z = 40.29 × 0.25 × 0.10 mm
F(000) = 860
Data collection top
KappaCCD
diffractometer
2191 independent reflections
Radiation source: Enraf Nonius FR5901732 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
Detector resolution: 9 pixels mm-1θmax = 27.4°, θmin = 4.5°
CCD rotation images, thick slices scansh = 2121
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
k = 1010
Tmin = 0.578, Tmax = 0.699l = 1717
36138 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0534P)2 + 0.5459P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2191 reflectionsΔρmax = 0.27 e Å3
97 parametersΔρmin = 0.56 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0051 (12)
Crystal data top
2(C7H10N)·Cl4CuV = 1925.10 (9) Å3
Mr = 421.66Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 16.9411 (5) ŵ = 1.68 mm1
b = 8.2218 (2) ÅT = 295 K
c = 13.8212 (4) Å0.29 × 0.25 × 0.10 mm
Data collection top
KappaCCD
diffractometer
2191 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
1732 reflections with I > 2σ(I)
Tmin = 0.578, Tmax = 0.699Rint = 0.012
36138 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.06Δρmax = 0.27 e Å3
2191 reflectionsΔρmin = 0.56 e Å3
97 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.50000.20396 (5)0.75000.04837 (17)
Cl10.45528 (4)0.33340 (10)0.61632 (5)0.0764 (2)
Cl20.61154 (3)0.09436 (8)0.69429 (4)0.0635 (2)
N10.62054 (11)0.3521 (2)0.50700 (13)0.0527 (4)
H10.57650.35710.53770.063*
C20.68307 (13)0.4265 (3)0.54729 (18)0.0588 (6)
C210.67045 (17)0.5155 (4)0.6396 (2)0.0833 (8)
H21A0.61610.50680.65840.125*0.50
H21B0.68390.62800.63090.125*0.50
H21C0.70330.46930.68910.125*0.50
H21D0.71940.56260.66060.125*0.50
H21E0.65160.44140.68800.125*0.50
H21F0.63220.60010.62980.125*0.50
C30.75395 (15)0.4146 (4)0.4996 (2)0.0751 (8)
H30.79910.46130.52580.090*
C40.75771 (19)0.3334 (4)0.4128 (3)0.0869 (9)
H40.80550.32670.38000.104*
C50.6920 (2)0.2624 (4)0.3743 (2)0.0781 (8)
H50.69510.20850.31530.094*
C60.62115 (16)0.2707 (3)0.42285 (18)0.0621 (6)
C610.5459 (2)0.1955 (5)0.3898 (3)0.0972 (11)
H61A0.50510.21790.43600.146*0.50
H61B0.55280.08000.38390.146*0.50
H61C0.53140.24000.32810.146*0.50
H61D0.55440.14070.32940.146*0.50
H61E0.50670.27860.38140.146*0.50
H61F0.52810.11860.43730.146*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0331 (2)0.0625 (3)0.0495 (2)0.0000.00270 (13)0.000
Cl10.0452 (3)0.1076 (5)0.0766 (4)0.0081 (3)0.0002 (3)0.0347 (4)
Cl20.0449 (3)0.0827 (4)0.0629 (4)0.0154 (3)0.0107 (2)0.0070 (3)
N10.0429 (9)0.0637 (11)0.0516 (10)0.0030 (8)0.0012 (8)0.0035 (9)
C20.0486 (12)0.0643 (13)0.0636 (14)0.0064 (10)0.0041 (10)0.0142 (11)
C210.0732 (17)0.100 (2)0.0764 (18)0.0260 (16)0.0073 (14)0.0127 (16)
C30.0452 (13)0.0883 (18)0.092 (2)0.0092 (13)0.0051 (13)0.0244 (16)
C40.0631 (17)0.098 (2)0.100 (2)0.0146 (16)0.0331 (17)0.0278 (19)
C50.091 (2)0.0783 (17)0.0653 (16)0.0209 (16)0.0198 (15)0.0075 (14)
C60.0666 (15)0.0633 (14)0.0564 (14)0.0089 (12)0.0001 (11)0.0038 (11)
C610.087 (2)0.118 (3)0.087 (2)0.0065 (19)0.0150 (18)0.037 (2)
Geometric parameters (Å, º) top
Cu1—Cl12.2628 (6)C3—C41.374 (5)
Cu1—Cl22.2306 (5)C3—H30.9300
N1—C61.342 (3)C4—C51.364 (5)
N1—C21.344 (3)C4—H40.9300
N1—H10.8600C5—C61.377 (4)
C2—C31.374 (3)C5—H50.9300
C2—C211.486 (4)C6—C611.489 (4)
C21—H21A0.9600C61—H61A0.9600
C21—H21B0.9600C61—H61B0.9600
C21—H21C0.9600C61—H61C0.9600
C21—H21D0.9600C61—H61D0.9600
C21—H21E0.9600C61—H61E0.9600
C21—H21F0.9600C61—H61F0.9600
Cl1—Cu1—Cl1i123.89 (5)C2—C3—H3120.2
Cl1—Cu1—Cl2101.06 (2)C4—C3—H3120.2
Cl1—Cu1—Cl2i100.85 (2)C3—C4—C5120.7 (3)
Cl2—Cu1—Cl2i132.35 (4)C3—C4—H4119.7
C6—N1—C2125.5 (2)C5—C4—H4119.7
C6—N1—H1117.3C4—C5—C6120.0 (3)
C2—N1—H1117.3C4—C5—H5120.0
N1—C2—C3117.2 (2)C6—C5—H5120.0
N1—C2—C21117.8 (2)C5—C6—N1117.0 (3)
C3—C2—C21125.0 (2)C5—C6—C61125.2 (3)
C2—C21—H21A109.5N1—C6—C61117.8 (2)
C2—C21—H21B109.5C6—C61—H61A109.5
H21A—C21—H21B109.5C6—C61—H61B109.5
C2—C21—H21C109.5H61A—C61—H61B109.5
H21A—C21—H21C109.5C6—C61—H61C109.5
H21B—C21—H21C109.5H61A—C61—H61C109.5
C2—C21—H21D109.5H61B—C61—H61C109.5
C2—C21—H21E109.5C6—C61—H61D109.5
H21D—C21—H21E109.5C6—C61—H61E109.5
C2—C21—H21F109.5H61D—C61—H61E109.5
H21D—C21—H21F109.5C6—C61—H61F109.5
H21E—C21—H21F109.5H61D—C61—H61F109.5
C2—C3—C4119.6 (3)H61E—C61—H61F109.5
Symmetry code: (i) x+1, y, z+3/2.
(123tmpcubr4) bis(1,2,3-trimethylpyridnium) tetrabromidocuprate(II) top
Crystal data top
2(C8H12N)·Br4CuF(000) = 1212
Mr = 627.55Dx = 1.932 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2599 reflections
a = 17.6373 (5) Åθ = 2.9–27.5°
b = 9.4076 (4) ŵ = 8.42 mm1
c = 14.7798 (5) ÅT = 295 K
β = 118.396 (2)°Gem, dark purple
V = 2157.27 (13) Å30.21 × 0.20 × 0.18 mm
Z = 4
Data collection top
KappaCCD
diffractometer
2461 independent reflections
Radiation source: Enraf Nonius FR5901686 reflections with I > 2σ(I)
Graphite monochromatorRint = 0
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 4.1°
CCD rotation images, thick slices scansh = 2220
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
k = 1212
Tmin = 0.164, Tmax = 0.217l = 019
17272 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.025P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.001
2461 reflectionsΔρmax = 0.49 e Å3
109 parametersΔρmin = 0.38 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.00071 (9)
Primary atom site location: structure-invariant direct methods
Crystal data top
2(C8H12N)·Br4CuV = 2157.27 (13) Å3
Mr = 627.55Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.6373 (5) ŵ = 8.42 mm1
b = 9.4076 (4) ÅT = 295 K
c = 14.7798 (5) Å0.21 × 0.20 × 0.18 mm
β = 118.396 (2)°
Data collection top
KappaCCD
diffractometer
2461 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
1686 reflections with I > 2σ(I)
Tmin = 0.164, Tmax = 0.217Rint = 0
17272 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 0.95Δρmax = 0.49 e Å3
2461 reflectionsΔρmin = 0.38 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.25273 (5)0.25000.04301 (14)
Br10.53257 (2)0.10011 (4)0.39092 (3)0.06197 (13)
Br20.60212 (2)0.40953 (4)0.23917 (2)0.05737 (12)
N10.63304 (16)0.6180 (3)0.51335 (18)0.0510 (6)
C110.5540 (2)0.6974 (4)0.4444 (3)0.0770 (11)
H11B0.52560.72840.48250.116*
H11A0.51610.63680.38900.116*
H11C0.56910.77860.41700.116*
C20.70149 (18)0.6868 (3)0.5891 (2)0.0455 (7)
C210.6948 (2)0.8438 (4)0.5992 (3)0.0619 (9)
H21B0.68590.88980.53690.093*
H21C0.74700.87850.65580.093*
H21A0.64700.86410.61140.093*
C30.77380 (18)0.6085 (3)0.6547 (2)0.0507 (8)
C310.8500 (2)0.6775 (5)0.7418 (3)0.0839 (12)
H31A0.83490.70660.79350.126*
H31B0.86710.75910.71690.126*
H31C0.89690.61100.77100.126*
C40.7744 (2)0.4632 (4)0.6402 (3)0.0605 (9)
H40.82280.40990.68280.073*
C50.7035 (3)0.3973 (4)0.5625 (3)0.0705 (10)
H50.70360.29970.55280.085*
C60.6339 (2)0.4758 (4)0.5008 (2)0.0618 (9)
H60.58580.43140.44890.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0472 (3)0.0334 (3)0.0511 (3)00.0256 (2)0
Br10.0696 (2)0.0502 (2)0.0673 (2)0.00868 (16)0.03348 (18)0.01943 (16)
Br20.0587 (2)0.0521 (2)0.0678 (2)0.01480 (15)0.03527 (16)0.00349 (15)
N10.0554 (15)0.0531 (17)0.0457 (13)0.0011 (13)0.0251 (12)0.0025 (12)
C110.061 (2)0.084 (3)0.062 (2)0.008 (2)0.0084 (16)0.001 (2)
C20.0485 (16)0.0478 (19)0.0452 (15)0.0032 (14)0.0263 (14)0.0046 (13)
C210.065 (2)0.051 (2)0.066 (2)0.0035 (17)0.0286 (17)0.0014 (17)
C30.0474 (17)0.054 (2)0.0538 (17)0.0023 (15)0.0264 (15)0.0014 (15)
C310.057 (2)0.093 (3)0.078 (2)0.000 (2)0.0128 (19)0.003 (2)
C40.063 (2)0.062 (2)0.064 (2)0.0178 (18)0.0369 (18)0.0094 (18)
C50.098 (3)0.046 (2)0.082 (2)0.007 (2)0.055 (2)0.0052 (19)
C60.072 (2)0.057 (2)0.0573 (19)0.0133 (19)0.0313 (17)0.0156 (17)
Geometric parameters (Å, º) top
Cu1—Br12.3646 (4)C21—H21A0.96
Cu1—Br22.3916 (4)C3—C41.385 (5)
N1—C61.352 (4)C3—C311.497 (4)
N1—C21.358 (4)C31—H31A0.96
N1—C111.479 (4)C31—H31B0.96
C11—H11B0.96C31—H31C0.96
C11—H11A0.96C4—C51.379 (5)
C11—H11C0.96C4—H40.93
C2—C31.390 (4)C5—C61.348 (5)
C2—C211.496 (4)C5—H50.93
C21—H21B0.96C6—H60.93
C21—H21C0.96
Br1—Cu1—Br1i105.23 (3)H21B—C21—H21A109.5
Br1—Cu1—Br2123.933 (12)H21C—C21—H21A109.5
Br1—Cu1—Br2i100.999 (12)C2—C3—C4119.1 (3)
Br2—Cu1—Br2i103.84 (2)C2—C3—C31121.4 (3)
C6—N1—C2121.4 (3)C4—C3—C31119.4 (3)
C6—N1—C11118.3 (3)C3—C31—H31A109.5
C2—N1—C11120.3 (3)C3—C31—H31B109.5
N1—C11—H11B109.5H31A—C31—H31B109.5
N1—C11—H11A109.5C3—C31—H31C109.5
H11B—C11—H11A109.5H31A—C31—H31C109.5
N1—C11—H11C109.5H31B—C31—H31C109.5
H11B—C11—H11C109.5C3—C4—C5120.1 (3)
H11A—C11—H11C109.5C3—C4—H4119.9
N1—C2—C3119.0 (3)C5—C4—H4119.9
N1—C2—C21118.1 (3)C4—C5—C6119.4 (3)
C3—C2—C21122.9 (3)C4—C5—H5120.3
C2—C21—H21B109.5C6—C5—H5120.3
C2—C21—H21C109.5C5—C6—N1121.0 (3)
H21B—C21—H21C109.5C5—C6—H6119.5
C2—C21—H21A109.5N1—C6—H6119.5
Symmetry code: (i) x+1, y, z+1/2.
