Download citation
Download citation
link to html
There are few examples of single-crystal structure determinations of gelators, as gel formation requires that the dissolved gelator self-assemble into a three-dimensional network structure incorporating solvent via noncovalent inter­actions rather than self-assembly followed by crystallization. In the solid-state structures of the isostructural compounds 4,4′-bis­[5-(meth­oxy­carbonyl)pentyl­oxy]biphenyl (BBO6-Me), C26H34O6, and 4,4′-bis­[5-(eth­oxy­carbonyl)pentyl­oxy]biphenyl (BBO6-Et), C28H38O6, the mol­ecules sit on a crystallographically imposed center of symmetry, resulting in strictly coplanar phenyl rings. BBO6-Me behaves as an organo­gelator in various alcohol solvents, whereas BBO6-Et does not. The extended structure reveals bundles of mol­ecules that form a columnar super­structure. Framework-energy calculations reveal much stronger inter­action energies within the columns (−52 to −78 kJ mol−1) than between columns (−2 to −16 kJ mol−1). The intra­columnar inter­actions are dominated by a dispersion component, whereas the inter­columnar inter­actions have a substantial electro­static component.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229617013237/ov3098sup1.cif
Contains datablocks global, BBO6-Me, BBO6-Et

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617013237/ov3098BBO6-Mesup2.hkl
Contains datablock BBO6-Me

mol

MDL mol file https://doi.org/10.1107/S2053229617013237/ov3098BBO6-Mesup4.mol
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617013237/ov3098BBO6-Etsup3.hkl
Contains datablock BBO6-Et

mol

MDL mol file https://doi.org/10.1107/S2053229617013237/ov3098BBO6-Etsup5.mol
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229617013237/ov3098BBO6-Mesup6.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229617013237/ov3098BBO6-Etsup7.cml
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229617013237/ov3098sup8.pdf
CCDC references and NMR spectra

CCDC references: 1574615; 1574614

Computing details top

For both structures, data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

4,4'-Bis[5-(methoxycarbonyl)pentyloxy]biphenyl (BBO6-Me) top
Crystal data top
C26H34O6F(000) = 476
Mr = 442.53Dx = 1.170 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 26.022 (9) ÅCell parameters from 2862 reflections
b = 7.410 (3) Åθ = 2.4–24.7°
c = 6.531 (2) ŵ = 0.08 mm1
β = 94.377 (11)°T = 200 K
V = 1255.7 (7) Å3Plate, clear colourless
Z = 20.60 × 0.30 × 0.08 mm
Data collection top
Bruker SMART X2S benchtop
diffractometer
2251 independent reflections
Radiation source: sealed microfocus tube1378 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.063
Detector resolution: 8.3330 pixels mm-1θmax = 25.4°, θmin = 2.9°
ω scansh = 3129
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 88
Tmin = 0.72, Tmax = 0.99l = 77
14032 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.081H-atom parameters constrained
wR(F2) = 0.264 w = 1/[σ2(Fo2) + (0.124P)2 + 0.9748P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2251 reflectionsΔρmax = 0.56 e Å3
155 parametersΔρmin = 0.22 e Å3
26 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.008 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Rotational disorder in the ester functional group was observed. The disorder involved both O atoms and the methyl group. The structure was refined employing a model with two positions for these atoms with occupancies of 0.76 (3):0.24 (3). The coordinates of the ester oxygen (O3) in both components were constrained to be equal and the Uij components restrained to behave approximately isotropically. The ethyl C—C carbon bond length was restrained to 1.50 Å and the O—C(Ethyl) carbon bond length was restrained to 1.40 Å. All H atoms were located in difference Fourier maps, except for those associated with the components of the disorder models. H atoms were refined using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for the aromatic positions, C—H = 0.99 Å and Uiso(H) = 1.2 Ueq(C) for the methylene groups, and C—H = 0.98 Å and Uiso(H) = 1.5 Ueq(C) for the methyl groups.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.32457 (9)0.4751 (3)0.2478 (3)0.0546 (7)
C10.37389 (12)0.4925 (4)0.1874 (4)0.0430 (8)
C20.41439 (13)0.5814 (5)0.2950 (5)0.0523 (9)
H20.40880.64140.420.063*
C30.46281 (13)0.5831 (5)0.2211 (5)0.0508 (9)
H30.48990.64450.29790.061*
C40.47346 (11)0.4986 (4)0.0387 (4)0.0381 (7)
C50.43153 (12)0.4134 (4)0.0689 (4)0.0452 (8)
H50.43670.35610.19580.054*
C60.38343 (13)0.4100 (4)0.0024 (4)0.0469 (8)
H60.35610.35040.07540.056*
C70.31436 (13)0.5369 (5)0.4482 (5)0.0535 (9)
H7A0.31540.67040.45360.064*
H7B0.34060.48910.55210.064*
C80.26140 (14)0.4694 (5)0.4907 (5)0.0574 (10)
H8A0.26170.33580.49050.069*
H8B0.23630.50960.37840.069*
C90.24359 (13)0.5356 (5)0.6954 (5)0.0551 (9)
H9A0.26770.48950.8080.066*
H9B0.24530.6690.69860.066*
C100.18926 (14)0.4771 (5)0.7339 (5)0.0580 (10)
H10A0.16510.520.61970.07*
H10B0.18770.34370.73610.07*
C110.17247 (16)0.5497 (6)0.9336 (6)0.0732 (12)
H11A0.19680.50531.04620.088*
H11B0.17540.68290.93090.088*
C120.1200 (2)0.5030 (7)0.9826 (8)0.0853 (14)
O20.0838 (5)0.454 (2)0.8610 (13)0.121 (3)0.76 (3)
O30.11170 (16)0.5413 (6)1.1752 (6)0.1234 (15)0.76 (3)
C130.0582 (4)0.499 (3)1.254 (2)0.150 (5)0.76 (3)
H13A0.03110.52521.14580.225*0.76 (3)
H13B0.0530.57451.37460.225*0.76 (3)
H13C0.05660.37161.29280.225*0.76 (3)
O2B0.0995 (12)0.384 (6)0.885 (5)0.121 (3)0.24 (3)
O3B0.11170 (16)0.5413 (6)1.1752 (6)0.1234 (15)0.24 (3)
C13B0.0572 (12)0.589 (7)1.264 (9)0.150 (5)0.24 (3)
H13D0.02940.56771.15680.225*0.24 (3)
H13E0.05710.71581.30560.225*0.24 (3)
H13F0.05210.51191.38250.225*0.24 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0559 (15)0.0656 (17)0.0422 (13)0.0037 (11)0.0027 (10)0.0062 (11)
C10.0495 (19)0.0391 (18)0.0399 (17)0.0042 (14)0.0006 (13)0.0035 (13)
C20.059 (2)0.051 (2)0.0465 (18)0.0052 (16)0.0061 (15)0.0147 (15)
C30.054 (2)0.047 (2)0.0499 (19)0.0094 (15)0.0003 (15)0.0143 (15)
C40.0508 (18)0.0250 (16)0.0374 (15)0.0006 (13)0.0049 (12)0.0021 (12)
C50.055 (2)0.0448 (19)0.0343 (16)0.0020 (15)0.0029 (13)0.0037 (13)
C60.054 (2)0.047 (2)0.0380 (16)0.0028 (15)0.0074 (14)0.0030 (14)
C70.058 (2)0.056 (2)0.0455 (18)0.0034 (16)0.0013 (15)0.0056 (16)
C80.061 (2)0.059 (2)0.052 (2)0.0010 (17)0.0030 (16)0.0069 (17)
C90.053 (2)0.060 (2)0.051 (2)0.0060 (16)0.0023 (15)0.0028 (16)
C100.055 (2)0.060 (2)0.058 (2)0.0008 (17)0.0011 (16)0.0009 (17)
C110.066 (3)0.091 (3)0.063 (2)0.006 (2)0.0078 (19)0.013 (2)
C120.073 (3)0.098 (4)0.086 (3)0.012 (3)0.016 (2)0.005 (3)
O20.059 (5)0.180 (9)0.125 (4)0.022 (5)0.015 (3)0.032 (5)
O30.107 (3)0.166 (4)0.102 (3)0.020 (3)0.044 (2)0.030 (3)
C130.113 (5)0.163 (11)0.178 (7)0.059 (6)0.042 (5)0.022 (10)
O2B0.059 (5)0.180 (9)0.125 (4)0.022 (5)0.015 (3)0.032 (5)
O3B0.107 (3)0.166 (4)0.102 (3)0.020 (3)0.044 (2)0.030 (3)
C13B0.113 (5)0.163 (11)0.178 (7)0.059 (6)0.042 (5)0.022 (10)
Geometric parameters (Å, º) top
O1—C11.377 (4)C9—H9A0.99
O1—C71.431 (4)C9—H9B0.99
C1—C21.388 (4)C10—C111.506 (5)
C1—C61.393 (4)C10—H10A0.99
C2—C31.383 (5)C10—H10B0.99
C2—H20.95C11—C121.467 (6)
C3—C41.392 (4)C11—H11A0.99
C3—H30.95C11—H11B0.99
C4—C51.402 (4)C12—O2B1.19 (3)
C4—C4i1.506 (6)C12—O21.238 (10)
C5—C61.369 (5)C12—O3B1.323 (6)
C5—H50.95C12—O31.323 (6)
C6—H60.95O3—C131.555 (8)
C7—C81.511 (5)C13—H13A0.98
C7—H7A0.99C13—H13B0.98
C7—H7B0.99C13—H13C0.98
C8—C91.529 (5)O3B—C13B1.610 (18)
C8—H8A0.99C13B—H13D0.98
C8—H8B0.99C13B—H13E0.98
C9—C101.518 (5)C13B—H13F0.98
C1—O1—C7118.3 (2)C8—C9—H9B108.8
O1—C1—C2126.0 (3)H9A—C9—H9B107.7
O1—C1—C6116.0 (3)C11—C10—C9112.1 (3)
C2—C1—C6118.0 (3)C11—C10—H10A109.2
C3—C2—C1120.3 (3)C9—C10—H10A109.2
C3—C2—H2119.9C11—C10—H10B109.2
C1—C2—H2119.9C9—C10—H10B109.2
C2—C3—C4122.7 (3)H10A—C10—H10B107.9
C2—C3—H3118.6C12—C11—C10116.2 (4)
C4—C3—H3118.6C12—C11—H11A108.2
C3—C4—C5115.6 (3)C10—C11—H11A108.2
C3—C4—C4i121.9 (3)C12—C11—H11B108.2
C5—C4—C4i122.5 (3)C10—C11—H11B108.2
C6—C5—C4122.4 (3)H11A—C11—H11B107.4
C6—C5—H5118.8O2B—C12—O3B124.6 (16)
C4—C5—H5118.8O2—C12—O3120.0 (6)
C5—C6—C1121.0 (3)O2B—C12—C11116.4 (15)
C5—C6—H6119.5O2—C12—C11127.2 (6)
C1—C6—H6119.5O3B—C12—C11112.3 (4)
O1—C7—C8107.3 (3)O3—C12—C11112.3 (4)
O1—C7—H7A110.3C12—O3—C13119.3 (8)
C8—C7—H7A110.3O3—C13—H13A109.5
O1—C7—H7B110.3O3—C13—H13B109.5
C8—C7—H7B110.3H13A—C13—H13B109.5
H7A—C7—H7B108.5O3—C13—H13C109.5
C7—C8—C9113.3 (3)H13A—C13—H13C109.5
C7—C8—H8A108.9H13B—C13—H13C109.5
C9—C8—H8A108.9C12—O3B—C13B127 (2)
C7—C8—H8B108.9O3B—C13B—H13D109.5
C9—C8—H8B108.9O3B—C13B—H13E109.5
H8A—C8—H8B107.7H13D—C13B—H13E109.5
C10—C9—C8113.7 (3)O3B—C13B—H13F109.5
C10—C9—H9A108.8H13D—C13B—H13F109.5
C8—C9—H9A108.8H13E—C13B—H13F109.5
C10—C9—H9B108.8
C7—O1—C1—C26.8 (5)O1—C7—C8—C9176.3 (3)
C7—O1—C1—C6172.1 (3)C7—C8—C9—C10176.8 (3)
O1—C1—C2—C3177.4 (3)C8—C9—C10—C11178.2 (3)
C6—C1—C2—C31.5 (5)C9—C10—C11—C12178.9 (4)
C1—C2—C3—C40.3 (5)C10—C11—C12—O2B15 (3)
C2—C3—C4—C51.1 (5)C10—C11—C12—O220.9 (13)
C2—C3—C4—C4i179.7 (3)C10—C11—C12—O3B167.8 (4)
C3—C4—C5—C61.3 (4)C10—C11—C12—O3167.8 (4)
C4i—C4—C5—C6179.5 (3)O2—C12—O3—C138.4 (19)
C4—C5—C6—C10.2 (5)C11—C12—O3—C13179.5 (9)
O1—C1—C6—C5177.7 (3)O2B—C12—O3B—C13B57 (4)
C2—C1—C6—C51.3 (5)C11—C12—O3B—C13B153 (2)
C1—O1—C7—C8169.0 (3)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg refers to the centroid of the symmetry-unique phenyl ring.
D—H···AD—HH···AD···AD—H···A
C13—H13C···O2ii0.982.553.488 (16)161
C6—H6···O1iii0.952.773.587 (4)144
C5—H5···Cgiii0.952.913.678 (3)139
C2—H2···Cgiv0.952.983.751 (4)140
Symmetry codes: (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x, y+3/2, z+1/2.
4,4'-Bis[5-(ethoxycarbonyl)pentyloxy]biphenyl (BBO6-Et) top
Crystal data top
C28H38O6F(000) = 508
Mr = 470.58Dx = 1.201 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 26.594 (7) ÅCell parameters from 1805 reflections
b = 7.5344 (17) Åθ = 2.3–24.9°
c = 6.5302 (14) ŵ = 0.08 mm1
β = 95.872 (8)°T = 200 K
V = 1301.6 (5) Å3Plate, clear colourless
Z = 20.50 × 0.50 × 0.05 mm
Data collection top
Bruker SMART X2S benchtop
diffractometer
2328 independent reflections
Radiation source: sealed microfocus tube1374 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.057
Detector resolution: 8.3330 pixels mm-1θmax = 25.3°, θmin = 1.5°
ω scansh = 3115
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 98
Tmin = 0.65, Tmax = 1.00l = 77
7714 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.073H-atom parameters constrained
wR(F2) = 0.232 w = 1/[σ2(Fo2) + (0.1115P)2 + 0.3294P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2328 reflectionsΔρmax = 0.26 e Å3
164 parametersΔρmin = 0.37 e Å3
34 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.013 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Rotational disorder in the ester functional group was observed. The disorder was modeled with two positions for the ethyl group with refined occupancies of 0.648 (15):0.352 (15). Similarity restraints based on the major-disorder components were employed and the anisotropic displacement parameters of corresponding atoms were constrained to be equal. All H atoms were located in difference Fourier maps, except for those associated with the components of the disorder models. H atoms were refined using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for the aromatic positions, C—H = 0.99 Å and Uiso(H) = 1.2 Ueq(C) for the methylene groups, and C—H = 0.98 Å and Uiso(H) = 1.5 Ueq(C) for the methyl groups.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.33045 (7)0.4751 (3)0.2409 (3)0.0621 (6)
C10.37790 (11)0.4917 (3)0.1818 (4)0.0497 (7)
C20.41746 (11)0.5820 (4)0.2898 (5)0.0606 (8)
H20.41220.64260.41340.073*
C30.46432 (11)0.5840 (4)0.2182 (4)0.0593 (8)
H30.49090.64620.29580.071*
C40.47493 (9)0.4989 (3)0.0362 (4)0.0433 (6)
C50.43364 (10)0.4116 (3)0.0682 (4)0.0505 (7)
H50.43820.3520.19310.061*
C60.38696 (11)0.4081 (4)0.0014 (4)0.0539 (7)
H60.36020.34680.07610.065*
C70.32081 (11)0.5378 (4)0.4384 (4)0.0604 (8)
H7A0.32170.66910.44150.073*
H7B0.34680.49250.54490.073*
C80.26938 (11)0.4720 (4)0.4791 (5)0.0644 (8)
H8A0.26990.34060.48270.077*
H8B0.24450.50860.36370.077*
C90.25215 (12)0.5395 (4)0.6775 (5)0.0647 (9)
H9A0.25290.67090.67650.078*
H9B0.27620.49860.79360.078*
C100.19930 (12)0.4786 (4)0.7133 (5)0.0669 (9)
H10A0.17540.51670.59520.08*
H10B0.19880.34720.71780.08*
C110.18125 (13)0.5489 (5)0.9078 (6)0.0841 (11)
H11A0.20540.51051.02490.101*
H11B0.18230.68010.90290.101*
O20.09980 (13)0.4309 (6)0.8264 (6)0.1611 (17)
C120.13091 (16)0.4956 (6)0.9495 (8)0.0931 (12)
O30.11934 (12)0.5317 (5)1.1327 (6)0.1322 (13)
C130.0754 (3)0.4721 (17)1.213 (2)0.154 (4)0.648 (15)
H13A0.05480.40271.10620.185*0.648 (15)
H13B0.08490.39251.3310.185*0.648 (15)
C140.0467 (4)0.6111 (18)1.277 (2)0.149 (4)0.648 (15)
H14A0.06740.6841.37680.224*0.648 (15)
H14B0.01780.56361.34070.224*0.648 (15)
H14C0.03450.68411.15760.224*0.648 (15)
C230.0673 (2)0.508 (4)1.141 (3)0.154 (4)0.352 (15)
H23A0.05650.39191.08020.185*0.352 (15)
H23B0.04810.60291.06330.185*0.352 (15)
C240.0585 (9)0.514 (4)1.351 (3)0.149 (4)0.352 (15)
H24A0.08260.5951.4250.224*0.352 (15)
H24B0.06260.39461.41030.224*0.352 (15)
H24C0.0240.55561.36180.224*0.352 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0606 (14)0.0730 (13)0.0517 (13)0.0035 (10)0.0014 (10)0.0074 (10)
C10.0582 (18)0.0454 (14)0.0449 (17)0.0036 (12)0.0020 (13)0.0044 (12)
C20.068 (2)0.0599 (17)0.0539 (19)0.0092 (15)0.0088 (15)0.0181 (14)
C30.066 (2)0.0552 (16)0.0546 (18)0.0130 (14)0.0009 (14)0.0180 (14)
C40.0593 (16)0.0314 (12)0.0371 (14)0.0003 (11)0.0047 (11)0.0022 (10)
C50.0598 (18)0.0512 (14)0.0388 (15)0.0009 (13)0.0034 (12)0.0061 (12)
C60.0580 (18)0.0566 (15)0.0443 (16)0.0044 (13)0.0083 (13)0.0030 (13)
C70.0639 (19)0.0612 (16)0.055 (2)0.0043 (14)0.0003 (15)0.0028 (14)
C80.0586 (19)0.0721 (18)0.061 (2)0.0001 (14)0.0015 (15)0.0065 (15)
C90.0605 (19)0.0709 (18)0.061 (2)0.0058 (15)0.0015 (15)0.0040 (15)
C100.065 (2)0.0684 (18)0.066 (2)0.0011 (15)0.0015 (16)0.0007 (15)
C110.070 (2)0.103 (3)0.080 (3)0.0058 (19)0.0096 (19)0.014 (2)
O20.108 (3)0.227 (4)0.151 (3)0.068 (3)0.031 (2)0.036 (3)
C120.075 (3)0.103 (3)0.104 (4)0.009 (2)0.021 (3)0.004 (2)
O30.107 (2)0.166 (3)0.133 (3)0.024 (2)0.063 (2)0.017 (2)
C130.136 (5)0.168 (6)0.171 (7)0.013 (4)0.078 (5)0.002 (5)
C140.116 (6)0.161 (9)0.179 (9)0.005 (6)0.055 (6)0.014 (7)
C230.136 (5)0.168 (6)0.171 (7)0.013 (4)0.078 (5)0.002 (5)
C240.116 (6)0.161 (9)0.179 (9)0.005 (6)0.055 (6)0.014 (7)
Geometric parameters (Å, º) top
O1—C11.363 (3)C10—C111.499 (5)
O1—C71.421 (3)C10—H10A0.99
C1—C61.379 (4)C10—H10B0.99
C1—C21.384 (4)C11—C121.450 (5)
C2—C31.375 (4)C11—H11A0.99
C2—H20.95C11—H11B0.99
C3—C41.404 (4)O2—C121.197 (5)
C3—H30.95C12—O31.294 (5)
C4—C51.396 (3)O3—C231.4012 (11)
C4—C4i1.460 (5)O3—C131.4021 (11)
C5—C61.365 (4)C13—C141.385 (13)
C5—H50.95C13—H13A0.99
C6—H60.95C13—H13B0.99
C7—C81.504 (4)C14—H14A0.98
C7—H7A0.99C14—H14B0.98
C7—H7B0.99C14—H14C0.98
C8—C91.506 (4)C23—C241.412 (18)
C8—H8A0.99C23—H23A0.99
C8—H8B0.99C23—H23B0.99
C9—C101.519 (4)C24—H24A0.98
C9—H9A0.99C24—H24B0.98
C9—H9B0.99C24—H24C0.98
C1—O1—C7119.0 (2)C9—C10—H10A108.8
O1—C1—C6116.6 (2)C11—C10—H10B108.8
O1—C1—C2125.3 (2)C9—C10—H10B108.8
C6—C1—C2118.0 (3)H10A—C10—H10B107.7
C3—C2—C1120.0 (3)C12—C11—C10116.3 (3)
C3—C2—H2120.0C12—C11—H11A108.2
C1—C2—H2120.0C10—C11—H11A108.2
C2—C3—C4123.4 (3)C12—C11—H11B108.2
C2—C3—H3118.3C10—C11—H11B108.2
C4—C3—H3118.3H11A—C11—H11B107.4
C5—C4—C3114.3 (2)O2—C12—O3119.5 (4)
C5—C4—C4i123.1 (3)O2—C12—C11125.1 (4)
C3—C4—C4i122.5 (3)O3—C12—C11115.3 (4)
C6—C5—C4122.9 (3)C12—O3—C23109.8 (9)
C6—C5—H5118.5C12—O3—C13124.3 (8)
C4—C5—H5118.5C14—C13—O3112.1 (9)
C5—C6—C1121.3 (3)C14—C13—H13A109.2
C5—C6—H6119.3O3—C13—H13A109.2
C1—C6—H6119.3C14—C13—H13B109.2
O1—C7—C8107.6 (2)O3—C13—H13B109.2
O1—C7—H7A110.2H13A—C13—H13B107.9
C8—C7—H7A110.2C13—C14—H14A109.5
O1—C7—H7B110.2C13—C14—H14B109.5
C8—C7—H7B110.2H14A—C14—H14B109.5
H7A—C7—H7B108.5C13—C14—H14C109.5
C7—C8—C9113.8 (3)H14A—C14—H14C109.5
C7—C8—H8A108.8H14B—C14—H14C109.5
C9—C8—H8A108.8O3—C23—C24107.3 (15)
C7—C8—H8B108.8O3—C23—H23A110.3
C9—C8—H8B108.8C24—C23—H23A110.3
H8A—C8—H8B107.7O3—C23—H23B110.3
C8—C9—C10113.4 (3)C24—C23—H23B110.2
C8—C9—H9A108.9H23A—C23—H23B108.5
C10—C9—H9A108.9C23—C24—H24A109.5
C8—C9—H9B108.9C23—C24—H24B109.5
C10—C9—H9B108.9H24A—C24—H24B109.5
H9A—C9—H9B107.7C23—C24—H24C109.5
C11—C10—C9113.9 (3)H24A—C24—H24C109.5
C11—C10—H10A108.8H24B—C24—H24C109.5
C7—O1—C1—C6171.6 (2)O1—C7—C8—C9175.7 (2)
C7—O1—C1—C27.1 (4)C7—C8—C9—C10177.7 (2)
O1—C1—C2—C3177.6 (3)C8—C9—C10—C11178.5 (3)
C6—C1—C2—C31.1 (4)C9—C10—C11—C12179.7 (3)
C1—C2—C3—C40.5 (5)C10—C11—C12—O215.2 (7)
C2—C3—C4—C50.3 (4)C10—C11—C12—O3168.7 (3)
C2—C3—C4—C4i179.4 (3)O2—C12—O3—C238.4 (16)
C3—C4—C5—C60.5 (4)C11—C12—O3—C23168.0 (15)
C4i—C4—C5—C6179.2 (3)O2—C12—O3—C1312.0 (10)
C4—C5—C6—C10.1 (4)C11—C12—O3—C13171.6 (8)
O1—C1—C6—C5177.9 (2)C12—O3—C13—C14122.9 (14)
C2—C1—C6—C50.9 (4)C12—O3—C23—C24168 (2)
C1—O1—C7—C8169.2 (2)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg refers to the centroid of the symmetry-unique phenyl ring.
D—H···AD—HH···AD···AD—H···A
C13—H13B···O2ii0.992.473.177 (13)128
C6—H6···O1iii0.952.783.601 (3)145
C5—H5···Cgiii0.952.923.716 (3)142
C2—H2···Cgiv0.953.023.799 (3)141
Symmetry codes: (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x, y+3/2, z+1/2.
Interaction energies top
N refers to the number of molecules with an R molecular centroid-to-centroid distance and energies are in kJ mol-1.
NR (Å)E'eleE'polE'disE'rep'Etot'
BBO6-Me44.9386 (12)-17.8-5.3-89.045.9-71.8
26.531 (2)-19.2-3.1-53.027.3-51.9
229.994 (9)-10.4-2.0-6.84.6-15.5
431.974 (9)-0.7-0.2-1.40.1-2.0
BBO6-Et44.9852 (8)-17.1-5.6-97.256.3-72.1
26.5302 (14)-17.2-3.5-57.727.3-54.2
230.804 (6)-4.1-0.2-8.32.5-10.1
432.821 (6)-0.5-0.1-3.50.5-3.3
Scale factors used to determine Etot: kele = 1.057, kpol = 0.740, kdisp = 0.871 and krep = 0.618 (Mackenzie et al., 2017). See section 2.3 for calculation details.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds