The bis(4-aminopyridine)silver(I) cation in [Ag(C
5H
6N
2)
2]NO
3 has the Ag atom on a twofold axis and displays an N-Ag-N angle of 174.43 (15)° and an Ag-N distance of 2.122 (3) Å. The two ligands are planar and the angle between the two ligand planes is 79.45 (9)°. The pyridine rings are stacked in piles with an interplanar distance of 3.614 (5) Å, a distance that strongly suggests that pyridine
-
interactions have an appreciable importance with respect to the non-bonded crystal organization. The tris(2,6-diaminopyridine)silver(I) cation in [Ag(C
5H
7N
3)
3]NO
3 has Ag-N distances of 2.243 (2), 2.2613 (17) and 2.4278 (18) Å, and N-Ag-N angles of 114.33 (7), 134.91 (7) and 114.33 (7)°. The Ag
+ ion is situated 0.1531 (2) Å from the plane defined by the three pyridine N atoms.
Supporting information
CCDC references: 142730; 142731
A mixture of AgNO3 and either 4-aminopyridine or 2,6-diaminopyridine (6 equivalents)in water/ethanol (50:50) was stirred while boiling. The solutions were allowed to slowly evaporate which afforded X-ray quality crystals. The chosen crystals were coated with a hydrocarbon oil and mounted on a glass fibre.
The fraction of Friedel pairs measured for (II) is 0.65.
For both compounds, data collection: Bruker SMART (1998b); cell refinement: Bruker SMART and SAINT (1998b); data reduction: Bruker SAINT (1998b); program(s) used to solve structure: Bruker SHELXTL (1998a); program(s) used to refine structure: Bruker SHELXTL (1998a); molecular graphics: Bruker SHELXTL (1998a); software used to prepare material for publication: Bruker SHELXTL (1998a).
(I) Bis(4-aminopyridine)silver(I)nitrate
top
Crystal data top
C10H12AgN5O3 | F(000) = 712 |
Mr = 358.12 | Dx = 1.809 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2661 (10) Å | Cell parameters from 1507 reflections |
b = 12.2749 (18) Å | θ = 2.8–28.0° |
c = 14.803 (2) Å | µ = 1.55 mm−1 |
β = 95.084 (2)° | T = 295 K |
V = 1315.1 (3) Å3 | Prism, colourless |
Z = 4 | 0.31 × 0.29 × 0.29 mm |
Data collection top
Bruker SMART CCD diffractometer | 1126 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.023 |
Graphite monochromator | θmax = 28.0°, θmin = 2.8° |
ω scans | h = −9→9 |
3818 measured reflections | k = −11→15 |
1507 independent reflections | l = −18→18 |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.094 | w = 1/[σ2(Fo2) + (0.0538P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.98 | (Δ/σ)max < 0.001 |
1507 reflections | Δρmax = 0.60 e Å−3 |
90 parameters | Δρmin = −0.41 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0009 (6) |
Crystal data top
C10H12AgN5O3 | V = 1315.1 (3) Å3 |
Mr = 358.12 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 7.2661 (10) Å | µ = 1.55 mm−1 |
b = 12.2749 (18) Å | T = 295 K |
c = 14.803 (2) Å | 0.31 × 0.29 × 0.29 mm |
β = 95.084 (2)° | |
Data collection top
Bruker SMART CCD diffractometer | 1126 reflections with I > 2σ(I) |
3818 measured reflections | Rint = 0.023 |
1507 independent reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.094 | H-atom parameters constrained |
S = 0.98 | Δρmax = 0.60 e Å−3 |
1507 reflections | Δρmin = −0.41 e Å−3 |
90 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. For both compounds, a hemisphere of data (1375 frames) was collected with 0.3 ° frame width and a detector - crystal distance of 5.00 cm. The detector was positioned with Θ = 28.0 °. Data were recorded in three series with ϕ = 0, 88 and 180 ° with 20 s exposure time. For Ag(C5H6N2)2NO3 is the data set is complete to 95.0% with Θmax = 27.88 °. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Ag1 | 0.0000 | 0.60940 (4) | 0.2500 | 0.0685 (2) | |
N1 | 0.0803 (4) | 0.6178 (2) | 0.3912 (2) | 0.0592 (7) | |
C3 | 0.1602 (5) | 0.6251 (3) | 0.5803 (2) | 0.0540 (8) | |
C4 | 0.0369 (5) | 0.6976 (3) | 0.5353 (2) | 0.0581 (9) | |
H4 | −0.0218 | 0.7503 | 0.5675 | 0.070* | |
N2 | 0.1959 (5) | 0.6261 (3) | 0.6715 (2) | 0.0724 (9) | |
H2A | 0.1417 | 0.6727 | 0.7035 | 0.087* | |
H2B | 0.2729 | 0.5802 | 0.6974 | 0.087* | |
C2 | 0.2433 (5) | 0.5484 (3) | 0.5263 (2) | 0.0565 (8) | |
H2 | 0.3266 | 0.4977 | 0.5528 | 0.068* | |
C5 | 0.0030 (5) | 0.6905 (3) | 0.4434 (2) | 0.0591 (9) | |
H5 | −0.0800 | 0.7400 | 0.4149 | 0.071* | |
C1 | 0.2008 (5) | 0.5489 (3) | 0.4350 (2) | 0.0583 (9) | |
H1 | 0.2591 | 0.4982 | 0.4006 | 0.070* | |
O1 | 0.0000 | 0.0151 (4) | 0.2500 | 0.0911 (13) | |
O2 | 0.1263 (4) | 0.1650 (3) | 0.2919 (2) | 0.0856 (9) | |
N3 | 0.0000 | 0.1143 (4) | 0.2500 | 0.0601 (11) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Ag1 | 0.0669 (3) | 0.0882 (4) | 0.0502 (3) | 0.000 | 0.00321 (17) | 0.000 |
N1 | 0.0619 (17) | 0.0617 (18) | 0.0541 (16) | −0.0130 (15) | 0.0057 (14) | 0.0014 (14) |
C3 | 0.0559 (19) | 0.052 (2) | 0.0548 (19) | −0.0121 (15) | 0.0069 (15) | −0.0008 (15) |
C4 | 0.058 (2) | 0.051 (2) | 0.065 (2) | −0.0056 (16) | 0.0089 (16) | −0.0032 (16) |
N2 | 0.088 (2) | 0.074 (2) | 0.0542 (18) | 0.0077 (17) | 0.0008 (17) | −0.0018 (14) |
C2 | 0.0559 (19) | 0.051 (2) | 0.063 (2) | −0.0026 (16) | 0.0071 (16) | 0.0030 (16) |
C5 | 0.056 (2) | 0.056 (2) | 0.065 (2) | −0.0028 (17) | 0.0060 (16) | 0.0073 (17) |
C1 | 0.059 (2) | 0.055 (2) | 0.062 (2) | −0.0052 (17) | 0.0153 (17) | −0.0046 (17) |
O1 | 0.097 (3) | 0.068 (3) | 0.104 (3) | 0.000 | −0.017 (2) | 0.000 |
O2 | 0.0672 (18) | 0.099 (2) | 0.089 (2) | −0.0134 (17) | −0.0057 (15) | −0.0198 (19) |
N3 | 0.061 (3) | 0.069 (3) | 0.051 (2) | 0.000 | 0.0077 (19) | 0.000 |
Geometric parameters (Å, º) top
Ag1—N1 | 2.122 (3) | C3—C2 | 1.405 (5) |
Ag1—N1i | 2.122 (3) | C4—C5 | 1.363 (5) |
N1—C5 | 1.336 (5) | C2—C1 | 1.359 (5) |
N1—C1 | 1.342 (5) | O1—N3 | 1.218 (5) |
C3—N2 | 1.351 (5) | O2—N3 | 1.230 (4) |
C3—C4 | 1.390 (5) | N3—O2i | 1.230 (4) |
| | | |
N1—Ag1—N1i | 174.43 (15) | C5—C4—C3 | 119.3 (3) |
C5—N1—C1 | 115.5 (3) | C1—C2—C3 | 119.4 (3) |
C5—N1—Ag1 | 120.6 (2) | N1—C5—C4 | 124.8 (3) |
C1—N1—Ag1 | 123.8 (2) | N1—C1—C2 | 124.4 (3) |
N2—C3—C4 | 122.1 (3) | O1—N3—O2 | 120.4 (3) |
N2—C3—C2 | 121.3 (3) | O1—N3—O2i | 120.4 (3) |
C4—C3—C2 | 116.6 (3) | O2—N3—O2i | 119.2 (5) |
Symmetry code: (i) −x, y, −z+1/2. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O2ii | 0.86 | 2.39 | 3.189 (5) | 154 |
N2—H2B···O1iii | 0.86 | 2.11 | 2.963 (4) | 169 |
Symmetry codes: (ii) x, −y+1, z+1/2; (iii) −x+1/2, −y+1/2, −z+1. |
(II) Tris(2,6-diaminopyridine)silver(I)nitrate ?
top
Crystal data top
C15H21AgN10O3 | Dx = 1.683 Mg m−3 |
Mr = 497.29 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 4447 reflections |
a = 8.9276 (7) Å | θ = 2.1–28.0° |
b = 11.1291 (9) Å | µ = 1.07 mm−1 |
c = 19.7562 (15) Å | T = 293 K |
V = 1962.9 (3) Å3 | Block, colourless |
Z = 4 | 0.30 × 0.30 × 0.30 mm |
F(000) = 1008 | |
Data collection top
Bruker SMART CCD diffractometer | 3705 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.018 |
Graphite monochromator | θmax = 28.0°, θmin = 2.1° |
ω scans | h = −11→9 |
11558 measured reflections | k = −14→14 |
4447 independent reflections | l = −25→23 |
Refinement top
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.024 | w = 1/[σ2(Fo2) + (0.028P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.055 | (Δ/σ)max = 0.001 |
S = 0.94 | Δρmax = 0.93 e Å−3 |
4447 reflections | Δρmin = −0.50 e Å−3 |
265 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0035 (3) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack H D (1983), Acta Cryst. A39, 876-881 |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.017 (19) |
Crystal data top
C15H21AgN10O3 | V = 1962.9 (3) Å3 |
Mr = 497.29 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 8.9276 (7) Å | µ = 1.07 mm−1 |
b = 11.1291 (9) Å | T = 293 K |
c = 19.7562 (15) Å | 0.30 × 0.30 × 0.30 mm |
Data collection top
Bruker SMART CCD diffractometer | 3705 reflections with I > 2σ(I) |
11558 measured reflections | Rint = 0.018 |
4447 independent reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.024 | H-atom parameters constrained |
wR(F2) = 0.055 | Δρmax = 0.93 e Å−3 |
S = 0.94 | Δρmin = −0.50 e Å−3 |
4447 reflections | Absolute structure: Flack H D (1983), Acta Cryst. A39, 876-881 |
265 parameters | Absolute structure parameter: 0.017 (19) |
0 restraints | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. For both compounds, a hemisphere of data (1375 frames) was collected with 0.3 ° frame width and a detector - crystal distance of 5.00 cm. The detector was positioned with Θ = 28.0 °. Data were recorded in three series with ϕ = 0, 88 and 180 ° with 20 s exposure time. For Ag(C5H6N2)2NO3 is the data set is complete to 95.0% with Θmax = 27.88 °. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Ag1 | 0.25781 (2) | 0.906800 (16) | 0.890818 (8) | 0.04821 (7) | |
N1 | 0.20668 (19) | 0.69940 (17) | 0.92146 (9) | 0.0396 (5) | |
N2 | 0.0435 (3) | 0.6636 (2) | 0.83339 (13) | 0.0569 (7) | |
H2A | 0.0739 | 0.7291 | 0.8149 | 0.068* | |
H2B | −0.0238 | 0.6206 | 0.8137 | 0.068* | |
N3 | 0.3762 (3) | 0.7418 (2) | 1.00625 (13) | 0.0619 (6) | |
H3A | 0.4029 | 0.8041 | 0.9835 | 0.074* | |
H3B | 0.4183 | 0.7261 | 1.0444 | 0.074* | |
C1 | 0.2651 (3) | 0.6667 (2) | 0.98144 (11) | 0.0425 (5) | |
C2 | 0.2155 (3) | 0.5695 (2) | 1.01815 (13) | 0.0537 (7) | |
H2 | 0.2517 | 0.5534 | 1.0613 | 0.064* | |
C3 | 0.1083 (3) | 0.4961 (2) | 0.98760 (16) | 0.0583 (8) | |
H3 | 0.0739 | 0.4281 | 1.0101 | 0.070* | |
C4 | 0.0542 (3) | 0.5229 (2) | 0.92576 (14) | 0.0509 (7) | |
H4 | −0.0142 | 0.4722 | 0.9047 | 0.061* | |
C5 | 0.1020 (2) | 0.6276 (2) | 0.89383 (12) | 0.0391 (5) | |
N11 | 0.1056 (2) | 1.04105 (19) | 0.93975 (10) | 0.0413 (5) | |
N12 | 0.0502 (3) | 1.1212 (3) | 0.83489 (14) | 0.0696 (9) | |
H12A | 0.1142 | 1.0723 | 0.8176 | 0.084* | |
H12B | 0.0020 | 1.1702 | 0.8093 | 0.084* | |
N13 | 0.1712 (3) | 0.9651 (3) | 1.04435 (11) | 0.0719 (8) | |
H13A | 0.2302 | 0.9159 | 1.0240 | 0.086* | |
H13B | 0.1645 | 0.9640 | 1.0878 | 0.086* | |
C11 | 0.0898 (3) | 1.0437 (3) | 1.00840 (14) | 0.0495 (7) | |
C12 | −0.0060 (3) | 1.1250 (3) | 1.03973 (14) | 0.0604 (8) | |
H12 | −0.0131 | 1.1272 | 1.0867 | 0.073* | |
C13 | −0.0893 (3) | 1.2014 (3) | 1.00115 (18) | 0.0675 (9) | |
H13 | −0.1562 | 1.2540 | 1.0217 | 0.081* | |
C14 | −0.0748 (3) | 1.2008 (3) | 0.93232 (16) | 0.0594 (8) | |
H14 | −0.1308 | 1.2529 | 0.9057 | 0.071* | |
C15 | 0.0252 (3) | 1.1209 (2) | 0.90300 (13) | 0.0477 (6) | |
N21 | 0.4794 (2) | 0.91718 (18) | 0.83581 (9) | 0.0373 (4) | |
N22 | 0.4608 (3) | 1.1251 (2) | 0.84209 (14) | 0.0598 (8) | |
H22A | 0.3774 | 1.1171 | 0.8634 | 0.072* | |
H22B | 0.4954 | 1.1957 | 0.8337 | 0.072* | |
N23 | 0.4955 (3) | 0.7096 (2) | 0.83155 (14) | 0.0569 (7) | |
H23A | 0.4122 | 0.7053 | 0.8533 | 0.068* | |
H23B | 0.5412 | 0.6449 | 0.8196 | 0.068* | |
C21 | 0.5550 (3) | 0.8186 (2) | 0.81608 (12) | 0.0412 (6) | |
C22 | 0.6914 (3) | 0.8252 (3) | 0.78223 (15) | 0.0569 (8) | |
H22 | 0.7425 | 0.7559 | 0.7696 | 0.068* | |
C23 | 0.7486 (4) | 0.9371 (2) | 0.76800 (15) | 0.0637 (7) | |
H23 | 0.8383 | 0.9438 | 0.7444 | 0.076* | |
C24 | 0.6750 (3) | 1.0383 (3) | 0.78819 (15) | 0.0588 (8) | |
H24 | 0.7149 | 1.1141 | 0.7799 | 0.071* | |
C25 | 0.5385 (3) | 1.0253 (2) | 0.82144 (13) | 0.0414 (6) | |
N4 | −0.2330 (2) | 0.41597 (18) | 0.78434 (9) | 0.0437 (4) | |
O1 | −0.3116 (3) | 0.3419 (2) | 0.81126 (12) | 0.0965 (9) | |
O2 | −0.1363 (2) | 0.3861 (2) | 0.74148 (11) | 0.0757 (7) | |
O3 | −0.2468 (3) | 0.52299 (15) | 0.79814 (9) | 0.0618 (5) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Ag1 | 0.05157 (11) | 0.05046 (11) | 0.04259 (10) | 0.00398 (12) | 0.00858 (10) | −0.00002 (8) |
N1 | 0.0396 (11) | 0.0371 (11) | 0.0421 (10) | −0.0036 (8) | 0.0045 (8) | −0.0004 (8) |
N2 | 0.0667 (15) | 0.0538 (17) | 0.0501 (15) | −0.0138 (12) | −0.0094 (12) | 0.0035 (12) |
N3 | 0.0663 (15) | 0.0487 (15) | 0.0707 (16) | −0.0084 (12) | −0.0259 (13) | 0.0037 (12) |
C1 | 0.0405 (13) | 0.0387 (12) | 0.0482 (12) | 0.0027 (12) | −0.0006 (12) | −0.0027 (9) |
C2 | 0.0608 (18) | 0.0517 (16) | 0.0485 (14) | 0.0038 (13) | −0.0019 (12) | 0.0097 (11) |
C3 | 0.0589 (17) | 0.0418 (17) | 0.074 (2) | −0.0092 (13) | 0.0041 (15) | 0.0168 (14) |
C4 | 0.0477 (15) | 0.0425 (16) | 0.0625 (18) | −0.0118 (12) | 0.0030 (13) | 0.0018 (13) |
C5 | 0.0386 (11) | 0.0378 (13) | 0.0409 (13) | −0.0009 (9) | 0.0061 (11) | −0.0025 (11) |
N11 | 0.0406 (11) | 0.0433 (12) | 0.0399 (12) | −0.0025 (9) | −0.0003 (9) | −0.0049 (9) |
N12 | 0.0756 (17) | 0.083 (2) | 0.0504 (16) | 0.0142 (16) | 0.0038 (13) | 0.0160 (16) |
N13 | 0.0746 (17) | 0.105 (2) | 0.0361 (14) | 0.0257 (16) | −0.0043 (11) | −0.0005 (13) |
C11 | 0.0427 (14) | 0.0593 (17) | 0.0464 (15) | −0.0036 (12) | −0.0043 (12) | −0.0094 (13) |
C12 | 0.0658 (18) | 0.070 (2) | 0.0451 (16) | 0.0038 (16) | 0.0024 (13) | −0.0239 (14) |
C13 | 0.0631 (19) | 0.054 (2) | 0.085 (2) | 0.0112 (15) | 0.0077 (17) | −0.0266 (17) |
C14 | 0.0639 (19) | 0.0444 (17) | 0.070 (2) | 0.0087 (14) | −0.0059 (15) | −0.0006 (14) |
C15 | 0.0501 (13) | 0.0421 (16) | 0.0509 (17) | −0.0094 (11) | −0.0007 (12) | 0.0006 (11) |
N21 | 0.0414 (9) | 0.0350 (11) | 0.0356 (10) | −0.0005 (10) | 0.0012 (8) | −0.0012 (9) |
N22 | 0.0737 (17) | 0.0324 (15) | 0.073 (2) | −0.0059 (12) | 0.0148 (14) | −0.0080 (13) |
N23 | 0.0550 (14) | 0.0364 (14) | 0.0793 (18) | 0.0033 (11) | 0.0217 (13) | 0.0037 (12) |
C21 | 0.0425 (14) | 0.0386 (15) | 0.0426 (14) | 0.0003 (11) | −0.0014 (11) | 0.0017 (11) |
C22 | 0.0435 (15) | 0.0518 (18) | 0.076 (2) | 0.0074 (12) | 0.0146 (13) | −0.0008 (15) |
C23 | 0.0422 (13) | 0.0629 (18) | 0.0859 (19) | −0.0066 (17) | 0.0182 (17) | 0.0092 (14) |
C24 | 0.0520 (17) | 0.0486 (17) | 0.076 (2) | −0.0114 (14) | 0.0054 (14) | 0.0043 (15) |
C25 | 0.0459 (14) | 0.0357 (14) | 0.0427 (14) | −0.0012 (11) | −0.0013 (11) | −0.0023 (11) |
N4 | 0.0526 (12) | 0.0428 (11) | 0.0357 (9) | −0.0016 (14) | −0.0087 (10) | 0.0009 (8) |
O1 | 0.135 (2) | 0.0707 (16) | 0.0834 (16) | −0.0463 (15) | 0.0098 (14) | 0.0215 (13) |
O2 | 0.0661 (13) | 0.0861 (18) | 0.0749 (15) | 0.0173 (12) | 0.0076 (11) | −0.0242 (13) |
O3 | 0.0741 (12) | 0.0378 (10) | 0.0736 (12) | −0.0011 (13) | 0.0029 (13) | −0.0109 (8) |
Geometric parameters (Å, º) top
Ag1—N11 | 2.239 (2) | N11—C15 | 1.354 (3) |
Ag1—N21 | 2.2601 (18) | N11—C11 | 1.364 (3) |
Ag1—N1 | 2.4295 (19) | N13—C11 | 1.341 (4) |
N2—C5 | 1.363 (3) | C15—N12 | 1.364 (3) |
N1—C1 | 1.345 (3) | C15—C14 | 1.386 (4) |
N1—C5 | 1.345 (3) | C11—C12 | 1.390 (4) |
C5—C4 | 1.392 (3) | C14—C13 | 1.366 (4) |
C1—C2 | 1.376 (3) | C13—C12 | 1.363 (4) |
C1—N3 | 1.386 (3) | N21—C25 | 1.345 (3) |
C23—C24 | 1.364 (4) | N21—C21 | 1.346 (3) |
C23—C22 | 1.374 (4) | C25—N22 | 1.371 (4) |
C22—C21 | 1.392 (4) | N23—C21 | 1.359 (3) |
C2—C3 | 1.396 (4) | O3—N4 | 1.228 (2) |
C24—C25 | 1.392 (4) | N4—O1 | 1.206 (3) |
C3—C4 | 1.347 (4) | N4—O2 | 1.254 (3) |
| | | |
N11—Ag1—N21 | 134.81 (7) | N11—C15—C14 | 122.5 (3) |
N11—Ag1—N1 | 114.35 (7) | N12—C15—C14 | 121.1 (3) |
N21—Ag1—N1 | 109.44 (7) | N13—C11—N11 | 117.2 (2) |
C1—N1—C5 | 117.8 (2) | N13—C11—C12 | 121.5 (3) |
C1—N1—Ag1 | 113.82 (15) | N11—C11—C12 | 121.4 (3) |
C5—N1—Ag1 | 126.40 (15) | C3—C4—C5 | 119.1 (3) |
N1—C5—N2 | 116.6 (2) | C13—C14—C15 | 118.7 (3) |
N1—C5—C4 | 121.7 (2) | C12—C13—C14 | 120.1 (3) |
N2—C5—C4 | 121.7 (2) | C13—C12—C11 | 119.5 (3) |
N1—C1—C2 | 123.5 (2) | C25—N21—C21 | 118.2 (2) |
N1—C1—N3 | 115.2 (2) | C25—N21—Ag1 | 119.39 (16) |
C2—C1—N3 | 121.2 (2) | C21—N21—Ag1 | 122.45 (16) |
C24—C23—C22 | 120.6 (3) | N21—C25—N22 | 117.6 (2) |
C23—C22—C21 | 118.1 (3) | N21—C25—C24 | 122.4 (2) |
C1—C2—C3 | 116.9 (3) | N22—C25—C24 | 119.9 (2) |
C23—C24—C25 | 118.3 (3) | N21—C21—N23 | 117.8 (2) |
C4—C3—C2 | 120.5 (3) | N21—C21—C22 | 122.3 (2) |
C15—N11—C11 | 117.7 (2) | N23—C21—C22 | 119.8 (2) |
C15—N11—Ag1 | 121.89 (17) | O1—N4—O3 | 120.4 (3) |
C11—N11—Ag1 | 120.44 (17) | O1—N4—O2 | 121.2 (3) |
N11—C15—N12 | 116.3 (3) | O3—N4—O2 | 118.4 (2) |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O2i | 0.86 | 2.15 | 3.002 (3) | 173 |
N2—H2B···O3 | 0.86 | 2.29 | 3.106 (3) | 159 |
N13—H13A···N3 | 0.86 | 2.36 | 3.177 (4) | 159 |
N13—H13B···O3ii | 0.86 | 2.39 | 3.199 (3) | 156 |
N12—H12A···O2i | 0.86 | 2.39 | 3.116 (4) | 143 |
N12—H12A···O3i | 0.86 | 2.63 | 3.344 (4) | 141 |
N23—H23A···N1 | 0.86 | 2.28 | 3.133 (3) | 174 |
N23—H23B···O3iii | 0.86 | 2.37 | 3.169 (3) | 155 |
N22—H22B···O1iv | 0.86 | 2.41 | 3.213 (4) | 155 |
Symmetry codes: (i) −x, y+1/2, −z+3/2; (ii) x+1/2, −y+3/2, −z+2; (iii) x+1, y, z; (iv) x+1, y+1, z. |
Experimental details
| (I) | (II) |
Crystal data |
Chemical formula | C10H12AgN5O3 | C15H21AgN10O3 |
Mr | 358.12 | 497.29 |
Crystal system, space group | Monoclinic, C2/c | Orthorhombic, P212121 |
Temperature (K) | 295 | 293 |
a, b, c (Å) | 7.2661 (10), 12.2749 (18), 14.803 (2) | 8.9276 (7), 11.1291 (9), 19.7562 (15) |
α, β, γ (°) | 90, 95.084 (2), 90 | 90, 90, 90 |
V (Å3) | 1315.1 (3) | 1962.9 (3) |
Z | 4 | 4 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 1.55 | 1.07 |
Crystal size (mm) | 0.31 × 0.29 × 0.29 | 0.30 × 0.30 × 0.30 |
|
Data collection |
Diffractometer | Bruker SMART CCD diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | – | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3818, 1507, 1126 | 11558, 4447, 3705 |
Rint | 0.023 | 0.018 |
(sin θ/λ)max (Å−1) | 0.660 | 0.661 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.094, 0.98 | 0.024, 0.055, 0.94 |
No. of reflections | 1507 | 4447 |
No. of parameters | 90 | 265 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.60, −0.41 | 0.93, −0.50 |
Absolute structure | ? | Flack H D (1983), Acta Cryst. A39, 876-881 |
Absolute structure parameter | ? | 0.017 (19) |
Selected geometric parameters (Å, º) for (I) topAg1—N1 | 2.122 (3) | C3—C4 | 1.390 (5) |
N1—C5 | 1.336 (5) | C3—C2 | 1.405 (5) |
N1—C1 | 1.342 (5) | C4—C5 | 1.363 (5) |
C3—N2 | 1.351 (5) | C2—C1 | 1.359 (5) |
| | | |
N1—Ag1—N1i | 174.43 (15) | C4—C3—C2 | 116.6 (3) |
C5—N1—C1 | 115.5 (3) | C5—C4—C3 | 119.3 (3) |
C5—N1—Ag1 | 120.6 (2) | C1—C2—C3 | 119.4 (3) |
C1—N1—Ag1 | 123.8 (2) | N1—C5—C4 | 124.8 (3) |
N2—C3—C4 | 122.1 (3) | N1—C1—C2 | 124.4 (3) |
N2—C3—C2 | 121.3 (3) | | |
Symmetry code: (i) −x, y, −z+1/2. |
Hydrogen-bond geometry (Å, º) for (I) top
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O2ii | 0.86 | 2.39 | 3.189 (5) | 154.3 |
N2—H2B···O1iii | 0.86 | 2.11 | 2.963 (4) | 169.2 |
Symmetry codes: (ii) x, −y+1, z+1/2; (iii) −x+1/2, −y+1/2, −z+1. |
Selected geometric parameters (Å, º) for (II) topAg1—N11 | 2.239 (2) | N1—C1 | 1.345 (3) |
Ag1—N21 | 2.2601 (18) | N1—C5 | 1.345 (3) |
Ag1—N1 | 2.4295 (19) | C1—N3 | 1.386 (3) |
N2—C5 | 1.363 (3) | | |
| | | |
N11—Ag1—N21 | 134.81 (7) | C1—N1—Ag1 | 113.82 (15) |
N11—Ag1—N1 | 114.35 (7) | C5—N1—Ag1 | 126.40 (15) |
N21—Ag1—N1 | 109.44 (7) | N1—C5—N2 | 116.6 (2) |
C1—N1—C5 | 117.8 (2) | N1—C1—N3 | 115.2 (2) |
Hydrogen-bond geometry (Å, º) for (II) top
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O2i | 0.86 | 2.15 | 3.002 (3) | 173.4 |
N2—H2B···O3 | 0.86 | 2.29 | 3.106 (3) | 158.7 |
N13—H13A···N3 | 0.86 | 2.36 | 3.177 (4) | 158.5 |
N13—H13B···O3ii | 0.86 | 2.39 | 3.199 (3) | 156.2 |
N12—H12A···O2i | 0.86 | 2.39 | 3.116 (4) | 143.0 |
N12—H12A···O3i | 0.86 | 2.63 | 3.344 (4) | 140.9 |
N23—H23A···N1 | 0.86 | 2.28 | 3.133 (3) | 173.5 |
N23—H23B···O3iii | 0.86 | 2.37 | 3.169 (3) | 155.2 |
N22—H22B···O1iv | 0.86 | 2.41 | 3.213 (4) | 155.3 |
Symmetry codes: (i) −x, y+1/2, −z+3/2; (ii) x+1/2, −y+3/2, −z+2; (iii) x+1, y, z; (iv) x+1, y+1, z. |
Silver is an often used metal in the construction of coordination polymers and related supramolecular systems with multidentate pyridine derivatives (Aakeroy at al., 1998, Wu et al., 1999, and references therein). The silver(I)ion exhibits a large flexibility in its coordination with nitrogen-containing aromatic ligands with coordination numbers ranging from two to eight. The geometries of the complexes are however usually determined by the coordination requirements of multidentate ligands. With monodentate pyridine or functionalized pyridine ligands, virtually linear complexes are the most frequently encountered. For the two-coordinate complexes so far structurally characterized, the N—Ag—N angle and Ag—N distance average 169 (9) ° and 2.167 (17) Å, respectively (Allen & Kennard, 1993). Exceptions from two-coordinate complexes are the tris(isonicotinamide)silver(I) cation with a nearly trigonal geometry (Aakeroy et al., 1998) and the tetrahedral tetrapyridinesilver(I) cation (Nilsson & Oskarsson, 1982, Dyason et al., 1985). In this contribution, we wish to present the crystal structures of silver(I) complexes with the 4-aminopyridine and 2,6-diaminopyridine ligands.
The Bis(4-aminopyridine)silver(I) cation has a N1 - Ag1 - N1i angle of 174.43 (15) ° (Figure 1). The Ag1—N1 distance is equal to 2.122 (3) Å. The 4-aminopyridine ligands are planar with a mean deviation from the plane defined by the seven non-hydrogen atoms of 0.008 (2) Å. The angle between the planes defined by the two ligands is 79.45 (9) °. The hydrogen bonds formed between the amino group and the nitrate anions are weak, with N - O distances of 2.963 (4) and 3.189 (5) Å. The unit-cell content is shown in Figure 2 where it is seen that cations are packed to form parallell "tubes" along the c axis. Viewed perpendicular to the c axis, the pyridine rings are seen to be stacked into piles (Figure 3). The interplane distance between the 4-aminopyridine ligands in a pile is 3.614 (5) Å, a distance strongly suggesting that pyridine π-π interactions have an appreciable importance for the non-bonded crystal organization (e.g. Kiralj et al., 1999, Iswhow et al., 1998, Wu et al., 1999, Yoshida et al., 1998).
In tris(2,6-diaminopyridine)silver(I)nitrate is the Ag+ ion coordinated by three 2,6-diaminopyridine ligands with Ag—N distances of 2.243 (2), 2.2613 (17) and 2.4278 (18) Å in a distorted trigonal geometry (Figure 4). The N1—Ag—N11, N11—Ag1—N21 and N21—Ag1—N1 angles are 114.33 (7), 134.91 (7) and 114.33 (7) °, respectively. The Ag+ ion is situated 0.1531 (2) Å from the plane defined by the N1, N11 and N21 atoms. These values can be compared with those of the tris(isonicotinamide)silver(I) cation where Ag—N distances ranging from 2.213 (2) to 2.321 (2) Å are observed (Aakeroy et al.,1998). The N1—C1 and N1—C5 distances are 1.358 (3) and 1.360 (3) Å, respectively. The C1—N2 and C5—N3 distances are 1.333 (3) and 1.343 (4) Å, respectively, and the N1—C1—N2 and N1—C5—N3 angles are both 117.4 (3) °. The geometry of the ligand remains virtually unchanged upon coordination with the Ag+ cation as compared with the geometry of the 2,6.diaminopyridinium cation (Kristiansson, 1999). Eight of the twelwe amino-H atoms participate in hydrogen bonds with the nitrate anions. The hydrogen bonds are relatively weak, with N—O distances ranging from 3.001 (4) to 3.344 (4) Å. No π - π stacking is apparent in the crystal edification of this compound. It is interesting that the silver(I) ion prefer a trigonal arrangement with the relatively bulky 2,6-diaminopyridine ligand instead of the more commonly preferred linear geometry. Considering the Mulliken charges onthe pyridine-N atoms, a value of −0.723 is obtained for 2,6-diaminopyridine as compared with −0.559 for 4-aminopyridine and −0.515 for pyridine as obtained from ab initio calculations at the 6–31 G+ level (Kristiansson, 1999). One possible explanation might then be that the higher coordination number with 2,6-diaminopyridine as compared to 4-aminopyridine (at similar ligand concentrations) is a result of the increased electrostatic interaction energy. For pyridine complexes obtained from e.g. silver nitrate in pyridine solutions, the composition of the solid solvate appears to be the result of the varying solubility of the salt at different temperatures. Thus at relatively high temperatures the formation of the dipyridine complex is favoured while at low temperatures the existance of the hexa-solvate has been suggested on the basis of solubility measurements (Linke, W·F., 1958).