(nmphcucl4) bis(methyl(2-phenylethyl)ammonium tetrachloridocuprate(II) top
Crystal data top
2(C9H14N+)·(C14Cu2)F(000) = 494
Mr = 477.76Dx = 1.45 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3915 reflections
a = 6.4234 (1) Åθ = 1–32.0°
b = 22.4819 (4) ŵ = 1.49 mm1
c = 8.4552 (1) ÅT = 100 K
β = 116.314 (1)°Rod, dark green
V = 1094.49 (3) Å30.18 × 0.06 × 0.04 mm
Z = 2
Data collection top
KappaCCD
diffractometer
3814 independent reflections
Radiation source: Enraf Nonius FR5903186 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 9 pixels mm-1θmax = 32.0°, θmin = 3.2°
CCD rotation images, thick slices scansh = 99
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
k = 3333
Tmin = 0.870, Tmax = 0.954l = 1212
3814 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0207P)2 + 0.1059P]
where P = (Fo2 + 2Fc2)/3
3814 reflections(Δ/σ)max < 0.001
171 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.51 e Å3
0 constraints
Crystal data top
2(C9H14N+)·(C14Cu2)V = 1094.49 (3) Å3
Mr = 477.76Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.4234 (1) ŵ = 1.49 mm1
b = 22.4819 (4) ÅT = 100 K
c = 8.4552 (1) Å0.18 × 0.06 × 0.04 mm
β = 116.314 (1)°
Data collection top
KappaCCD
diffractometer
3814 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
3186 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 0.954Rint = 0.018
3814 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.057All H-atom parameters refined
S = 1.06Δρmax = 0.37 e Å3
3814 reflectionsΔρmin = 0.51 e Å3
171 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10000.01156 (5)
Cl10.22895 (4)0.042521 (11)0.10657 (3)0.01423 (6)
Cl20.10995 (4)0.071176 (13)0.21497 (4)0.01842 (7)
C10.3837 (2)0.27495 (6)0.13980 (16)0.0210 (2)
H10.237 (3)0.2550 (6)0.0950 (19)0.025 (4)*
C20.3916 (2)0.33518 (6)0.17589 (16)0.0245 (3)
H20.256 (3)0.3559 (8)0.157 (2)0.038 (4)*
C30.6017 (2)0.36514 (6)0.24559 (16)0.0233 (3)
H30.606 (3)0.4046 (7)0.274 (2)0.031 (4)*
C40.8038 (2)0.33486 (6)0.27757 (16)0.0227 (2)
H40.945 (3)0.3540 (8)0.329 (2)0.036 (4)*
C50.7958 (2)0.27460 (5)0.23977 (15)0.0191 (2)
H50.931 (3)0.2539 (7)0.260 (2)0.025 (4)*
C60.58655 (19)0.24371 (5)0.17151 (14)0.0159 (2)
C70.5811 (2)0.17769 (5)0.13885 (15)0.0194 (2)
H7A0.425 (3)0.1656 (6)0.0577 (19)0.025 (4)*
H7B0.681 (2)0.1673 (6)0.0894 (19)0.023 (4)*
C80.65191 (19)0.14323 (5)0.30936 (14)0.0147 (2)
H8A0.547 (2)0.1494 (6)0.3587 (18)0.016 (3)*
H8B0.805 (2)0.1538 (6)0.3945 (18)0.018 (3)*
N90.65539 (16)0.07808 (4)0.27732 (12)0.01320 (17)
H9A0.523 (3)0.0694 (6)0.1929 (19)0.020 (4)*
H9B0.764 (3)0.0706 (6)0.2383 (18)0.021 (4)*
C100.7111 (2)0.04144 (5)0.43702 (15)0.0172 (2)
H10A0.598 (2)0.0473 (6)0.4812 (18)0.015 (3)*
H10B0.858 (3)0.0539 (6)0.5284 (19)0.021 (4)*
H10C0.707 (3)0.0019 (7)0.406 (2)0.023 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.00979 (8)0.01237 (10)0.01223 (9)0.00022 (6)0.00461 (7)0.00077 (7)
Cl10.01506 (11)0.01371 (13)0.01529 (12)0.00153 (9)0.00798 (9)0.00092 (9)
Cl20.01590 (12)0.02184 (14)0.02062 (13)0.00645 (10)0.01090 (10)0.00890 (10)
C10.0185 (5)0.0257 (6)0.0169 (5)0.0029 (5)0.0061 (4)0.0025 (5)
C20.0285 (6)0.0264 (7)0.0179 (6)0.0083 (5)0.0096 (5)0.0018 (5)
C30.0397 (7)0.0149 (6)0.0169 (5)0.0001 (5)0.0140 (5)0.0007 (5)
C40.0291 (6)0.0207 (6)0.0189 (6)0.0091 (5)0.0113 (5)0.0011 (5)
C50.0197 (5)0.0204 (6)0.0175 (5)0.0011 (4)0.0087 (4)0.0014 (4)
C60.0210 (5)0.0156 (5)0.0110 (5)0.0018 (4)0.0069 (4)0.0003 (4)
C70.0266 (6)0.0163 (5)0.0144 (5)0.0030 (4)0.0083 (5)0.0022 (4)
C80.0165 (5)0.0135 (5)0.0146 (5)0.0020 (4)0.0074 (4)0.0026 (4)
N90.0121 (4)0.0143 (4)0.0132 (4)0.0009 (3)0.0056 (3)0.0015 (3)
C100.0198 (5)0.0163 (6)0.0162 (5)0.0014 (4)0.0086 (4)0.0012 (4)
Geometric parameters (Å, º) top
Cu1—Cl12.2502 (2)C6—C71.5074 (16)
Cu1—Cl22.2858 (3)C7—C81.5179 (16)
C6—C11.3974 (16)C7—H7A0.971 (15)
C1—C21.3840 (18)C7—H7B0.936 (14)
C1—H10.960 (15)C8—N91.4914 (15)
C2—C31.3845 (19)C8—H8A0.947 (13)
C2—H20.938 (17)C8—H8B0.956 (14)
C3—C41.3822 (19)N9—C101.4838 (14)
C3—H30.917 (16)N9—H9A0.855 (15)
C4—C51.3878 (18)N9—H9B0.912 (14)
C4—H40.921 (17)C10—H10A0.960 (13)
C5—C61.3906 (16)C10—H10B0.960 (15)
C5—H50.930 (15)C10—H10C0.924 (15)
Cl1—Cu1—Cl290.309 (9)C6—C7—H7B111.2 (9)
C6—C1—C2120.63 (11)C8—C7—H7B108.7 (9)
C6—C1—H1120.8 (9)H7A—C7—H7B108.3 (12)
C2—C1—H1118.6 (9)C7—C8—N9110.55 (9)
C1—C2—C3120.22 (12)C7—C8—H8A111.8 (8)
C1—C2—H2120.5 (10)N9—C8—H8A107.2 (8)
C3—C2—H2119.3 (10)C7—C8—H8B111.3 (8)
C2—C3—C4119.83 (12)N9—C8—H8B106.7 (8)
C2—C3—H3119.5 (10)H8A—C8—H8B109.1 (11)
C4—C3—H3120.6 (10)C8—N9—C10113.39 (9)
C3—C4—C5120.00 (12)C8—N9—H9A106.7 (10)
C3—C4—H4120.5 (10)C10—N9—H9A112.5 (10)
C5—C4—H4119.4 (11)C8—N9—H9B108.8 (9)
C4—C5—C6120.89 (11)C10—N9—H9B108.2 (9)
C4—C5—H5120.6 (9)H9A—N9—H9B107.0 (13)
C6—C5—H5118.6 (9)N9—C10—H10A111.0 (8)
C5—C6—C1118.43 (11)N9—C10—H10B109.0 (8)
C5—C6—C7120.50 (11)H10A—C10—H10B106.9 (11)
C1—C6—C7121.04 (11)N9—C10—H10C108.3 (10)
C6—C7—C8110.84 (9)H10A—C10—H10C108.0 (12)
C6—C7—H7A109.7 (9)H10B—C10—H10C113.7 (13)
C8—C7—H7A108.0 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9A···Cl1i0.855 (13)2.471 (13)3.286 (1)159.6 (14)
N9—H9A···Cl20.855 (13)2.744 (19)3.307 (1)124.9 (14)
N9—H9B···Cl2ii0.912 (19)2.314 (18)3.193 (1)161.7 (15)
N9—H9B···Cl1ii0.912 (19)2.785 (15)3.307 (1)117.6 (11)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z.

Experimental details

(Cl100K)(Cl295K)(Cl350K)(Br100K)
Crystal data
Chemical formula2(C8H12N)·Cl4Cu2(C8H12N)·Cl4Cu2(C8H12N)·Cl4Cu2(C8H12N)·Br4Cu
Mr449.74449.74449.74627.55
Crystal system, space groupMonoclinic, C2/mMonoclinic, C2/mTriclinic, P1Monoclinic, C2/m
Temperature (K)100295350100
a, b, c (Å)12.9074 (4), 9.2262 (4), 8.6377 (3)13.1910 (6), 9.2068 (4), 8.7242 (4)7.9236 (4), 9.1502 (4), 16.1341 (8)13.0879 (12), 9.4953 (10), 8.7957 (9)
α, β, γ (°)90, 114.925 (2), 9090, 114.595 (2), 9075.409 (2), 86.964 (3), 64.493 (3)90, 113.631 (6), 90
V3)932.82 (6)963.40 (7)1019.63 (8)1001.41 (17)
Z2222
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)1.741.691.609.07
Crystal size (mm)0.21 × 0.18 × 0.120.30 × 0.27 × 0.110.30 × 0.27 × 0.110.25 × 0.17 × 0.13
Data collection
DiffractometerKappaCCD
diffractometer
KappaCCD
diffractometer
KappaCCD
diffractometer
KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.674, 0.7870.605, 0.6790.607, 0.7080.140, 0.341
No. of measured, independent and
observed [I > 2σ(I)] reflections
15464, 2151, 1935 16662, 2683, 2199 19702, 4665, 3361 8979, 1212, 1013
Rint0.0360.0170.0260.039
(sin θ/λ)max1)0.8060.8620.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.065, 1.08 0.038, 0.108, 1.03 0.062, 0.223, 1.07 0.060, 0.183, 1.21
No. of reflections2151268346651212
No. of parameters806321462
H-atom treatmentAll H-atom parameters refinedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.680.97, 0.651.15, 0.621.81, 1.24


(Br295K)(26lutcl100k)(26lutclrt)(26lutbr100k)
Crystal data
Chemical formula2(C8H12N)·Br4Cu2(C7H10N)·Cl4Cu2(C7H10N)·Cl4Cu2(C7H10N)·Br4Cu
Mr627.55421.69421.66599.5
Crystal system, space groupTriclinic, P1Monoclinic, C2/cMonoclinic, C2/cMonoclinic, C2/c
Temperature (K)295100295100
a, b, c (Å)8.0517 (2), 9.3247 (3), 16.4524 (5)14.3451 (3), 7.5569 (2), 16.6038 (3)14.4831 (3), 7.7267 (2), 16.6432 (3)14.5510 (3), 7.8249 (2), 17.0624 (3)
α, β, γ (°)75.997 (2), 88.567 (2), 65.757 (2)90, 96.309 (1), 9090, 95.840 (1), 9090, 97.540 (1), 90
V3)1088.97 (6)1789.03 (7)1852.82 (7)1925.93 (7)
Z2444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)8.341.811.759.43
Crystal size (mm)0.18 × 0.13 × 0.090.34 × 0.17 × 0.130.33 × 0.28 × 0.170.34 × 0.23 × 0.05
Data collection
DiffractometerKappaCCD
diffractometer
KappaCCD
diffractometer
KappaCCD
diffractometer
KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.283, 0.4410.677, 0.7950.578, 0.6530.094, 0.159
No. of measured, independent and
observed [I > 2σ(I)] reflections
19577, 4944, 3455 30011, 4334, 3401 26631, 2939, 2250 40655, 3356, 2453
Rint0.0340.0290.0200.044
(sin θ/λ)max1)0.6490.8330.7250.747
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.089, 1.03 0.033, 0.078, 1.03 0.035, 0.094, 1.05 0.040, 0.098, 1.05
No. of reflections4944433429393356
No. of parameters2151379796
H-atom treatmentH-atom parameters constrainedAll H-atom parameters refinedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.02, 1.170.53, 0.710.55, 0.400.80, 1.14


(26lutbrrt)(26lut100kortho)(26lutrtortho)(123tmpcubr4)
Crystal data
Chemical formula2(C7H10N)·Br4Cu2(C7H10N)·Cl4Cu2(C7H10N)·Cl4Cu2(C8H12N)·Br4Cu
Mr599.5421.66421.66627.55
Crystal system, space groupMonoclinic, C2/cOrthorhombic, PbcnOrthorhombic, PbcnMonoclinic, C2/c
Temperature (K)295100295295
a, b, c (Å)14.6041 (3), 7.9883 (2), 17.1986 (3)16.9587 (3), 7.8858 (1), 13.8774 (3)16.9411 (5), 8.2218 (2), 13.8212 (4)17.6373 (5), 9.4076 (4), 14.7798 (5)
α, β, γ (°)90, 97.345 (1), 9090, 90, 9090, 90, 9090, 118.396 (2), 90
V3)1989.96 (7)1855.86 (6)1925.10 (9)2157.27 (13)
Z4444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)9.131.751.688.42
Crystal size (mm)0.25 × 0.21 × 0.130.33 × 0.25 × 0.130.29 × 0.25 × 0.100.21 × 0.20 × 0.18
Data collection
DiffractometerKappaCCD
diffractometer
KappaCCD
diffractometer
KappaCCD
diffractometer
KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.115, 0.1760.629, 0.6630.578, 0.6990.164, 0.217
No. of measured, independent and
observed [I > 2σ(I)] reflections
26583, 2558, 2034 59438, 2952, 2386 36138, 2191, 1732 17272, 2461, 1686
Rint0.0200.0190.0120
(sin θ/λ)max1)0.6760.7250.6480.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.074, 1.06 0.031, 0.078, 1.08 0.033, 0.098, 1.06 0.028, 0.065, 0.95
No. of reflections2558295221912461
No. of parameters9812097109
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.780.51, 0.630.27, 0.560.49, 0.38


(nmphcucl4)
Crystal data
Chemical formula2(C9H14N+)·(C14Cu2)
Mr477.76
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)6.4234 (1), 22.4819 (4), 8.4552 (1)
α, β, γ (°)90, 116.314 (1), 90
V3)1094.49 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.49
Crystal size (mm)0.18 × 0.06 × 0.04
Data collection
DiffractometerKappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.870, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
3814, 3814, 3186
Rint0.018
(sin θ/λ)max1)0.746
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.057, 1.06
No. of reflections3814
No. of parameters171
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.37, 0.51

Computer programs: Collect (Nonius BV, 1997-2000), Collect (Bruker AXS BV, 1997-2004), HKL SCALEPACK (Otwinowski & Minor 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor 1997), SIR92 (Giacovazzo et al., 1993), SHELXS86 (Sheldrick, 1986), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), ORTEP for Windows (Farrugia, 2012), WinGX publication routines (Farrugia, 1999), WinGX publication routines (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) for (nmphcucl4) top
D—H···AD—HH···AD···AD—H···A
N9—H9A···Cl1i0.855 (13)2.471 (13)3.286 (1)159.6 (14)
N9—H9A···Cl20.855 (13)2.744 (19)3.307 (1)124.9 (14)
N9—H9B···Cl2ii0.912 (19)2.314 (18)3.193 (1)161.7 (15)
N9—H9B···Cl1ii0.912 (19)2.785 (15)3.307 (1)117.6 (11)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds