The title complex crystallizes as a tetraethanol solvate, [Ni(C9H10N3O2S)2]·4C2H6O, with the metal on a centre of inversion. Two singly deprotonated ligands coordinate the metal atom in a planar fashion. The metal complexes are organized into layers by an extended network of hydrogen bonds involving the NH2 groups, the phenolic OH groups and the solvent molecules.
Supporting information
CCDC reference: 145524
[Ni(vtsc)2] was prepared as previously reported (Akinchan et al.,
1992). Brown, column-shaped single crystals of the sparingly soluble complex
have been obtained from slow cooling of a concentrated ethanol solution.
Scattering factors, dispersion corrections and absorption coefficients were
taken from International Tables for Crystallography, Vol. C. (1992).
Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: SET4 in SDP (Frenz, 1983); data reduction: SDP; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: SHELXL97.
'Bis(vanillin thiosemicarbazonato)nickel(II) ethanol solvate'
top
Crystal data top
[Ni(C9H10N3O2S)2]·4C2H6O | Z = 1 |
Mr = 691.50 | F(000) = 366 |
Triclinic, P1 | Dx = 1.396 Mg m−3 |
a = 6.894 (1) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 10.675 (1) Å | Cell parameters from 25 reflections |
c = 11.878 (2) Å | θ = 18.2–26.7° |
α = 73.19 (1)° | µ = 2.50 mm−1 |
β = 79.75 (1)° | T = 203 K |
γ = 84.91 (1)° | Column, brown |
V = 822.8 (2) Å3 | 0.30 × 0.25 × 0.25 mm |
Data collection top
Enraf Nonius CAD4 diffractometer | 2695 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.019 |
Graphite monochromator | θmax = 64.9°, θmin = 6.5° |
ω scans | h = −1→8 |
Absorption correction: ψ scans SDP (Frenz, 1983) | k = −12→12 |
Tmin = 0.503, Tmax = 0.536 | l = −13→13 |
3560 measured reflections | 3 standard reflections every 200 reflections |
2792 independent reflections | intensity decay: 1.0% |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.052 | H-atom parameters constrained |
wR(F2) = 0.152 | Calculated w = 1/[σ2(Fo2) + (0.094P)2 + 0.5715P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
2792 reflections | Δρmax = 0.65 e Å−3 |
197 parameters | Δρmin = −0.59 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0154 (19) |
Crystal data top
[Ni(C9H10N3O2S)2]·4C2H6O | γ = 84.91 (1)° |
Mr = 691.50 | V = 822.8 (2) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.894 (1) Å | Cu Kα radiation |
b = 10.675 (1) Å | µ = 2.50 mm−1 |
c = 11.878 (2) Å | T = 203 K |
α = 73.19 (1)° | 0.30 × 0.25 × 0.25 mm |
β = 79.75 (1)° | |
Data collection top
Enraf Nonius CAD4 diffractometer | 2695 reflections with I > 2σ(I) |
Absorption correction: ψ scans SDP (Frenz, 1983) | Rint = 0.019 |
Tmin = 0.503, Tmax = 0.536 | 3 standard reflections every 200 reflections |
3560 measured reflections | intensity decay: 1.0% |
2792 independent reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.052 | 0 restraints |
wR(F2) = 0.152 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.65 e Å−3 |
2792 reflections | Δρmin = −0.59 e Å−3 |
197 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Ni | 0.0000 | 0.0000 | 0.0000 | 0.0358 (3) | |
S | −0.28664 (9) | 0.10377 (6) | −0.00553 (7) | 0.0456 (3) | |
N1 | −0.3298 (4) | 0.3510 (2) | 0.0016 (2) | 0.0499 (6) | |
H1A | −0.2942 | 0.4211 | 0.0146 | 0.060* | |
H1B | −0.4418 | 0.3513 | −0.0226 | 0.060* | |
N2 | −0.0440 (3) | 0.2462 (2) | 0.0556 (2) | 0.0408 (5) | |
N3 | 0.0624 (3) | 0.1260 (2) | 0.07254 (19) | 0.0384 (5) | |
C1 | −0.2123 (4) | 0.2426 (3) | 0.0189 (2) | 0.0400 (6) | |
C2 | 0.1939 (4) | 0.1084 (3) | 0.1424 (2) | 0.0410 (6) | |
H2 | 0.2722 | 0.0310 | 0.1470 | 0.049* | |
C11 | 0.2413 (4) | 0.1870 (3) | 0.2145 (2) | 0.0424 (6) | |
C12 | 0.1361 (5) | 0.2972 (3) | 0.2372 (3) | 0.0566 (8) | |
H12 | 0.0252 | 0.3309 | 0.2005 | 0.068* | |
C13 | 0.1953 (5) | 0.3568 (3) | 0.3142 (3) | 0.0614 (9) | |
H13 | 0.1221 | 0.4301 | 0.3301 | 0.074* | |
C14 | 0.3580 (5) | 0.3114 (3) | 0.3675 (3) | 0.0514 (7) | |
C15 | 0.4665 (4) | 0.2024 (3) | 0.3456 (2) | 0.0449 (6) | |
C16 | 0.4074 (4) | 0.1404 (3) | 0.2710 (2) | 0.0436 (6) | |
H16 | 0.4793 | 0.0656 | 0.2576 | 0.052* | |
C17 | 0.7436 (5) | 0.0548 (4) | 0.3817 (3) | 0.0606 (8) | |
H17A | 0.8509 | 0.0374 | 0.4278 | 0.091* | |
H17B | 0.7972 | 0.0741 | 0.2976 | 0.091* | |
H17C | 0.6634 | −0.0214 | 0.4047 | 0.091* | |
O1 | 0.6250 (3) | 0.1645 (2) | 0.4040 (2) | 0.0585 (6) | |
O2 | 0.4162 (3) | 0.3694 (2) | 0.4439 (2) | 0.0629 (6) | |
H2A | 0.3391 | 0.4320 | 0.4507 | 0.094* | |
O20 | 0.2447 (4) | 0.5963 (3) | 0.4781 (2) | 0.0767 (8) | |
H20 | 0.3438 | 0.6349 | 0.4786 | 0.115* | |
C21 | 0.1401 (9) | 0.6738 (5) | 0.3870 (6) | 0.1128 (19) | |
H21A | 0.2110 | 0.6670 | 0.3097 | 0.135* | |
H21B | 0.0098 | 0.6377 | 0.3986 | 0.135* | |
C22 | 0.1159 (10) | 0.8033 (5) | 0.3840 (5) | 0.1125 (18) | |
H22A | 0.0448 | 0.8498 | 0.3197 | 0.169* | |
H22B | 0.2441 | 0.8404 | 0.3711 | 0.169* | |
H22C | 0.0416 | 0.8114 | 0.4592 | 0.169* | |
O30 | 0.2661 (3) | 0.4154 (2) | 0.9294 (2) | 0.0552 (5) | |
H30 | 0.1766 | 0.3673 | 0.9710 | 0.083* | |
C31 | 0.2732 (7) | 0.4209 (4) | 0.8080 (3) | 0.0802 (12) | |
H31A | 0.3771 | 0.4797 | 0.7598 | 0.096* | |
H31B | 0.1475 | 0.4592 | 0.7835 | 0.096* | |
C32 | 0.3105 (8) | 0.2937 (5) | 0.7814 (4) | 0.0883 (13) | |
H32A | 0.3136 | 0.3062 | 0.6969 | 0.132* | |
H32B | 0.2062 | 0.2354 | 0.8265 | 0.132* | |
H32C | 0.4363 | 0.2557 | 0.8034 | 0.132* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Ni | 0.0362 (4) | 0.0333 (4) | 0.0422 (4) | 0.0023 (2) | −0.0098 (3) | −0.0163 (3) |
S | 0.0386 (4) | 0.0415 (4) | 0.0666 (5) | 0.0051 (3) | −0.0156 (3) | −0.0282 (3) |
N1 | 0.0463 (13) | 0.0379 (12) | 0.0737 (16) | 0.0073 (10) | −0.0243 (12) | −0.0221 (11) |
N2 | 0.0429 (12) | 0.0341 (11) | 0.0502 (13) | 0.0057 (9) | −0.0151 (10) | −0.0169 (9) |
N3 | 0.0394 (11) | 0.0341 (11) | 0.0430 (11) | 0.0034 (8) | −0.0094 (9) | −0.0128 (9) |
C1 | 0.0405 (14) | 0.0383 (13) | 0.0442 (14) | 0.0018 (10) | −0.0094 (11) | −0.0156 (11) |
C2 | 0.0415 (14) | 0.0385 (13) | 0.0474 (14) | 0.0050 (11) | −0.0122 (11) | −0.0177 (11) |
C11 | 0.0433 (14) | 0.0449 (14) | 0.0455 (14) | 0.0042 (11) | −0.0134 (11) | −0.0206 (12) |
C12 | 0.0562 (18) | 0.0600 (19) | 0.071 (2) | 0.0170 (15) | −0.0307 (15) | −0.0391 (16) |
C13 | 0.0616 (19) | 0.064 (2) | 0.079 (2) | 0.0217 (16) | −0.0314 (17) | −0.0466 (18) |
C14 | 0.0552 (17) | 0.0591 (18) | 0.0506 (16) | 0.0022 (14) | −0.0151 (13) | −0.0290 (14) |
C15 | 0.0416 (14) | 0.0541 (16) | 0.0427 (14) | 0.0027 (12) | −0.0121 (11) | −0.0174 (12) |
C16 | 0.0429 (14) | 0.0450 (14) | 0.0462 (14) | 0.0048 (11) | −0.0123 (11) | −0.0168 (12) |
C17 | 0.0528 (18) | 0.074 (2) | 0.0621 (19) | 0.0166 (16) | −0.0220 (15) | −0.0275 (16) |
O1 | 0.0510 (12) | 0.0744 (15) | 0.0633 (13) | 0.0143 (10) | −0.0273 (10) | −0.0340 (11) |
O2 | 0.0634 (13) | 0.0742 (15) | 0.0730 (15) | 0.0133 (11) | −0.0290 (11) | −0.0487 (12) |
O20 | 0.0734 (16) | 0.0777 (17) | 0.0888 (18) | 0.0213 (13) | −0.0353 (14) | −0.0321 (14) |
C21 | 0.107 (4) | 0.087 (3) | 0.157 (5) | 0.016 (3) | −0.066 (4) | −0.031 (3) |
C22 | 0.144 (5) | 0.082 (3) | 0.119 (4) | −0.009 (3) | −0.045 (4) | −0.024 (3) |
O30 | 0.0544 (12) | 0.0465 (11) | 0.0676 (13) | −0.0068 (9) | −0.0144 (10) | −0.0159 (10) |
C31 | 0.110 (3) | 0.062 (2) | 0.065 (2) | −0.002 (2) | −0.027 (2) | −0.0051 (18) |
C32 | 0.106 (3) | 0.098 (3) | 0.061 (2) | 0.014 (3) | −0.012 (2) | −0.028 (2) |
Geometric parameters (Å, º) top
Ni—N3i | 1.908 (2) | C12—C13 | 1.387 (4) |
Ni—N3 | 1.908 (2) | C13—C14 | 1.368 (4) |
Ni—Si | 2.1799 (7) | C14—O2 | 1.367 (3) |
Ni—S | 2.1799 (7) | C14—C15 | 1.390 (4) |
S—C1 | 1.726 (3) | C15—O1 | 1.367 (3) |
N1—C1 | 1.340 (3) | C15—C16 | 1.380 (4) |
N2—C1 | 1.317 (3) | C17—O1 | 1.429 (4) |
N2—N3 | 1.401 (3) | O20—C21 | 1.425 (5) |
N3—C2 | 1.301 (3) | C21—C22 | 1.369 (7) |
C2—C11 | 1.452 (4) | O30—C31 | 1.419 (4) |
C11—C12 | 1.394 (4) | C31—C32 | 1.472 (6) |
C11—C16 | 1.410 (4) | | |
| | | |
N3i—Ni—N3 | 180.0 | C12—C11—C16 | 118.0 (2) |
N3i—Ni—Si | 85.42 (7) | C12—C11—C2 | 127.2 (2) |
N3—Ni—Si | 94.58 (7) | C16—C11—C2 | 114.7 (2) |
N3i—Ni—S | 94.58 (7) | C13—C12—C11 | 119.9 (3) |
N3—Ni—S | 85.42 (7) | C14—C13—C12 | 121.5 (3) |
Si—Ni—S | 180.0 | O2—C14—C13 | 121.7 (3) |
C1—S—Ni | 95.44 (9) | O2—C14—C15 | 118.5 (3) |
C1—N2—N3 | 112.2 (2) | C13—C14—C15 | 119.9 (3) |
C2—N3—N2 | 115.3 (2) | O1—C15—C16 | 125.4 (3) |
C2—N3—Ni | 125.24 (18) | O1—C15—C14 | 115.2 (3) |
N2—N3—Ni | 119.40 (16) | C16—C15—C14 | 119.4 (3) |
N2—C1—N1 | 118.1 (2) | C15—C16—C11 | 121.3 (3) |
N2—C1—S | 122.6 (2) | C15—O1—C17 | 117.0 (2) |
N1—C1—S | 119.4 (2) | C22—C21—O20 | 114.1 (5) |
N3—C2—C11 | 131.6 (2) | O30—C31—C32 | 114.8 (3) |
Symmetry code: (i) −x, −y, −z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O30ii | 0.87 | 2.07 | 2.930 (3) | 168 |
O20—H20···O2iii | 0.83 | 2.02 | 2.753 (3) | 146 |
O2—H2A···O20 | 0.83 | 1.91 | 2.705 (3) | 160 |
N1—H1B···O30iv | 0.87 | 2.19 | 3.023 (3) | 161 |
O30—H30···N2v | 0.83 | 2.01 | 2.838 (3) | 174 |
O30—H30···N3v | 0.83 | 2.63 | 3.360 (3) | 147 |
Symmetry codes: (ii) −x, −y+1, −z+1; (iii) −x+1, −y+1, −z+1; (iv) x−1, y, z−1; (v) x, y, z+1. |
Experimental details
Crystal data |
Chemical formula | [Ni(C9H10N3O2S)2]·4C2H6O |
Mr | 691.50 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 203 |
a, b, c (Å) | 6.894 (1), 10.675 (1), 11.878 (2) |
α, β, γ (°) | 73.19 (1), 79.75 (1), 84.91 (1) |
V (Å3) | 822.8 (2) |
Z | 1 |
Radiation type | Cu Kα |
µ (mm−1) | 2.50 |
Crystal size (mm) | 0.30 × 0.25 × 0.25 |
|
Data collection |
Diffractometer | Enraf Nonius CAD4 diffractometer |
Absorption correction | ψ scans SDP (Frenz, 1983) |
Tmin, Tmax | 0.503, 0.536 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3560, 2792, 2695 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.587 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.152, 1.09 |
No. of reflections | 2792 |
No. of parameters | 197 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.65, −0.59 |
Selected geometric parameters (Å, º) topNi—N3 | 1.908 (2) | N2—N3 | 1.401 (3) |
Ni—S | 2.1799 (7) | N3—C2 | 1.301 (3) |
S—C1 | 1.726 (3) | C2—C11 | 1.452 (4) |
N2—C1 | 1.317 (3) | | |
| | | |
N3—Ni—S | 85.42 (7) | N2—N3—Ni | 119.40 (16) |
C1—S—Ni | 95.44 (9) | N2—C1—S | 122.6 (2) |
C1—N2—N3 | 112.2 (2) | | |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O30i | 0.87 | 2.07 | 2.930 (3) | 167.7 |
O20—H20···O2ii | 0.83 | 2.02 | 2.753 (3) | 146.3 |
O2—H2A···O20 | 0.83 | 1.91 | 2.705 (3) | 159.5 |
N1—H1B···O30iii | 0.87 | 2.19 | 3.023 (3) | 160.8 |
O30—H30···N2iv | 0.83 | 2.01 | 2.838 (3) | 173.9 |
O30—H30···N3iv | 0.83 | 2.63 | 3.360 (3) | 146.9 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x−1, y, z−1; (iv) x, y, z+1. |
Transition metal complexes with thiosemicarbazones possess important biological activities. Antimalarial, antiviral and antibacterial activities have been proved for various representatives of this class of compounds (West et al., 1991). Nevertheless, structural studies are comparatively rare and predominantly deal with complexes having tridentate thiosemicarbazones. To our knowledge, there is only one report on a transition metal complex with the fairly hydrophilic, bidentate 4-hydroxy-3-methoxybenzaldehyde thiosemicarbazone (vanilline thiosemicarbazone, Hvtsc) (Ortner & Abram, 1998), whereas the coordination chemistry of the isomeric, but potentially tridentate, ligand 2-hydroxy-3-methoxybenzaldehyde thiosemicarbazone is better known (Cui & Hu, 1994a,b; Agarwala & Hingorani, 1997; Offiong et al., 1996). Here we describe the structure of the neutral nickel(II) complex, [Ni(vtsc)2], (I), which contains two chelate-bonded vanilline thiosemicarbazonato ligands. \sch
The structure consists of [Ni(vtsc)2] molecules (Fig. 1) with the metal on a centre of inversion and hydrogen-bonded molecules of solvent ethanol. The organic ligands are deprotonated at the azomethine position and bonded to the metal via the sulfur and N3 atoms forming five-membered chelate rings. This results in an almost planar coordination with maximum deviation of 0.161 (1) Å from a least-square plane formed by the atoms Ni, S, C1, N2 and N3 (r.m.s. 0.1189 Å). The hydroxyl group remains protonated and does not contribute to the coordination of the metal. A comparison of the bond lengths found for [Ni(vtsc)2] with those in the [Au(Hdamp)Cl(vtsc)]+ cation [Hdamp is 2-(dimethylammoniummethyl)phenyl], (Ortner & Abram, 1998) indicates a considerably higher degree of delocalization of electron density inside the chelate rings of the nickel compound under study. This is reflected by the C1—S bond length of 1.726 (3) Å (Table 1) which lies between the values of isolated C—S single and double bonds, whereas a C—S bond of 1.76 Å with almost single bond character has been found for the gold compound. The same is true for the C,N-skeletons of the thiosemicarbazone moieties which show nearly equal bonds for [Ni(vtsc)2], whereas alternating short and long values are observed for the gold complex. An unusually short C—C bond length is observed in one of the solvent molecules which is probably due to thermal motion and/or disorder.
The triclinic unit cell contains four molecules of the solvate ethanol. Hydrogen bridges between the complex molecules and two symmetry-related ethanol molecules form a two-dimensional arrangement. These layers are interconnected by additional hydrogen bonds between H30 and the nitrogen atoms of the thiosemicarbazone backbone of a complex molecule of the neigbouring layer. The hydrogen-bonding parameters are summarized in Table 2.