Download citation
Download citation
link to html
Single crystals of tribarium diyttrium hexa­borate, which crystallized in the cubic system, have been obtained by spontaneous crystallization from a high-temperature melt using Li2O-BaO-B2O3 as flux. Its structure is composed of isolated [B2O5]4- groups, irregular BaO9 polyhedra and regular YO6 polyhedra which occupy alternate sites running along the [111] direction. Irregular BaO9 polyhedra and regular YO6 polyhedra construct a three-dimensional framework, which is reinforced by [B2O5]4- groups.

Supporting information


Crystallographic Information File (CIF)
Contains datablocks I, global


Structure factor file (CIF format)
Contains datablock I

Comment top

Rare-earth borates have attracted considerable attention in the past few decades owing to their practical applications as nonlinear optical (NLO) materials (Mills, 1962; Norrestam et al., 1992; Wu et al., 2001; Gravereau et al., 2002) and plasma display panel (PDP) phosphors (Chadeyron et al., 1997). To date, five ternary compounds, BaYB9O16 (Fu et al., 1987), Ba3YB9O18 (Li, Wang et al., 2004), Ba3Y(BO3)3 (α and β phases) (Pan & Wang, 2003; Li, Chen et al., 2004a), Ba3Y2(BO3)4 (Ma et al., 2005) and BaY3B3O10 (Li, Chen et al., 2004b), have been reported in the BaO–Y2O3–B2O3 system. Herein we describe the crystal structure of a novel borate, Ba3Y2B6O15. It crystallized in the cubic system, which is very rare in borates [about 1.18% of PDF compounds containing boron and oxygen [crystallize in this system], and [the figure is] even less in borate, according to Wu et al. (2005)].

The fundamental building unit of Ba3Y2B6O15 is an isolated [B2O5]4- group, which is formed by two identical BO3 triangles sharing the bridging O2 atom. Each [B2O5]4- anionic group connects to six Ba atoms and four Y atoms via O atoms (Fig. 1). The B—O bond lengths range from 1.356 (4) to 1.406 (4) Å and the mean O—B—O bond angles are equal to 120°, which indicates that they are almost planar. These values are normal for the [B2O5]4- group. The Ba atoms are coordinated by nine O atoms in irregular polyhedra with Ba—O bond lengths ranging from 2.732 (3) to 3.018 (3) Å. These values compare well with the value of Ba—O bond lengths of the nine-coordinate Ba2+ ion in Ba3YB9O18. The Y atoms appear in two crystallographically different environments. Both Y1 and Y2 atoms are octahedrally coordinated by borate O atoms, forming regular YO6 octahedra running right along the [111] direction alternately (Fig. 2). The YO6 octahedra are isolated from each other by the intervening BaO9 polyhedra and pyroborate groups. The Y1—O1 and Y2—O3 bond distances, 2.271 (3) and 2.250 (3) Å, respectively, are consistent with the sum of crystal radii (Brown & Altermatt, 1985). Irregular BaO9 polyhedra and regular YO6 polyhedra are interconnected to each other constructing a three-dimensional framework, which is reinforced by [B2O5]4- groups.

The structure of the title compound is closely related to that of Al4B6O15, which could be described with pseudo-cubic symmetry. The fundamental building unit of Al4B6O15 is the [B2O5]4- group. Within the [B2O5]4- group, the B—O—B angle (119.8°) is almost equal to that of Ba3Y2B6O15 (122.0°), but the interplanar angle (16.9°) between the two terminal BO2 planes is much smaller than that of Ba3Y2B6O15 (59.0°). According to Thompson et al. (1991), the terminal BO2 planes pivot about the torsion angles to afford deviations from coplanarity that range from 0 to 76.8°, while the central B—O—B angle ranges from 111.8 to 180°. The O···O repulsive interactions can be relieved by torsional motions which produce nonzero interplanar angles between the two terminal BO2 planes. Because of the small interplanar angle, the O···O repulsive interactions could not be relieved efficiently, which might be one of the reasons why the compound Al4B6O15 is difficult to synthesize. Because of the different bond lengths of Al—O, Y—O and Ba—O, their coordination environments are different. Each AlO6 octahedron shares three independent edges with adjacent AlO6 octahedra, while each YO6 octahedron shares six interconncted edges with adjacent BaO9 polyhedra. Each BaO9 polyhedron connects to two BaO9 polyhedra and two YO6 octahedra by sharing edges, as well as another two BaO9 polyhedra by sharing vertices.

Bond-valence sums (BVS; Brown & Altermatt, 1985) of the Ba, Y and B atoms were calculated. The BVS values of the Ba, Y1, Y2 and B atoms are 2.0, 3.0, 3.2 and 3.0, respectively. All these values are close to expected values.

Related literature top

For related literature, see: Brown & Altermatt (1985); Chadeyron et al. (1997); Fu et al. (1987); Gravereau et al. (2002); Li et al. (2004, 2004a, 2004b); Ma et al. (2005); Mills (1962); Norrestam et al. (1992); Pan & Wang (2003); Thompson et al. (1991); Wu et al. (2001, 2005).

Experimental top

Single crystals of Ba3Y2B6O15 were grown from a Li2O–BaO–B2O3 flux system by spontaneous crystallization. Mixtures of analytical purity BaCO3, Y2O3 and H3BO3 in stoichiometric proportions were sintered at 773 K for 24 h, and then sintered at 1123 K for 72 h with several intermediate grindings. Prepared Ba3Y2B6O15 polycrystalline samples (54.090 g) and analytical purity Li2CO3 (2.220 g), BaCO3 (23.730 g), H3BO3 (18.750 g) were melted in a Ø40×40 mm Pt crucible at 1373 K for 5 h to ensure homogeneity, cooled to 1273 K at a rate of 2 K h-1, and finally cooled to room temperature at a rate of 50 K h-1. A clear, colourless crystal was physically separated from the melt for analysis.

Refinement top

The structure was solved with the direct methods program SHELXS97 (Sheldrick, 2008) and refined with the least-squares program SHELXL97 of the SHELXTL.PC suite of programs (Sheldrick, 2008). The final refinement included anisotropic displacement parameters and a secondary extinction correction. The program STRUCTURE_TIDY (Ref?) was then employed to standardize the atomic coordinates.

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of the [B2O5]4- group. Displacement ellipsoids are drawn at the 80% probability level. [Symmetry codes: (i) -z+1/2, x+1/2, y; (ii) z, x+1/2, -y; (iii) -y+1/2, z, -x; (iv) z, x, y; (v) -x+1/2, -y+1/2, -z+1/2; (vi) -y+1/2, z, -x; (vii) x, -y+1/2, z-1/2.]
[Figure 2] Fig. 2. A projection of the structure of Ba3Y2B6O15. BaO9 polyhedra and YO6 polyhedra construct a three-dimensional framework, which is reinforced by [B2O5]4- groups. Atoms Y1 and Y2 occupy alternate sites running along the [111] direction.
tribarium biyttrium hexaborate top
Crystal data top
Ba3Y2B6O15Dx = 4.105 Mg m3
Mr = 894.70Mo Kα radiation, λ = 0.71073 Å
Cubic, Ia3Cell parameters from 5120 reflections
Hall symbol: -I 2b 2c 3θ = 2.9–30.0°
a = 14.253 (6) ŵ = 16.05 mm1
V = 2895 (2) Å3T = 153 K
Z = 8Chip, colourless
F(000) = 31680.22 × 0.20 × 0.17 mm
Data collection top
Rigaku AFC10
712 independent reflections
Radiation source: fine-focus sealed tube704 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 28.5714 pixels mm-1θmax = 30.0°, θmin = 2.9°
dtprofit.ref scansh = 2016
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1718
Tmin = 0.635, Tmax = 1.000l = 2020
12264 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.020P)2 + 30.P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.047(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.81 e Å3
712 reflectionsΔρmin = 0.62 e Å3
43 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00075 (4)
Crystal data top
Ba3Y2B6O15Z = 8
Mr = 894.70Mo Kα radiation
Cubic, Ia3µ = 16.05 mm1
a = 14.253 (6) ÅT = 153 K
V = 2895 (2) Å30.22 × 0.20 × 0.17 mm
Data collection top
Rigaku AFC10
712 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
704 reflections with I > 2σ(I)
Tmin = 0.635, Tmax = 1.000Rint = 0.053
12264 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.047 w = 1/[σ2(Fo2) + (0.020P)2 + 30.P]
where P = (Fo2 + 2Fc2)/3
S = 1.09Δρmax = 0.81 e Å3
712 reflectionsΔρmin = 0.62 e Å3
43 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
Ba10.368191 (18)0.00000.25000.00240 (11)
Y10.00000.00000.50000.00163 (16)
Y20.25000.25000.25000.00175 (16)
B10.1120 (3)0.0640 (3)0.3078 (3)0.0042 (6)
O10.02893 (17)0.04114 (17)0.34885 (17)0.0052 (5)
O20.1597 (3)0.00000.25000.0075 (7)
O30.15544 (17)0.14718 (16)0.32350 (17)0.0052 (5)
Atomic displacement parameters (Å2) top
Ba10.00277 (15)0.00186 (14)0.00258 (14)0.0000.0000.00051 (8)
Y10.00163 (16)0.00163 (16)0.00163 (16)0.00058 (13)0.00058 (13)0.00058 (13)
Y20.00175 (16)0.00175 (16)0.00175 (16)0.00034 (13)0.00034 (13)0.00034 (13)
B10.0048 (15)0.0032 (14)0.0045 (15)0.0021 (12)0.0025 (12)0.0010 (11)
O10.0021 (10)0.0080 (11)0.0056 (10)0.0016 (8)0.0005 (8)0.0010 (8)
O20.0017 (15)0.0092 (17)0.0117 (17)0.0000.0000.0066 (13)
O30.0044 (10)0.0041 (10)0.0069 (11)0.0002 (9)0.0000 (8)0.0014 (8)
Geometric parameters (Å, º) top
Ba1—O1i3.018 (3)Y1—Ba1xvii4.0282 (17)
Ba1—O22.971 (4)Y1—Ba1xviii4.0282 (17)
Ba1—O3ii2.732 (3)Y2—O3xix2.250 (3)
Ba1—O3iii2.862 (3)Y2—O32.250 (3)
Ba1—O3i2.732 (3)Y2—O3xiv2.250 (3)
Ba1—O1iv2.753 (3)Y2—O3i2.250 (3)
Ba1—O1v2.753 (3)Y2—O3xviii2.250 (3)
Ba1—O3vi2.862 (3)Y2—O3iii2.250 (3)
Ba1—O1ii3.018 (3)Y2—Ba1xviii3.9414 (17)
Ba1—B1i3.211 (4)Y2—Ba1iii3.9414 (17)
Ba1—B1ii3.211 (4)Y2—Ba1i3.9414 (17)
Ba1—Y2vii3.9414 (17)Y2—Ba1xix3.9414 (17)
Y1—O1viii2.271 (3)Y2—Ba1xiv3.9414 (17)
Y1—O1ix2.271 (3)B1—O11.360 (4)
Y1—O1x2.271 (3)B1—O21.406 (4)
Y1—O1xi2.271 (3)B1—O31.356 (4)
Y1—O12.271 (3)B1—Ba1xviii3.211 (4)
Y1—O1xii2.271 (3)O1—Ba1xvi2.753 (3)
Y1—Ba1xiii4.0282 (17)O1—Ba1xviii3.018 (3)
Y1—Ba1xiv4.0282 (17)O2—B1vii1.406 (4)
Y1—Ba1xv4.0282 (17)O3—Ba1xviii2.732 (3)
Y1—Ba1xvi4.0282 (17)O3—Ba1xiv2.862 (3)
O3ii—Ba1—O3i153.03 (10)Ba1xv—Y1—Ba1xvi65.635 (2)
O3ii—Ba1—O1iv75.33 (7)O1viii—Y1—Ba1xvii41.01 (6)
O3i—Ba1—O1iv129.90 (7)O1ix—Y1—Ba1xvii138.99 (6)
O3ii—Ba1—O1v129.90 (7)O1x—Y1—Ba1xvii73.68 (6)
O3i—Ba1—O1v75.33 (7)O1xi—Y1—Ba1xvii47.86 (6)
O1iv—Ba1—O1v67.33 (10)O1—Y1—Ba1xvii132.14 (6)
O3ii—Ba1—O3vi61.44 (9)O1xii—Y1—Ba1xvii106.32 (6)
O3i—Ba1—O3vi116.25 (7)Ba1xiii—Y1—Ba1xvii65.635 (2)
O1iv—Ba1—O3vi96.75 (7)Ba1xiv—Y1—Ba1xvii114.365 (2)
O1v—Ba1—O3vi90.57 (7)Ba1xv—Y1—Ba1xvii65.635 (2)
O3ii—Ba1—O3iii116.25 (7)Ba1xvi—Y1—Ba1xvii114.365 (2)
O3i—Ba1—O3iii61.44 (9)O1viii—Y1—Ba1xviii138.99 (6)
O1iv—Ba1—O3iii90.57 (7)O1ix—Y1—Ba1xviii41.01 (6)
O1v—Ba1—O3iii96.75 (7)O1x—Y1—Ba1xviii106.32 (6)
O3vi—Ba1—O3iii171.22 (9)O1xi—Y1—Ba1xviii132.14 (6)
O3ii—Ba1—O276.52 (5)O1—Y1—Ba1xviii47.86 (6)
O3i—Ba1—O276.52 (5)O1xii—Y1—Ba1xviii73.68 (6)
O1iv—Ba1—O2146.33 (5)Ba1xiii—Y1—Ba1xviii114.365 (2)
O1v—Ba1—O2146.33 (5)Ba1xiv—Y1—Ba1xviii65.635 (2)
O3vi—Ba1—O285.61 (5)Ba1xv—Y1—Ba1xviii114.365 (2)
O3iii—Ba1—O285.61 (5)Ba1xvi—Y1—Ba1xviii65.635 (2)
O3ii—Ba1—O1i128.22 (7)Ba1xvii—Y1—Ba1xviii180.0
O3i—Ba1—O1i48.60 (7)O3xix—Y2—O3180.00 (9)
O1iv—Ba1—O1i127.59 (2)O3xix—Y2—O3xiv101.07 (8)
O1v—Ba1—O1i62.75 (9)O3—Y2—O3xiv78.93 (8)
O3vi—Ba1—O1i69.43 (6)O3xix—Y2—O3i78.93 (8)
O3iii—Ba1—O1i109.72 (6)O3—Y2—O3i101.07 (8)
O2—Ba1—O1i84.76 (5)O3xiv—Y2—O3i180.00 (9)
O3ii—Ba1—O1ii48.60 (7)O3xix—Y2—O3xviii78.93 (8)
O3i—Ba1—O1ii128.22 (7)O3—Y2—O3xviii101.07 (8)
O1iv—Ba1—O1ii62.75 (9)O3xiv—Y2—O3xviii78.93 (8)
O1v—Ba1—O1ii127.59 (2)O3i—Y2—O3xviii101.07 (8)
O3vi—Ba1—O1ii109.72 (6)O3xix—Y2—O3iii101.07 (8)
O3iii—Ba1—O1ii69.43 (6)O3—Y2—O3iii78.93 (8)
O2—Ba1—O1ii84.76 (5)O3xiv—Y2—O3iii101.07 (8)
O1i—Ba1—O1ii169.52 (9)O3i—Y2—O3iii78.93 (8)
O3ii—Ba1—B1i141.57 (8)O3xviii—Y2—O3iii180.00 (10)
O3i—Ba1—B1i24.73 (8)O3xix—Y2—Ba1xviii137.78 (6)
O1iv—Ba1—B1i138.70 (8)O3—Y2—Ba1xviii42.22 (6)
O1v—Ba1—B1i72.22 (8)O3xiv—Y2—Ba1xviii45.62 (6)
O3vi—Ba1—B1i91.58 (8)O3i—Y2—Ba1xviii134.38 (6)
O3iii—Ba1—B1i86.07 (8)O3xviii—Y2—Ba1xviii70.56 (6)
O2—Ba1—B1i74.46 (7)O3iii—Y2—Ba1xviii109.44 (6)
O1i—Ba1—B1i24.97 (8)O3xix—Y2—Ba1iii42.22 (6)
O1ii—Ba1—B1i149.05 (8)O3—Y2—Ba1iii137.78 (6)
O3ii—Ba1—B1ii24.73 (8)O3xiv—Y2—Ba1iii134.38 (6)
O3i—Ba1—B1ii141.57 (8)O3i—Y2—Ba1iii45.62 (6)
O1iv—Ba1—B1ii72.22 (8)O3xviii—Y2—Ba1iii109.44 (6)
O1v—Ba1—B1ii138.70 (8)O3iii—Y2—Ba1iii70.56 (6)
O3vi—Ba1—B1ii86.07 (8)Ba1xviii—Y2—Ba1iii180.0
O3iii—Ba1—B1ii91.58 (8)O3xix—Y2—Ba1109.44 (6)
O2—Ba1—B1ii74.46 (7)O3—Y2—Ba170.56 (6)
O1i—Ba1—B1ii149.05 (8)O3xiv—Y2—Ba1137.78 (6)
O1ii—Ba1—B1ii24.97 (8)O3i—Y2—Ba142.22 (6)
B1i—Ba1—B1ii148.92 (13)O3xviii—Y2—Ba1134.38 (6)
O3ii—Ba1—Y2vii33.60 (5)O3iii—Y2—Ba145.62 (6)
O3i—Ba1—Y2vii129.31 (5)Ba1xviii—Y2—Ba1112.731 (2)
O1iv—Ba1—Y2vii99.39 (5)Ba1iii—Y2—Ba167.269 (2)
O1v—Ba1—Y2vii123.25 (5)O3xix—Y2—Ba1i45.62 (6)
O3vi—Ba1—Y2vii34.18 (5)O3—Y2—Ba1i134.38 (6)
O3iii—Ba1—Y2vii139.63 (5)O3xiv—Y2—Ba1i109.44 (6)
O2—Ba1—Y2vii64.697 (3)O3i—Y2—Ba1i70.56 (6)
O1i—Ba1—Y2vii94.85 (5)O3xviii—Y2—Ba1i42.22 (6)
O1ii—Ba1—Y2vii80.64 (4)O3iii—Y2—Ba1i137.78 (6)
B1i—Ba1—Y2vii109.55 (6)Ba1xviii—Y2—Ba1i112.731 (2)
B1ii—Ba1—Y2vii55.69 (7)Ba1iii—Y2—Ba1i67.269 (2)
O1viii—Y1—O1ix180.0Ba1—Y2—Ba1i112.731 (2)
O1viii—Y1—O1x96.87 (8)O3xix—Y2—Ba1xix70.56 (6)
O1ix—Y1—O1x83.13 (8)O3—Y2—Ba1xix109.44 (6)
O1viii—Y1—O1xi83.13 (8)O3xiv—Y2—Ba1xix42.22 (6)
O1ix—Y1—O1xi96.87 (8)O3i—Y2—Ba1xix137.78 (6)
O1x—Y1—O1xi83.13 (8)O3xviii—Y2—Ba1xix45.62 (6)
O1viii—Y1—O196.87 (8)O3iii—Y2—Ba1xix134.38 (6)
O1ix—Y1—O183.13 (8)Ba1xviii—Y2—Ba1xix67.269 (2)
O1x—Y1—O196.87 (8)Ba1iii—Y2—Ba1xix112.731 (2)
O1viii—Y1—O1xii83.13 (8)Ba1i—Y2—Ba1xix67.269 (2)
O1ix—Y1—O1xii96.87 (8)O3xix—Y2—Ba1xiv134.38 (6)
O1x—Y1—O1xii180.0O3—Y2—Ba1xiv45.62 (6)
O1xi—Y1—O1xii96.87 (8)O3xiv—Y2—Ba1xiv70.56 (6)
O1—Y1—O1xii83.13 (8)O3i—Y2—Ba1xiv109.44 (6)
O1viii—Y1—Ba1xiii106.32 (6)O3xviii—Y2—Ba1xiv137.78 (6)
O1ix—Y1—Ba1xiii73.68 (6)O3iii—Y2—Ba1xiv42.22 (6)
O1x—Y1—Ba1xiii47.86 (6)Ba1xviii—Y2—Ba1xiv67.269 (2)
O1xi—Y1—Ba1xiii41.01 (6)Ba1iii—Y2—Ba1xiv112.731 (2)
O1—Y1—Ba1xiii138.99 (6)Ba1—Y2—Ba1xiv67.269 (2)
O1xii—Y1—Ba1xiii132.14 (6)Ba1i—Y2—Ba1xiv180.000 (7)
O1viii—Y1—Ba1xiv132.14 (6)Ba1xix—Y2—Ba1xiv112.731 (2)
O1ix—Y1—Ba1xiv47.86 (6)O3—B1—O1122.5 (3)
O1x—Y1—Ba1xiv41.01 (6)O3—B1—O2116.3 (3)
O1xi—Y1—Ba1xiv106.32 (6)O1—B1—O2121.2 (3)
O1—Y1—Ba1xiv73.68 (6)O3—B1—Ba1xviii57.42 (17)
O1xii—Y1—Ba1xiv138.99 (6)O1—B1—Ba1xviii69.53 (18)
Ba1xiii—Y1—Ba1xiv65.635 (2)O2—B1—Ba1xviii159.0 (2)
O1viii—Y1—Ba1xv47.86 (6)B1—O1—Y1128.9 (2)
O1ix—Y1—Ba1xv132.14 (6)B1—O1—Ba1xvi123.7 (2)
O1x—Y1—Ba1xv138.99 (6)Y1—O1—Ba1xvi106.23 (9)
O1xi—Y1—Ba1xv73.68 (6)B1—O1—Ba1xviii85.50 (19)
O1—Y1—Ba1xv106.32 (6)Y1—O1—Ba1xviii98.24 (8)
O1xii—Y1—Ba1xv41.01 (6)Ba1xvi—O1—Ba1xviii98.23 (7)
Ba1xiii—Y1—Ba1xv114.365 (2)B1vii—O2—B1122.0 (4)
Ba1xiv—Y1—Ba1xv180.0B1vii—O2—Ba1119.0 (2)
O1viii—Y1—Ba1xvi73.68 (6)B1—O2—Ba1119.0 (2)
O1ix—Y1—Ba1xvi106.32 (6)B1—O3—Y2140.0 (2)
O1x—Y1—Ba1xvi132.14 (6)B1—O3—Ba1xviii97.9 (2)
O1xi—Y1—Ba1xvi138.99 (6)Y2—O3—Ba1xviii104.18 (9)
O1—Y1—Ba1xvi41.01 (6)B1—O3—Ba1xiv107.0 (2)
O1xii—Y1—Ba1xvi47.86 (6)Y2—O3—Ba1xiv100.20 (8)
Ba1xiii—Y1—Ba1xvi180.0Ba1xviii—O3—Ba1xiv102.59 (8)
Ba1xiv—Y1—Ba1xvi114.365 (2)
Symmetry codes: (i) z, x, y; (ii) z, x, y+1/2; (iii) y+1/2, z+1/2, x+1/2; (iv) x+1/2, y, z; (v) x+1/2, y, z+1/2; (vi) y+1/2, z1/2, x; (vii) x, y, z+1/2; (viii) y, z1/2, x+1/2; (ix) y, z+1/2, x+1/2; (x) z+1/2, x, y+1/2; (xi) x, y, z+1; (xii) z1/2, x, y+1/2; (xiii) x+1/2, y, z+1/2; (xiv) z+1/2, x+1/2, y+1/2; (xv) z1/2, x1/2, y+1/2; (xvi) x1/2, y, z+1/2; (xvii) y, z, x+1; (xviii) y, z, x; (xix) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaBa3Y2B6O15
Crystal system, space groupCubic, Ia3
Temperature (K)153
a (Å)14.253 (6)
V3)2895 (2)
Radiation typeMo Kα
µ (mm1)16.05
Crystal size (mm)0.22 × 0.20 × 0.17
Data collection
DiffractometerRigaku AFC10
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.635, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12264, 712, 704
(sin θ/λ)max1)0.703
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.047, 1.09
No. of reflections712
No. of parameters43
w = 1/[σ2(Fo2) + (0.020P)2 + 30.P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.81, 0.62

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Selected geometric parameters (Å, º) top
Ba1—O1i3.018 (3)Y2—O32.250 (3)
Ba1—O22.971 (4)B1—O11.360 (4)
Ba1—O3ii2.732 (3)B1—O21.406 (4)
Ba1—O3iii2.862 (3)B1—O31.356 (4)
Y1—O12.271 (3)
O3—B1—O1122.5 (3)O1—B1—O2121.2 (3)
O3—B1—O2116.3 (3)B1iv—O2—B1122.0 (4)
Symmetry codes: (i) z, x, y; (ii) z, x, y+1/2; (iii) y+1/2, z+1/2, x+1/2; (iv) x, y, z+1/2.

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds