![e logo](https://journals.iucr.org/logos/jicons/e_36x36.png)
Supporting information
![]() | Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807031297/om2140sup1.cif |
![]() | Structure factor file (CIF format) https://doi.org/10.1107/S1600536807031297/om2140Isup2.hkl |
CCDC reference: 657655
The title compound was prepared according to the literature method (Gowda et al., 2002). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from a slow evaporation of its ethanolic solution.
H atoms of methyl groups and benzene ring were placed geometrically and refined using a riding model with C—H distances 0.96Å (methyl) and 0.93Å (ring). H atoms of amide groups were visible in the difference map and have been subsequently treated as riding with N—H bond length restrained to 0.83 (2) Å. All H atoms have isotropic thermal displacements with Uiso(H) = 1.5Ueq(C) for methyl and Uiso(H) = 1.2Ueq(C,N) for benzene and amide H atoms. No restraints were applied to non-hydrogen atoms.
Arylsulfonamides and their N-halo compounds are of interest in synthetic, mechanistic, analytical and biological chemistry. In the present work, the structure of 4,6-dimethyl-benzene-1,3-disulfonamide has been determined to explore the effect of substituents on the solid state structures of sulfonamides and N-halo-arylsulfonamides (Gowda et al., 2007a, b, c). The structure of the title compound (Fig. 1) resembles those of other arylsulfonamides (Gowda et al., 2007a, b, c, d; Kumar et al., 1992). It crystallizes in the orthorhombic space group Pbca, in contrast to the monoclinic space group P21/c observed for both 3,4-dimethylbenzenesulfonamide (Gowda et al., 2007b) and 3,4-dichlorobenzenesulfonamide (Gowda et al., 2007c), and the triclinic space group P1 with 2-methyl-4-chloro-benzenesulfonamide (Gowda et al., 2007d), and monoclinic space group Pc with the parent benzenesulfonamide (Gowda et al., 2007a) and 4-methyl-benzenesulfonamide (Kumar et al., 1992). The bond parameters are similar to those in other arylsulfonamides. The molecules in the title compound are packed into infinite 3-D molecular network stabilized by hydrogen bonding (Table 1 and Fig. 2).
For related literature, see: Gowda et al. (2002, 2007a,b,c,d); Kumar et al. (1992).
Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003) and WinGX (Farrugia, 1999).
C8H12N2O4S2 | F(000) = 1104 |
Mr = 264.32 | Dx = 1.569 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 14260 reflections |
a = 14.4793 (2) Å | θ = 3.0–29.5° |
b = 8.0520 (1) Å | µ = 0.48 mm−1 |
c = 19.1935 (4) Å | T = 297 K |
V = 2237.72 (6) Å3 | Block, colourless |
Z = 8 | 0.31 × 0.18 × 0.14 mm |
Oxford Diffraction Xcalibur diffractometer | 1693 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
φ scans, and ω scans with κ offsets | θmax = 26.0°, θmin = 5.1° |
Absorption correction: analytical (Clark & Reid, 1995) | h = −17→17 |
Tmin = 0.868, Tmax = 0.942 | k = −9→9 |
33751 measured reflections | l = −23→23 |
2183 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.099 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0661P)2 + 0.0106P] where P = (Fo2 + 2Fc2)/3 |
2183 reflections | (Δ/σ)max = 0.003 |
159 parameters | Δρmax = 0.27 e Å−3 |
4 restraints | Δρmin = −0.28 e Å−3 |
C8H12N2O4S2 | V = 2237.72 (6) Å3 |
Mr = 264.32 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 14.4793 (2) Å | µ = 0.48 mm−1 |
b = 8.0520 (1) Å | T = 297 K |
c = 19.1935 (4) Å | 0.31 × 0.18 × 0.14 mm |
Oxford Diffraction Xcalibur diffractometer | 2183 independent reflections |
Absorption correction: analytical (Clark & Reid, 1995) | 1693 reflections with I > 2σ(I) |
Tmin = 0.868, Tmax = 0.942 | Rint = 0.034 |
33751 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 4 restraints |
wR(F2) = 0.099 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.27 e Å−3 |
2183 reflections | Δρmin = −0.28 e Å−3 |
159 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.23215 (12) | 0.4353 (2) | 0.44644 (10) | 0.0325 (4) | |
C2 | 0.32502 (12) | 0.4435 (2) | 0.42955 (10) | 0.0320 (4) | |
H2 | 0.3683 | 0.4692 | 0.4637 | 0.038* | |
C3 | 0.35327 (13) | 0.4134 (2) | 0.36175 (10) | 0.0337 (4) | |
C4 | 0.28991 (14) | 0.3696 (2) | 0.30997 (11) | 0.0421 (5) | |
C5 | 0.19745 (14) | 0.3675 (3) | 0.32909 (12) | 0.0470 (5) | |
H5 | 0.1541 | 0.342 | 0.295 | 0.056* | |
C6 | 0.16569 (12) | 0.4010 (2) | 0.39580 (11) | 0.0376 (5) | |
C7 | 0.31541 (17) | 0.3244 (3) | 0.23612 (12) | 0.0656 (7) | |
H7A | 0.3575 | 0.2323 | 0.2366 | 0.098* | |
H7B | 0.3443 | 0.4179 | 0.214 | 0.098* | |
H7C | 0.2607 | 0.2943 | 0.2109 | 0.098* | |
C8 | 0.06333 (14) | 0.3980 (3) | 0.41059 (13) | 0.0535 (6) | |
H8A | 0.0466 | 0.4947 | 0.437 | 0.08* | |
H8B | 0.0484 | 0.3001 | 0.4368 | 0.08* | |
H8C | 0.0299 | 0.3972 | 0.3674 | 0.08* | |
N1 | 0.28772 (11) | 0.4730 (2) | 0.58211 (9) | 0.0397 (4) | |
H1A | 0.3209 (14) | 0.556 (2) | 0.5760 (12) | 0.048* | |
H1B | 0.3178 (13) | 0.387 (2) | 0.5829 (12) | 0.048* | |
N2 | 0.51984 (14) | 0.2642 (3) | 0.33063 (11) | 0.0569 (5) | |
H2A | 0.5078 (17) | 0.213 (3) | 0.2941 (11) | 0.068* | |
H2B | 0.5402 (18) | 0.217 (3) | 0.3656 (11) | 0.068* | |
O1 | 0.14493 (9) | 0.32605 (15) | 0.55488 (7) | 0.0451 (4) | |
O2 | 0.15455 (9) | 0.62787 (16) | 0.53936 (7) | 0.0440 (4) | |
O3 | 0.51437 (10) | 0.50240 (18) | 0.40649 (8) | 0.0507 (4) | |
O4 | 0.48035 (12) | 0.5335 (2) | 0.28186 (9) | 0.0664 (5) | |
S1 | 0.19779 (3) | 0.46871 (5) | 0.53417 (2) | 0.03266 (18) | |
S2 | 0.47313 (3) | 0.43915 (6) | 0.34460 (3) | 0.03907 (19) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0319 (10) | 0.0292 (10) | 0.0362 (11) | −0.0005 (7) | 0.0009 (8) | 0.0020 (8) |
C2 | 0.0296 (10) | 0.0330 (9) | 0.0335 (11) | −0.0026 (7) | −0.0023 (8) | 0.0013 (8) |
C3 | 0.0324 (10) | 0.0358 (10) | 0.0329 (11) | 0.0002 (8) | 0.0003 (8) | 0.0036 (8) |
C4 | 0.0436 (11) | 0.0496 (11) | 0.0332 (11) | 0.0054 (9) | −0.0055 (9) | 0.0021 (9) |
C5 | 0.0418 (12) | 0.0534 (12) | 0.0456 (13) | −0.0028 (9) | −0.0150 (10) | −0.0040 (10) |
C6 | 0.0307 (10) | 0.0364 (10) | 0.0457 (13) | −0.0004 (8) | −0.0048 (9) | −0.0003 (9) |
C7 | 0.0620 (15) | 0.0968 (19) | 0.0379 (13) | 0.0059 (14) | −0.0054 (11) | −0.0141 (13) |
C8 | 0.0317 (11) | 0.0664 (14) | 0.0623 (15) | −0.0024 (10) | −0.0058 (10) | −0.0029 (12) |
N1 | 0.0381 (10) | 0.0435 (10) | 0.0376 (10) | −0.0002 (7) | 0.0025 (8) | −0.0004 (8) |
N2 | 0.0646 (13) | 0.0638 (13) | 0.0422 (12) | 0.0225 (10) | −0.0098 (10) | −0.0131 (10) |
O1 | 0.0397 (8) | 0.0394 (8) | 0.0562 (9) | −0.0069 (6) | 0.0116 (7) | 0.0065 (6) |
O2 | 0.0384 (8) | 0.0340 (7) | 0.0595 (9) | 0.0050 (6) | 0.0051 (6) | −0.0057 (6) |
O3 | 0.0345 (8) | 0.0660 (9) | 0.0516 (10) | −0.0064 (7) | 0.0038 (7) | −0.0163 (8) |
O4 | 0.0598 (10) | 0.0812 (12) | 0.0581 (11) | −0.0013 (8) | 0.0130 (8) | 0.0347 (9) |
S1 | 0.0287 (3) | 0.0316 (3) | 0.0376 (3) | −0.00196 (18) | 0.00553 (19) | −0.00020 (19) |
S2 | 0.0347 (3) | 0.0463 (3) | 0.0362 (3) | 0.0016 (2) | 0.0054 (2) | 0.0042 (2) |
C1—C2 | 1.385 (2) | C7—H7C | 0.96 |
C1—C6 | 1.395 (3) | C8—H8A | 0.96 |
C1—S1 | 1.776 (2) | C8—H8B | 0.96 |
C2—C3 | 1.386 (3) | C8—H8C | 0.96 |
C2—H2 | 0.93 | N1—S1 | 1.5949 (18) |
C3—C4 | 1.398 (3) | N1—H1A | 0.829 (15) |
C3—S2 | 1.7785 (19) | N1—H1B | 0.821 (15) |
C4—C5 | 1.388 (3) | N2—S2 | 1.586 (2) |
C4—C7 | 1.509 (3) | N2—H2A | 0.830 (17) |
C5—C6 | 1.387 (3) | N2—H2B | 0.825 (17) |
C5—H5 | 0.93 | O1—S1 | 1.4364 (13) |
C6—C8 | 1.509 (3) | O2—S1 | 1.4297 (13) |
C7—H7A | 0.96 | O3—S2 | 1.4236 (15) |
C7—H7B | 0.96 | O4—S2 | 1.4275 (16) |
C2—C1—C6 | 121.07 (18) | C6—C8—H8A | 109.5 |
C2—C1—S1 | 119.12 (15) | C6—C8—H8B | 109.5 |
C6—C1—S1 | 119.81 (14) | H8A—C8—H8B | 109.5 |
C1—C2—C3 | 119.88 (18) | C6—C8—H8C | 109.5 |
C1—C2—H2 | 120.1 | H8A—C8—H8C | 109.5 |
C3—C2—H2 | 120.1 | H8B—C8—H8C | 109.5 |
C2—C3—C4 | 121.20 (18) | S1—N1—H1A | 114.1 (16) |
C2—C3—S2 | 116.20 (14) | S1—N1—H1B | 115.1 (16) |
C4—C3—S2 | 122.58 (15) | H1A—N1—H1B | 112 (2) |
C5—C4—C3 | 116.63 (19) | S2—N2—H2A | 119.5 (18) |
C5—C4—C7 | 118.76 (19) | S2—N2—H2B | 114.9 (19) |
C3—C4—C7 | 124.61 (19) | H2A—N2—H2B | 122 (3) |
C6—C5—C4 | 124.15 (18) | O2—S1—O1 | 117.66 (8) |
C6—C5—H5 | 117.9 | O2—S1—N1 | 107.33 (9) |
C4—C5—H5 | 117.9 | O1—S1—N1 | 107.02 (9) |
C5—C6—C1 | 116.93 (17) | O2—S1—C1 | 108.94 (8) |
C5—C6—C8 | 119.74 (18) | O1—S1—C1 | 106.88 (8) |
C1—C6—C8 | 123.33 (18) | N1—S1—C1 | 108.76 (9) |
C4—C7—H7A | 109.5 | O3—S2—O4 | 118.87 (10) |
C4—C7—H7B | 109.5 | O3—S2—N2 | 106.27 (10) |
H7A—C7—H7B | 109.5 | O4—S2—N2 | 107.38 (11) |
C4—C7—H7C | 109.5 | O3—S2—C3 | 107.26 (9) |
H7A—C7—H7C | 109.5 | O4—S2—C3 | 106.83 (9) |
H7B—C7—H7C | 109.5 | N2—S2—C3 | 110.12 (10) |
C6—C1—C2—C3 | −1.6 (3) | C2—C1—C6—C8 | −177.22 (18) |
S1—C1—C2—C3 | 178.28 (12) | S1—C1—C6—C8 | 2.9 (3) |
C1—C2—C3—C4 | −1.9 (3) | C2—C1—S1—O2 | 106.92 (14) |
C1—C2—C3—S2 | 176.44 (12) | C6—C1—S1—O2 | −73.16 (15) |
C2—C3—C4—C5 | 3.6 (3) | C2—C1—S1—O1 | −124.98 (14) |
S2—C3—C4—C5 | −174.66 (15) | C6—C1—S1—O1 | 54.94 (16) |
C2—C3—C4—C7 | −176.00 (19) | C2—C1—S1—N1 | −9.76 (16) |
S2—C3—C4—C7 | 5.7 (3) | C6—C1—S1—N1 | 170.16 (15) |
C3—C4—C5—C6 | −1.9 (3) | C2—C3—S2—O3 | −5.20 (16) |
C7—C4—C5—C6 | 177.7 (2) | C4—C3—S2—O3 | 173.16 (16) |
C4—C5—C6—C1 | −1.4 (3) | C2—C3—S2—O4 | −133.67 (15) |
C4—C5—C6—C8 | 179.01 (19) | C4—C3—S2—O4 | 44.69 (19) |
C2—C1—C6—C5 | 3.2 (3) | C2—C3—S2—N2 | 110.03 (16) |
S1—C1—C6—C5 | −176.68 (14) | C4—C3—S2—N2 | −71.62 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.83 (2) | 2.27 (2) | 3.050 (2) | 157 (2) |
N1—H1B···O2ii | 0.82 (2) | 2.28 (2) | 3.016 (2) | 149 (2) |
N2—H2A···O4iii | 0.83 (2) | 2.06 (2) | 2.848 (3) | 158 (2) |
N2—H2B···O1iv | 0.83 (2) | 2.18 (2) | 2.939 (2) | 153 (2) |
Symmetry codes: (i) −x+1/2, y+1/2, z; (ii) −x+1/2, y−1/2, z; (iii) −x+1, y−1/2, −z+1/2; (iv) x+1/2, −y+1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C8H12N2O4S2 |
Mr | 264.32 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 297 |
a, b, c (Å) | 14.4793 (2), 8.0520 (1), 19.1935 (4) |
V (Å3) | 2237.72 (6) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.48 |
Crystal size (mm) | 0.31 × 0.18 × 0.14 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur |
Absorption correction | Analytical (Clark & Reid, 1995) |
Tmin, Tmax | 0.868, 0.942 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 33751, 2183, 1693 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.099, 1.07 |
No. of reflections | 2183 |
No. of parameters | 159 |
No. of restraints | 4 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.27, −0.28 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), CrysAlis RED, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97, PLATON (Spek, 2003) and WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.829 (15) | 2.269 (16) | 3.050 (2) | 157 (2) |
N1—H1B···O2ii | 0.821 (15) | 2.279 (17) | 3.016 (2) | 149 (2) |
N2—H2A···O4iii | 0.830 (17) | 2.062 (19) | 2.848 (3) | 158 (2) |
N2—H2B···O1iv | 0.825 (17) | 2.18 (2) | 2.939 (2) | 153 (2) |
Symmetry codes: (i) −x+1/2, y+1/2, z; (ii) −x+1/2, y−1/2, z; (iii) −x+1, y−1/2, −z+1/2; (iv) x+1/2, −y+1/2, −z+1. |
Arylsulfonamides and their N-halo compounds are of interest in synthetic, mechanistic, analytical and biological chemistry. In the present work, the structure of 4,6-dimethyl-benzene-1,3-disulfonamide has been determined to explore the effect of substituents on the solid state structures of sulfonamides and N-halo-arylsulfonamides (Gowda et al., 2007a, b, c). The structure of the title compound (Fig. 1) resembles those of other arylsulfonamides (Gowda et al., 2007a, b, c, d; Kumar et al., 1992). It crystallizes in the orthorhombic space group Pbca, in contrast to the monoclinic space group P21/c observed for both 3,4-dimethylbenzenesulfonamide (Gowda et al., 2007b) and 3,4-dichlorobenzenesulfonamide (Gowda et al., 2007c), and the triclinic space group P1 with 2-methyl-4-chloro-benzenesulfonamide (Gowda et al., 2007d), and monoclinic space group Pc with the parent benzenesulfonamide (Gowda et al., 2007a) and 4-methyl-benzenesulfonamide (Kumar et al., 1992). The bond parameters are similar to those in other arylsulfonamides. The molecules in the title compound are packed into infinite 3-D molecular network stabilized by hydrogen bonding (Table 1 and Fig. 2).